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Abstract: Tetrahexyldecyl Ascorbate (THDC) is an L-ascorbic acid precursor with improved stability
and ability to penetrate the epidermis. The stability and transdermal penetration of THDC, however,
may be compromised by the oxidant-rich environment of human skin. In this study, we show that
THDC is a poor antioxidant that degrades rapidly when exposed to singlet oxygen. This degradation,
however, was prevented by combination with acetyl zingerone (AZ) as a stabilizing antioxidant. As
a standalone ingredient, THDC led to unexpected activation of type I interferon signaling, but this
pro-inflammatory effect was blunted in the presence of AZ. Moreover, the combination of THDC
and AZ increased expression of genes associated with phospholipid homeostasis and keratinocyte
differentiation, along with repression of MMP1 and MMP7 expression, inhibition of MMP enzyme
activity, and increased production of collagen proteins by dermal fibroblasts. Lastly, whereas THDC
alone reduced viability of keratinocytes exposed to oxidative stress, this effect was completely
abrogated by the addition of AZ to THDC. These results show that AZ is an effective antioxidant
stabilizer of THDC and that combination of these products may improve ascorbic acid delivery.
This provides a step towards reaching the full potential of ascorbate as an active ingredient in
topical preparations.

Keywords: acetyl zingerone; ascorbate; collagen; skin aging; tetrahexyldecyl ascorbate; vitamin C

1. Introduction

L-Ascorbic acid (AA) is essential for skin health and nutritional deficiency of this
vitamin leads to the well-characterized skin fragility and bruising seen in scurvy (hypovita-
minosis C) [1,2]. Within the dermis, AA is required for the synthesis and post-translational
modification of collagen [3], with functions that include hydroxylation of proline and lysine,
as well as stimulation of collagen gene expression [4,5]. Interestingly, AA is more abundant
in the epidermal layer [6], and, in fact, the epidermis expresses a unique AA transporter
(SVCT1) not expressed in other organs [7]. Within the epidermis, the role of AA may paral-
lel that of calcium [8], with pro-differentiation effects that improve barrier function through
elevation of filaggrin and normalization of the stratum corneum structure [9]. Such effects
are accompanied by an increased abundance of stratum corneum barrier lipids, including
glucosylceramides, ceramides, and lipid lamellar structures [10]. These observations have
prompted the development of topical formulations with the goal of directly delivering AA
to skin to achieve cosmetic or therapeutic effects. Topical AA delivery has been reported to
improve some aspects of intrinsic skin aging [11–13], although stronger evidence supports
a role for AA in the antioxidant-mediated prevention of extrinsic aging due to UV radia-
tion exposure [14–16]. Further evidence has supported a role for topically-applied AA or
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AA-derivatives for treatment of wound healing and scar formation [17–19], allergic contact
dermatitis [20], hyperpigmentation [21–25], atopic dermatitis [26,27], striae distensae [28],
cutaneous malignancies [29–31], and psoriasis [32].

Longstanding challenges of topical AA formulations have been related to skin-penetration
and the stability of AA as an active ingredient [33]. AA is a water-soluble hydrophilic
anion with a high polarity [34], which is repelled by the stratum corneum and can only
penetrate skin under acidic conditions (pH < 3.5) [35]. Moreover, upon exposure to am-
bient air and UV light, AA undergoes oxidation to dehydro-L-ascorbic acid in a reaction
facilitated by high temperatures and potentially by vehicle solution properties (e.g., high
pH, metal ions, presence of dissolved oxygen) [36]. Additionally, AA can react with singlet
oxygen to generate more persistent reactive oxygen species, such as H2O2, such that AA
may function as a pro-oxidant in some circumstances [37,38]. To improve the efficacy of
topical delivery, ascorbyl phosphate salts have been developed, which feature an added
phosphate group to prevent oxidation [19,39]. These products, however, must undergo
an in vivo conversion to AA and tend to have poor skin penetration due to their higher
charge densities [35]. Another approach has been to develop combination products to
improve the stability and/or transdermal penetration of AA or AA-derivatives [40,41]. For
example, a formulation that combined AA with ferulic acid was shown to have improved
stability [42], and skin permeability was bolstered by combination of AA with pyridoxine
(vitamin B6) [43].

Tetrahexyldecyl ascorbate (THDC) is a lipid-soluble AA precursor esterified with
branched chain fatty acid (2-hexyldecanoic acid), which is reported to have an improved
stability and ability to penetrate the lipophilic stratum corneum [21,44]. It is essentially
an AA pro-drug that can penetrate the dermis where it may then undergo intracellular
enzymatic conversion to AA. Moreover, the lipid-soluble property of THDC may facilitate
its incorporation into cell membranes to confer added protective benefit [44]. When
combined with other ingredients, THDC has been shown to decrease signs of photodamage,
such as skin wrinkling [44,45] and reduce hyperpigmentation [21,46]. As such, THDC has
become the most popular lipophilic ascorbic acid derivative in the skin care market. Despite
its widespread use, however, the stability of THDC in the presence of reactive oxygen
species has not been fully demonstrated, and stabilizing antioxidants may be needed to
prolong the effective in vivo half-life of THDC. In this respect, acetyl zingerone (AZ) is a
previously described antioxidant compound able to neutralize non-radicals, such as singlet
oxygen and peroxynitrite anion and radicals, such as hydroxyl and peroxyl [47–49]. The
ability of AZ to physically quench singlet oxygen, in particular, may prolong THDC half-life
and impede production of H2O2 generated from the reaction between THDC-derived AA
and singlet oxygen [37]. The combination of THDC with AZ may therefore have synergistic
effects above and beyond those of each compound individually, although interactions
between these two antioxidant compounds have not been investigated.

The goals of this study were to investigate the effects of AZ on THDC stability and
the mechanism of action. We evaluated the effects of THDC, AZ, and THDC + AZ using
cell-free in vitro assays and reconstituted human epidermis (RHE) tissues (EpiDermFT™).
The effects of both compounds on RHE tissue cultures were evaluated using in situ oligonu-
cleotide microarrays (Affymetrix Clariom S assays). Our results provide new insights into
the effects of THDC in a human skin model and show how these effects can be modulated
through combination with AZ as a stabilizing antioxidant.

2. Results
2.1. THDC Is a Poor Antioxidant That Degrades Rapidly in the Presence of Singlet Oxygen

The antioxidant profile of THDC against various reactive oxygen species was evalu-
ated (Figure 1A). This showed the strongest activity against singlet oxygen, with a total
oxygen radical absorbance capacity (ORAC) of 1035 µM Trolox equivalents per gram
(Figure 1A). This total ORAC value is substantially less than that of AA reported previ-
ously (i.e., 29,855.78 µM Trolox equivalents per mg; Figure 1B) [50]. THDC was also able to
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effectively inhibit lipid peroxidation (IC50 38.7 mg/mL; Figure 1C), although its potency in
this regard was much less compared to AZ (IC50 = 0.46 µg/mL; Figure 1D). We next used
HPLC to monitor THDC degradation under singlet oxygen (Figure 1E). In the absence
of AZ, THDC degraded completely by 6 min (Figure 1E). However, in the presence of
AZ, there was only a 25% degradation of THDC after 10 min (Figure 1E). Photooxidation
analyses showed that AZ was stable under UVA/UVB light exposure, with >80% of AZ
remaining following 4 h of exposure (Figure 1F).
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Figure 1. THDC degradation, inhibition of lipid peroxidation, hydrolysis, and antioxidant activity. (A) THDC ORAC 
profile. (B) AA ORAC profile. The antioxidant activity against each reactive oxygen species was determined (μmole 
Trolox equivalents (TE) per gram). The AA ORAC profile shown in (B) was reported previously [50]. (C,D) Inhibition of 
lipid peroxidation. The degree of inhibition is shown at different THDC or AZ concentrations (top margin: estimated 
IC50). (E) THDC degradation under singlet oxygen. The percentage of remaining THDC is shown under AZ(+) and AZ(−) 
conditions. (F) AZ stability under photooxidation. AZ was exposed to UVA and UVB light for 4 h with the cumulative 
dose indicated. The percentage of AZ remaining at each time point is shown (absolute quantities in parentheses, μmole 
TE/gram). (G) H2O2 scavenging activity. The neutralization of H2O2 was assessed at varying THDC, AZ and THDC + AZ 
(1:1) concentrations (n = 2 replicates). The estimated IC50 value is shown (top margin). (H,I) THDC fatty acid ester hy-
drolysis with carboxylesterase-2 (CES2). (H) The percentage of THDC remaining at each time point and (I) the accumu-
lation of ascorbic acid product (mM). 

2.2. THDC Activates Type I Interferon Signaling in the Absence of AZ 
Microarrays were used to evaluate the effects of THDC on gene expression in the 

absence of AZ (THDC vs. CTL comparison). Under AZ(−) conditions, THDC altered the 
expression of 406 DEGs, including 236 THDC-increased DEGs (P < 0.05, FC > 1.25) and 
170 THDC-decreased DEGs (P < 0.05, FC < 0.80). Genes most strongly increased by THDC 
included zinc finger and SCAN domain containing 26 (ZSCAN26), MX dynamin like 
GTPase 2 (MX2), ALG11 alpha-1,2-mannosyltransferase (ALG11), and transmembrane 
protein 140 (TMEM140) (Figure 2B,C,E). Genes most strongly decreased by THDC in-

Figure 1. THDC degradation, inhibition of lipid peroxidation, hydrolysis, and antioxidant activity. (A) THDC ORAC
profile. (B) AA ORAC profile. The antioxidant activity against each reactive oxygen species was determined (µmole Trolox
equivalents (TE) per gram). The AA ORAC profile shown in (B) was reported previously [50]. (C,D) Inhibition of lipid
peroxidation. The degree of inhibition is shown at different THDC or AZ concentrations (top margin: estimated IC50).
(E) THDC degradation under singlet oxygen. The percentage of remaining THDC is shown under AZ(+) and AZ(−)
conditions. (F) AZ stability under photooxidation. AZ was exposed to UVA and UVB light for 4 h with the cumulative dose
indicated. The percentage of AZ remaining at each time point is shown (absolute quantities in parentheses, µmole TE/gram).
(G) H2O2 scavenging activity. The neutralization of H2O2 was assessed at varying THDC, AZ and THDC + AZ (1:1)
concentrations (n = 2 replicates). The estimated IC50 value is shown (top margin). (H,I) THDC fatty acid ester hydrolysis
with carboxylesterase-2 (CES2). (H) The percentage of THDC remaining at each time point and (I) the accumulation of
ascorbic acid product (mM).
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Since the reaction between THDC and singlet oxygen generates H2O2 [37], we next
evaluated H2O2 scavenging capacity of THDC, AZ and THDC + AZ (1:1). This showed that
THDC alone has a weak H2O2 neutralization capacity (IC50 850 µg/mL), whereas AZ or
THDC + AZ neutralized H2O2 more effectively (IC50 ≤ 62.6 µg/mL) (Figure 1G). We further
evaluated the conversion of THDC to ascorbic acid in the presence of carboxylesterase-2
(CES2), which is the main carboxylesterase expressed by KCs with a role in epidermal
prodrug metabolism [51]. From 0 to 240 min, the percentage of THDC remaining was
similar in AZ(−) and AZ(+) conditions, with slightly greater accumulation of ascorbic acid
under AZ(+) conditions (Figure 1H,I).

2.2. THDC Activates Type I Interferon Signaling in the Absence of AZ

Microarrays were used to evaluate the effects of THDC on gene expression in the
absence of AZ (THDC vs. CTL comparison). Under AZ(−) conditions, THDC altered
the expression of 406 DEGs, including 236 THDC-increased DEGs (P < 0.05, FC > 1.25)
and 170 THDC-decreased DEGs (P < 0.05, FC < 0.80). Genes most strongly increased by
THDC included zinc finger and SCAN domain containing 26 (ZSCAN26), MX dynamin
like GTPase 2 (MX2), ALG11 alpha-1,2-mannosyltransferase (ALG11), and transmembrane
protein 140 (TMEM140) (Figure 2B,C,E). Genes most strongly decreased by THDC included
solute carrier family 35 member G3 (SLC35G3), troponin I1 slow skeletal type (TNNI1),
progestin and adipoQ receptor family member 6 (PAQR6), and C2 calcium dependent
domain containing 4D (C2CD4D) (Figure 2B,D,F). As a group, THDC-increased genes
were most strongly associated with type I interferon signaling, response to virus, and
P450 xenobiotic metabolism (Figure 2G,I). Likewise, THDC-decreased genes were most
strongly associated with motor neuron differentiation, inflammatory leukocyte activation,
and O-glycan biosynthesis (Figure 2H,J).

2.3. THDC in the Presence of AZ Up-Regulates Phospholipid Homeostasis Genes While Repressing
Chemokine Signaling Genes

We next used microarrays to evaluate THDC responses in the presence of AZ
(THDC + AZ vs. AZ comparison). Under AZ(+) conditions, THDC altered expression
of 347 DEGs, including 168 THDC-increased DEGs (P < 0.05, FC > 1.25) and 179 THDC-
decreased DEGs (P < 0.05, FC < 0.80). Genes most strongly increased by THDC included
ATP binding cassette subfamily B member 11 (ABCB11), galectin 9B (LGALS9B), CEA cell
adhesion molecule 1 (CEACAM1), and sex determining region Y (SRY) (Figure 3B,C,E).
Genes most strongly decreased by THDC included cholesterol 25-hydroxylase (CH25H),
matrix metallopeptidase 7 (MMP7), nucleoside-triphosphatase cancer-related (NTPCR),
and methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L) (Figure 3B,D,F). As a
group, THDC-increased DEGs were associated with phospholipid homeostasis, ion trans-
membrane transport, and type 2 diabetes mellitus (Figure 3G,I). Likewise, THDC-decreased
DEGs were associated with response to chemokine, positive regulation of lipid localization,
and chemokine signaling (Figure 3H,J).
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Figure 2. THDC vs. CTL DEG summary. (A) THDC structure. (B) Top-ranked DEGs. The 44 genes with lowest p-value are
shown (ranked by FC). (C,D) DEG clouds. The 100 increased (red) or decreased (blue) genes with lowest p-value are shown.
Genes with lower p-values have larger font. (E,F) Average expression. Expression of each gene is Z-score normalized
(mean = 0; standard deviation = 1). Average expression±1 standard error is shown for each gene and treatment. An asterisk
(*) denotes a significant expression difference (THDC vs. CTL or THDC + AZ vs. AZ; P < 0.05, moderated t-statistic).
(G,H) GO BP terms. GO BP terms most strongly enriched among (G) increased DEGs and (H) decreased DEGs is shown.
(I,J) KEGG terms. KEGG terms most strongly enriched among (I) increased and (J) decreased DEGs are shown. In (G–J),
the number of genes associated with each term is given in parentheses and exemplar DEGs are listed in the figure.
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Figure 3. THDC + AZ vs. AZ DEG summary. (A) THDC and AZ structures. (B) Top-ranked DEGs. The 44 genes with
lowest p-value are shown (ranked by FC). (C,D) DEG clouds. The 100 increased (red) or decreased (blue) genes with lowest
p-value are shown. Genes with lower p-values have larger font. (E,F) Average expression. Expression of each gene is Z-score
normalized (mean = 0; standard deviation = 1). Average expression ±1 standard error is shown for each gene and treatment.
An asterisk (*) denotes a significant expression difference (THDC vs. CTL or THDC + AZ vs. AZ; P < 0.05, moderated
t-statistic). (G,H) GO BP terms. GO BP terms most strongly enriched among (G) increased DEGs and (H) decreased DEGs
are shown. (I,J) KEGG terms. KEGG terms most strongly enriched among (I) increased and (J) decreased DEGs are shown.
In (G–J), the number of genes associated with each term is given in parentheses and exemplar DEGs are listed in the figure.
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2.4. MMP7 and NQO1 Have Differential Responses to THDC in AZ(−) and AZ(+) Conditions

Further analyses were performed to identify genes differentially regulated by THDC in
AZ(+) and AZ(−) conditions. This identified 302 genes with a positive interaction pattern
(P < 0.05) and 392 genes with a negative interaction pattern (P < 0.05). A positive interaction
pattern is characterized by genes for which expression is up-regulated more strongly by
THDC in AZ(+) compared to AZ(−) conditions (Figure 4A). A negative interaction pattern
is characterized by genes for which expression is down-regulated more strongly by THDC
in AZ(+) conditions compared to AZ(−) conditions (Figure 4B).

Examples of genes with a positive interaction pattern included VPS37C subunit of
ESCRT-I (VPS37C), glycine amidinotransferase (GATM), fibrillin 3 (FBN3), and early growth
response 3 (EGR3) (Figure 4A). Such genes were most strongly associated with transcription,
methylation, IL-13 production, and oxidative demethylation (Figure 4C). Examples of
genes with a negative interaction pattern included superoxide dismutase 2 (SOD2), TNF
alpha induced protein 6 (TNFAIP6), NAD(P)H dehydrogenase quinone 1 (NQO1), and
matrix metallopeptidase 7 (MMP7) (Figure 4B). These genes were most strongly associated
with response to stress and leukocyte/epithelium migration (Figure 4D). The negative
interaction pattern was confirmed for a subset of genes using RT-PCR assays (i.e., MMP1,
MMP7, IRF1, SOD2, and CES1; Figure 4E–J).

2.5. AZ Moderates Pro-Inflammatory Gene Expression Changes Observed with THDC Treatment

The effects of THDC on pre-defined gene sets were evaluated (Figure 5). In AZ(−)
conditions, THDC up-regulated genes increased as part of the unhealthy skin signature
(P < 0.01), which is a set of genes increased in diverse types of inflammatory skin disease
(e.g., SOD2, PRMT1, RCC1; Figure 5A,D) [52]. However, this effect was absent under AZ(+)
conditions (Figure 5A). Likewise, under AZ(−) conditions, THDC increased expression
of genes belonging to the STAT1-57 module (P < 0.01), which is a set of genes activated
by interferon signaling with elevated expression in inflammatory skin disease (e.g., MX2,
IFIT3, IFI44; Figure 5K,L) [53]. The effect, however, was not seen under AZ(+) conditions
(Figure 5K). Otherwise, THDC decreased expression of genes belonging to some matrisome
categories [54] in the AZ(+) condition (e.g., collagen genes, ECM glycoproteins, ECM regu-
lator genes; Figure 5C,G,I) but not in the AZ(−) condition. Examples of ECM glycoprotein
genes with increased expression in the AZ(−) condition only included TNF alpha induced
protein 6 (TNFAIP6), hemicentin 1 (HMCN1), and tenascin C (TNC) (Figure 5H).

2.6. The THDC + AZ Combination Triggers Gene Expression Shifts Similar to Those Seen during
KC Differentiation

We next evaluated the effects of THDC on the expression of genes regulated during
KC differentiation. Genes with expression altered during KC differentiation were identified
from a prior microarray study that compared differentiating KCs (high calcium medium,
7 days) to proliferating KCs (sub-confluent cells) (GSE21413). In the absence of AZ, effects
of THDC on gene expression were negatively correlated with those observed during KC
differentiation (r = −0.064, P = 3.67 × 10−10; Figure 6A). Consistent with this, the set of
THDC-increased genes evaluated in both studies tended to be decreased by high-calcium
medium (Figure 6B), whereas no significant trend was observed for THDC-decreased genes
(Figure 6C). These effects of THDC, however, differed in the presence of AZ. Under the
AZ(+) condition, effects of THDC on gene expression were positively correlated with those
seen during KC differentiation (r = 0.203, P = 6.33 × 10−90; Figure 6D). Consistent with
this, THDC-increased genes [AZ(+) condition] tended to be up-regulated in high-calcium
medium (P < 0.01; Figure 6E), and THDC-decreased genes (AZ(+) condition) tended to
be down-regulated in high-calcium medium (P < 0.01; Figure 6F). Examples of calcium-
increased genes up-regulated by THDC + AZ included glycine amidinotransferase (GATM),
nuclear receptor subfamily 4 group A member 1 (NR4A1), distal-less homeobox 5 (DLX5)
(Figure 6G), and examples of calcium-decreased genes down-regulated by THDC + AZ
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included Popeye domain containing 3 (POPDC3), AKT serine/threonine kinase 3 (AKT3),
and ATRX chromatin remodeler (ATRX) (Figure 6H).
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the CTL treatment.
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Figure 5. Unhealthy skin signature (USS), matrisome category, and STAT1-57 gene expression responses. (A–C,E–G,I–
K) Boxplots show the median and interquartile range of fold-change estimates in AZ(−) and AZ(+) conditions for genes
in each category (whiskers: 10th to 90th percentile). The number of genes in each category is indicated (top margin). For
each boxplot, the colored region outlines the interquartile range observed for all expressed genes not included within
the indicated category (p-value: Mann Whitney U test). (D,H,L) Example genes from selected categories with differential
responses to THDC in AZ(−) and AZ(+) conditions. Genes are ranked based upon fold-change (THDC/CTL). Genes
significantly altered by THDC in AZ(−) or AZ(+) conditions are shown in magenta font (P < 0.05, bottom margin).

2.7. The Addition of AZ to THDC Augments Collagen Protein and Inhibits MMP Expression
and Activity

We next evaluated effects of THDC, AZ and THDC + AZ on production of COL I pro-
tein in human dermal fibroblasts (Figure 7A). AZ elicited a significant 15–31% extracellular
increase in COL I production at all concentrations tested in adult fibroblasts, whereas the
combination THDC + AZ increased COL I protein by 12–27% at the highest concentrations
tested (50 and 100 µg/mL; Figure 7A). In contrast, THDC alone not significantly alter COL
I protein levels (Figure 7A). THDC also did not increase extracellular COL I protein in
neonatal fibroblasts, although in neonatal cells there was only a modest 7% increase in COL
I seen with AZ treatment (50 µg/mL; P < 0.05), without significant effect of THDC + AZ
treatment (25–100 µg/mL; data not shown).
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Figure 6. Comparison to gene expression responses in calcium-treated KCs (GSE21413). (A,D) FC scatterplots. Each point
represents an individual gene. The proportion of genes in each quadrant is represented (right sidebar) and shown (top
margin; red font: P < 0.05, Fisher’s exact test). The least square regression estimate is shown (yellow line) with Spearman
correlation and corresponding p-value (yellow ellipse: middle 90% of genes, Mahalanobis distance). (B,C,E,F) GSEA
analyses. Figures show the cumulative overlap between THDC-regulated genes (±AZ) (P < 0.05) and a list of genes ranked
based upon response to calcium (GSE21413). The area between the curve and diagonal is shown with corresponding p-value
(Mann–Whitney U test). (G) Calcium-increased genes (FDR < 0.10) decreased by THDC + AZ. (H) Radiation-decreased
genes (FDR < 0.10) increased by THDC + AZ. In (G,H), FC estimates are shown for each gene (THDC/CTL) with and
without AZ.

THDC alone did yield a small (<10%) but significant increase in cellular (but not
extracellular) levels of COL IV and COL VI proteins in neonatal and adult fibroblasts
(Figure S1). However, AZ significantly increased both cellular and extracellular COL IV
and VI proteins in adult and neonatal fibroblasts (Figure S1), with a substantial (>50%)
increase observed in extracellular COL IV from neonatal cells (Figure S1B). The effects
of THDC + AZ were intermediate to those of THDC and AZ alone, but in some cases
THDC + AZ increased extracellular COL IV or VI abundance when THDC alone had no
effect (e.g., see Figure S1B,H). We next used cell-free assays to evaluate the relative effects of
THDC and THDC + AZ on matrix metallopeptidase (MMP) enzyme activity. This showed
that the combination THDC + AZ led to more potent inhibition of MMP-1, MMP-2, and
MMP-3 activity as compared to AZ alone (Figure 7B–E).
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assays with magnesium ascorbyl phosphate (MAP) as a positive control (n = 6–16 per group). Col-
orimetric signals were first normalized to cell numbers (sulforhodamine B assay) and then to the 
non-treated CTL group. Treatments not sharing the same letter differ significantly (P < 0.05, Fish-
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tion is shown at various THDC concentrations. Experiments were performed with (red) and 
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Figure 7. Effects of THDC (±AZ) on collagen I protein and matrix metalloproteinase (MMP) enzymes.
(A) Collagen I protein (COL I). Collagen I abundance was measured using sandwich ELISA assays
with magnesium ascorbyl phosphate (MAP) as a positive control (n = 6–16 per group). Colorimetric
signals were first normalized to cell numbers (sulforhodamine B assay) and then to the non-treated
CTL group. Treatments not sharing the same letter differ significantly (P < 0.05, Fisher’s least
significant difference; * P < 0.05, compared to CTL group). (B–E) MMP inhibition. Inhibition is shown
at various THDC concentrations. Experiments were performed with (red) and without (black) AZ
(top margin: estimated IC50). Results were averaged over two replicate studies.

2.8. The Combination AZ + THDC Improves Survival of KCs Treated with Oxidative Stress

We treated HaCaT KCs with hydrogen peroxide (H2O2) for 0.5 or 3 h and evaluated
the effects on KC viability (Figure 8). Both treatment periods reduced KC viability although
the reduction was only significant after 3 h (P < 0.05, Figure 8B). After 0.5 h of H2O2
treatment, the addition of THDC reduced viability further, whereas AZ restored viability,
and the highest overall survival was seen in KCs treated with the THDC + AZ combination
(at doses of 200 µg/mL each; Figure 8A). After 3 h of H2O2 treatment, the addition of
THDC did promote a non-significant increase in viability, although a stronger a significant
increase was seen with AZ, and again the highest overall survival was observed in cells
treated with the THDC + AZ combination (at doses of 100 µg/mL each; Figure 8B).
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support a synergistic mechanism by which AZ can stabilize THDC to facilitate delivery 
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Figure 8. Effects of THDC (±AZ) on viability of KCs exposed to oxidative stress. (A) The 0.5-h H2O2

exposure (n = 3–7 per group). (B) The 3-h H2O2 exposure (n = 2–4 per group). Cells were incubated
with H2O2 (10 mM) for 0.5 or 3 h and viability was assessed. Colorimetric signals are normalized to
the non-treated CTL. Groups not sharing the same letter differ significantly (P < 0.05, Fisher’s least
significant difference; * P < 0.05, comparison to non-treated CTL group).

3. Discussion

The topical delivery of L-Ascorbic acid (AA) has been a challenge due to its poor stabil-
ity and dermal penetration. Formulations that include the AA pre-cursor tetrahexyldecyl
ascorbate (THDC) have gained widespread use [21,44–46], but THDC may itself lack sta-
bility within the dermal microenvironment. This study showed that THDC has limited
oxygen radical absorbance capacity and undergoes rapid degradation when exposed to
singlet oxygen (Figure 1D). This degradation, however, could be prevented by the addi-
tion of acetyl zingerone (AZ) as a stabilizing antioxidant (Figure 1D). Moreover, whereas
treatment of RHE cultures with THDC alone stimulated expression of type I interferon
genes [55], the unhealthy skin gene signature [52], and the pro-inflammatory STAT1-57
gene module [53], all these effects were abrogated in the presence of AZ. Finally, although
THDC did not prevent loss of viability in HaCaT KCs exposed to oxidative stress, the com-
bination THDC + AZ was fully protective (Figure 8). These results support a synergistic
mechanism by which AZ can stabilize THDC to facilitate delivery of AA into the dermis.
This suggests a novel strategy that can be used to maximize the potential of AA as a topical
ingredient in skin care formulations.

The current study showed that AZ was more effective than THDC at directly neutral-
izing hydrogen peroxide (Figure 1F). This most likely explains why THDC alone did not
rescue the viability of H2O2-treated KCs, whereas the combination of THDC + AZ restored
KC viability (Figure 8). Under normal conditions, excess formation of H2O2 within cells is
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removed by catalase, which converts H2O2 into water and molecular oxygen [56]. However,
catalase becomes depleted due to sun exposure, with seasonal variation corresponding to
low activity in summer and higher activity in winter [57,58]. Recovery of catalase following
UVA exposure is also diminished in the skin of older subjects, which contributes to extrinsic
skin aging [59]. To compensate for this decline in antioxidant defense, the use of topical AA
or AA precursors has been proposed [60], but THDC alone may be counterproductive since
even more H2O2 may be generated as a degradation product [37]. Our results suggest that
the use of combined THDC-AZ formulations may provide a more stable formulation to
maximize ascorbate release. Moreover, our results show that AZ maintained its antioxidant
capacity over 4 h of continual exposure to simulated day light (Figure 1E), which is tanta-
mount to a full day of intermittent sun exposure under non-extreme conditions [61]. This
long-lasting antioxidant function may be needed to ensure adequate AA release and free
radical scavenging activity for THDC + AZ combination products applied to sun-exposed
areas of skin (e.g., arms, hands and face).

The effects of THDC on gene expression have not been evaluated previously, but our
study has demonstrated differences in THDC bioactivity depending upon whether AZ is
present or absent as a co-ingredient. For example, treatment of RHE with the combina-
tion THDC + AZ elicited gene expression responses similar to those observed in calcium-
stimulated KCs (Figure 6D–E) and further increased expression of genes associated with
phospholipid homeostasis (Figure 3G). On the other hand, treatment of RHE with THDC
alone tended to elicit gene expression changes opposite to those seen in calcium-treated KCs
(Figure 6A–C). Pro-differentiation effects of AA in KCs have been described previously [10,62].
It has been noted that effects of AA mimic those of calcium [8] and the addition of AA to
cell culture medium does indeed improve lipogenesis to support maintenance of the stra-
tum corneum barrier [10]. The differential effects of THDC we observed may therefore be
explained by stabilization of THDC in AZ(+) conditions, leading to enhanced release of
THDC-derived AA into the epidermal and dermal microenvironments, thereby favoring a
pro-differentiation response similar to that seen with calcium treatment of KCs [63]. This
suggests that the THDC + AZ combination may have practical benefits promoting epidermal
barrier recovery, which may be useful for applications such as xerosis and wound healing [64].

A surprising result from this study was that treatment of RHE tissue with THDC alone
led to up-regulation of type I interferon genes such as MX1, MX2 and STAT2 (Figure 2G).
This was not seen, however, when THDC was combined with AZ (Figure 3G). The type
I interferon pathway plays an important role in antiviral defense responses and appears
to be non-specifically activated in a broad spectrum of skin diseases [65]. Consistent with
this, treatment of RHE with THDC alone (but not THDC + AZ) led to up-regulation of
genes belonging to the “unhealthy skin signature” [52] (Figure 5A) as well as the STAT1-57
gene module (Figure 5K), which is also activated under pathological conditions such as
wounding and skin cancers [53]. To our knowledge, no prior study has demonstrated a
detrimental pro-inflammatory effect of topically-applied THDC as a standalone ingredi-
ent [21,44–46]. It is possible that degradation of THDC leads to increased H2O2 production,
which contributes to an overall imbalance between antioxidant and prooxidant factors that
results in downstream activation of the type I interferon pathway [66]. This may have
reciprocal interactions with the process of KC differentiation [67], with type I interferon
pathway activation suppressing differentiation [68], and differentiation in turn suppressing
type I interferon pathway activation [69,70]. Through these mechanisms, the combination
of AZ with THDC may buffer against aberrant activation of the type I interferon pathway
that would otherwise be triggered by THDC alone.

The link between AA and tertiary collagen structure has been known for decades [3]
and it is now recognized that AA can also stimulate collagen mRNA synthesis [4,5]. In this
study, THDC alone had no significant effect on synthesis of extracellular COL I protein in adult
fibroblasts, whereas AZ and the combination THDC + AZ significantly increased COL I protein
levels (Figure 7A). Likewise, cellular and extracellular COL IV and VI levels were generally
higher in AZ-treated compared to THDC-treated fibroblasts, with THDC + AZ treatment
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leading to an intermediate increase in COL IV and VI proteins (Figure S1). THDC also had
inhibitory activity against MMP-1, MMP-2, MMP-3 and MMP-12 that was bolstered by AZ
(Figure 7B–E). Stabilization of THDC by AZ may favor improved collagen synthesis through
increased bioavailability of AA. This would increase collagen mRNA synthesis [4,5,71,72]
and prevent accumulation of underhydroxylated procollagen protein to bolster procollagen
mRNA translation [72]. Likewise, AA derivatives inhibit matrix metalloproteinase-1 (MMP-1)
activity in normal human fibroblasts [73], and in one study AA decreased MMP-1 and MMP-2
protein abundance by 20% in UVA-treated human dermal fibroblasts [74]. A nutrient mixture
containing AA also inhibited secretion of MMP-9 monomer and dimer in a broad set of cancer
cell lines [75], and similar MMP inhibitory activity has been observed in other human and
animal models [76,77]. The effects of AZ-stabilized THDC observed in this study thus appear
consistent with prior work demonstrating links between AA release, collagen synthesis, and
MMP inhibition [4,5,71–78].

THDC has become one of the most widely used L-ascorbic acid precursors, but evi-
dence demonstrating its stability under realistic in vivo conditions is lacking. This study
shows that THDC alone is a weak antioxidant with limited capacity for sustained AA
release when applied topically. However, through combination with AZ as a stabiliz-
ing antioxidant, THDC degradation is slowed, leading to improved antioxidant activity,
activation of KC differentiation pathways, and endogenous collagen production. The
observed synergy between THDC and AZ as co-ingredients supports their combination in
topical formulations.

4. Materials and Methods
4.1. THDC Antioxidant Capacity

The oxygen radical absorbance capacity (ORAC) of THDC was evaluated using
previously described methods [50,79]. ORAC measures the capacity of antioxidants
to protect fluorescent protein from damage by free radicals. In this assay, 2,2′-Azobis
(2-amidino-propane) dihydrochloride (AAPH) (Sigma, St. Louis, MO, USA) was used as
the source of peroxyl radical, which is generated from the spontaneous decomposition
of AAPH at 37 ◦C. Fluorescein (Sigma, St. Louis, MO, USA) was chosen as the target
protein, since loss of fluorescence indicates the extent of damage from its reaction with
peroxyl radical. The protective effect of the antioxidants was measured by assessing the
fluorescence time/intensity area under the curve (AUC) of the sample compared to a blank
without antioxidant compounds. Trolox (Sigma, St. Louis, MO, USA) was used as the
calibration standard.

The HORAC (Hydroxyl radical scavenging capacity) assay used cobalt fluoride (Sigma,
St. Louis, MO, USA) and picolinic acid (Sigma, St. Louis, MO, USA) as reactants with
hydrogen peroxide. This reaction causes fluorescent probe decay that is inhibited by
antioxidants, with the degree of inhibition quantified based upon the AUC method.

The NORAC (Peroxynitrite scavenging capacity) procedure measures the peroxyni-
trite radical. In this assay, 3-morpholinosyndnonimine hydrochloride (SIN-1) (Cayman
Chemical, Ann Arbor, MI, USA) was used as the source for the peroxynitrite radical, which
is generated from the spontaneous decomposition of SIN-1 at 37 ◦C. Dihydrorhodamine-123
(Sigma, St. Louis, MO, USA) was the chosen target protein.

The superoxide anion scavenging assay (S-ORAC) used hydroethidine (HE) (Poly-
sciences, Inc., Warrington, PA, USA) to measure the O2- scavenging capacity. O2- radicals
were generated by the mixture of xanthine (Sigma, St. Louis, MO, USA) and xanthine
oxidase (Sigma, St. Louis, MO, USA). Nonfluorescent HE was oxidized by O2- to form a
species of unknown structure that emits fluorescence signal at 586 nm.

The singlet oxygen scavenging capacity (SOAC) assay generated singlet oxygen in
ethanol by the molybdate-catalyzed isproportionation of hydrogen peroxide at 37 ◦C.
Hydroethidine (HE) was oxidized by singlet oxygen to form oxyethidium, which exhibits a
strong fluorescence signal at 590 nm. The inhibition of fluorescence increase in the presence
of antioxidant was used as an index of antioxidant capacity.
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Total ORACMR5 (Sum of peroxyl (ORAC), hydroxyl (HORAC), superoxide anion
(SORAC), peroxynitrite (NORAC), and singlet oxygen (SOAC) radicals/oxidants) was
expressed as µmoles TE per gram sample (µM TE/g).

4.2. Effects of THDC and AZ on Lipid Peroxidation

Lipid peroxidation was evaluated by monitoring the formation of the reactive alde-
hyde malonaldehyde (MDA) [80]. The effects of THDC on lipid peroxidation were evalu-
ated by first adding 100 µL of 100 mM AAPH (2,2′-azobis(2-amidinopropane) dihydrochlo-
ride) into mixtures of squalene and sampled at different concentrations. Mixtures were
then incubated at 37 ◦C overnight. AAPH is an azo compound that undergoes thermo
decomposition to generate peroxyl radicals, which then oxidizes fatty acid substrates
to generate lipid peroxides. Decomposition of these unstable peroxides results in the
formation of malondialdehyde (MDA), which was quantified colorimetrically at 532 nm
MDA is a well-established index of lipid peroxidation on fatty acids [81]. The effects of
AZ on lipid peroxidation were evaluated using similar methods, except the first step was
performed using AMVN (2,2′-azobis (2,4-dimethylvaleronitrile)) rather than AAPH. The
IC50 estimates were calculated using robust regression as described previously [82].

4.3. THDC Degradation under Singlet Oxygen

The degradation of THDC under singlet oxygen was assessed using previously de-
scribed methods [48]. Experiments were performed using 5 mL of 1 mg/mL THDC mixed
with 5 mL 0.16 mg/mL lithium molybdate, 4 mL 0.01 M NaOH, and 5 mL of 0.015% H2O2.
The final pH of the mixed solution was approximately 5.0. A 500 µL sample was taken
from the mixture every 2 min and added to 1 mL of curcumin (1 mg/mL) to terminate
the reaction. The sample was then analyzed by high-performance liquid chromatography
(HPLC) to monitor degradation. To evaluate the effect of AZ, the experiment was repeated
in identical fashion, expect the first step was performed using a 1:1 mixture of 5 mL THDC
(1 mg/mL) and AZ (1 mg/mL).

4.4. Stability of AZ under Photooxidation

The AZ test sample was prepared in 50% ethanol within a quartz cuvette (Hellma Ana-
lytics). The cuvette was then placed in a Rayonet RPR-100 photochemical reactor equipped
with four RMR 3500 (UVA) and four RMR-3000 (UVB) lamps (Southern New England
Ultraviolet Company, Branford, CT, USA) to simulate daylight. A total of 100 µg/mL of
sample was irradiated at 31 ◦C at a dose of 6.35 mW/cm2.

4.5. H2O2 Scavenging Activity

H2O2 scavenging assays were performed as described previously [83,84]. Test samples
were dissolved in ethanol and subsequently diluted with PBS (pH 7.40) to reach the desired
concentration. The reaction was then initiated by adding 4 mM of H2O2 to the sample. The
reaction was allowed to proceed for 10 min and absorbance was then recorded at 230 nm.
The IC50 estimates were calculated using robust regression as described previously [82].

4.6. THDC Fatty Acid Ester Hydrolysis

The fatty acid ester hydrolysis of THDC with carboxylesterase-2 (CES2) was evaluated
using previously described methods [85]. A total of 1 mM THDC was dissolved in a mixture
of DMSO (2%) and ethylene glycol (10%) in 20 mM HEPES (pH 7.4). A 20 µL enzyme
solution (1 mg/mL) was then added and incubated at 37 ◦C for 15, 60, 120, and 240 min.
The reaction was stopped with methanol and THDC and AA concentrations were measured
using a charged aerosol detector. The HPLC mobile phase consisted of 0.1% formic acid
in water, 0.1% TFA in methanol, and isopropanol. A Phenomenex (Torrance, CA, USA)
Kinetex C18 column was used (4.6 mm × 100 mm, 2.6 µ). To evaluate the effect of AZ
on the reaction, the experiment was repeated with 1 mM THDC and AZ dissolved in the
DMSO (2%)/ethylene glycol (10%)/20 mM HEPES solution (pH 7.4).
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4.7. THDC HPLC Analysis

The analysis was performed using an HPLC system with binary gradient UV detec-
tor. Reagents included methanol (HPLC grade or equivalent), trifluoroacetic acid (HPLC
grade or equivalent), isopropyl alcohol (HPLC grade or equivalent) and orthophosphoric
acid (AR grade or equivalent) with THDC standard. An X-Bridge C18 column was used
(50 mm × 4.6 mm × 3.5 µm) with 10 µL injection volume and a column/sample tempera-
ture of 25 ◦C. The total runtime was 60 min with a THDC retention time of 12 min. Mobile
phase A was generated by mixing trifluoroaetic acid (1.0 mL) and methanol (1 L) and
filtering through a 0.45 µm filter with degasification. Isopropyl alcohol was used as mobile
phase B. The diluent was a mixture of orthophosphoric acid, methanol and isopropyl
alcohol in a ratio of 1.0:500:500 (v/v/v). The system suitability solution was generated by
adding 100 mg THDC to a 50 mL volumetric flask with 30 mL of diluent and sonication.
Likewise, sample solution was obtained by adding 100 mg of sample to a 50 mL volumetric
flask with 30 mL of diluent and sonication. After equilibrating the column, equal volumes
of diluent as blank, system suitability solution and sample solutions were injected into
the liquid chromatographic system. Chromatograms were recorded and the blank chro-
matogram was examined for any extraneous peaks. Peaks less than 0.02% in sample and
standard chromatograms were disregarded. The purity of sample solution was determined
by the area normalization method.

4.8. Microarray Profiling of THDC, AZ, and THDC + AZ Expression Responses

Gene expression profiling was performed using EpiDermFT™ tissues (MatTek,
Ashland, MA, USA; cat no. EFT-400, lot no. 29376). The experiment included
4 treatments with 5 replicates each (CTL = control, THDC = tetrahexyldecyl ascorbate,
AZ = acetyl zingerone; THDC + AZ = tetrahexyldecyl ascorbate with acetyl zingerone in
a 1:1 ratio). Test materials were dissolved in DMSO yielding a 20 mg/mL stock solution.
Subsequent dilutions of stock solution were performed in distilled water. Samples of test
material were added at a concentration of 10 µg/cm2 to the top surface of EpiDermFT
tissues. After 24 h, tissues were rinsed and RNA was extracted and purified using the
RNeasy Plus Mini kit (Qiagen, Germantown, MD, USA; cat. no. 74134) with QiaCube
Connect robotic station. Purified total RNA was assessed at 260 and 280 nm using the Nan-
oDrop Lite (Thermo Fisher Scientific, Waltham, MA, USA). The Affymetrix Clariom S array
platform was used to quantify genome-wide expression following standard protocols.

Microarray pseudoimages were inspected for evidence of spatial artifact (Figure S2) [86].
No major spatial artifacts were identified besides the expected area of increased inten-
sity arising from Affymetrix internal control probes (Figure S2). Among the 20 samples,
260/280 absorbance ratios were consistent with high purity RNA and ranged from 1.88 to
2.07 (Figure S3A). Probe-level model residuals [87] were centered at zero for each array,
with sample THDC-5 notable for higher residual variation (Figure S3B). Normalized un-
scaled standard errors (NUSE) and relative log expression (RLE) metrics were calculated
for each array (Figure S3C–F) [87]. We noted that two samples (THDC-5, AZ-2) had higher
NUSE median and IQR values (Figure S3C,D), whereas two other samples (THDC-1, AZ-2)
had elevated RLE median and RLE IQR (Figure S3E,F).

The 20 raw microarray data files (CEL files) were normalized using Robust Multi-
chip Average (R package: Oligo) [88]. A batch correction was applied using the ComBat
algorithm [89]. This correction was made based upon a division of samples into two
batches (n = 8 and n = 12, respectively) during the RNA extraction step. These normal-
ization and batch correction steps yielded expression intensities for 27,189 probes. Of
these, 21,448 probes were annotated with a human gene symbol, which together were
associated with 19,525 unique genes. A subset of 20,289 annotated probes associated with
18,411 unique gene names were linked to protein-coding genes (i.e., those genes having
an “NP_” or “NM_” prefix in their Refseq identifier). To limit redundancy in the analysis,
when multiple probes were associated with the same human gene, the probe with highest
average expression among the 20 samples was selected to include in the analysis. Apply-
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ing this filter yielded 18,411 probes having a one-to-one relationship with 18,411 unique
protein-coding genes. For each sample, the 20% of genes with lowest overall expression
were considered to have absent expression (3682 genes per sample).

The outForest algorithm [90] was applied to stratify samples in terms of the number of
outlier genes identified (Figure S3G). Fewer than 1% of genes were associated with outlying
values in each sample, with a maximal outlier percentage of 0.88% for CTL-4 (Figure S3G).
A cluster analysis was performed and suggested that THDC-5 may be regarded as an
outlying data sample (Figure S3H). THDC-5 also appeared to be an outlier when the
20 samples were plotted with respect to the first 2 principal component axes (Figure S3I).
Together, these analyses suggest that sample THDC-5 could be excluded from analyses,
based upon elevated NUSE median and IQR (Figure S3C,D) and the outlying pattern
seen in cluster and principal component analyses (Figure S3H,I). Subsequent differential
expression analyses were therefore performed excluding THDC-5 (n = 19 samples total).

4.9. Differential Expression Analyses

Differential expression analyses focused on two independent treatment comparisons
to evaluate the effects of THDC in AZ(−) conditions (i.e., THDC vs. CTL) and the effects
of THDC in AZ(+) conditions (i.e., THDC + AZ vs. AZ). The THDC vs. CTL two-group
comparison was performed for 15,044 protein-coding genes with detectable expression
in at least 3 of 9 samples. Likewise, the THDC + AZ vs. AZ two-group comparison
was performed for 15,105 protein-coding genes with detectable expression in at least 3 of
10 samples. Differential expression tests were performed using moderated t-statistics
with empirical Bayes moderation of gene-specific standard errors (R package: limma;
function: eBayes).

A second set of analyses was performed in which the data were treated as a
2 × 2 factorial design, with presence/absence of THDC as one factor (1 = THDC present;
0 = THDC absent) and presence/absence of AZ as a second factor (1 = AZ present; 0 = AZ
absent). These analyses were carried out for 15,130 genes with detectable expression in at
least 5 of 19 samples. This allowed us to evaluate genes for which effects of THDC differ in
AZ(−) conditions as compared to AZ(+) conditions (i.e., a significant THDC×AZ interac-
tion effect). Statistical tests were performed using moderated t-statistics (R package: limma;
function: eBayes) with a nested interaction formula and estimation of the interaction term
using a contrast statement (R package: limma; function: contrasts fit).

For both sets of analyses described above (differential expression and interaction
tests), raw p-values were corrected for multiple hypothesis testing using the Benjamini-
Hochberg method. Raw p-value distributions obtained from differential expression tests
were approximately uniform with no discernible bias among genes having low or high
expression (Figure S4).

4.10. Real-Time Quantitative PCR

cDNA was prepared using the AzuraQuant cDNA kit (Azura Genomics, Raynham,
MA) (CTL, THDC, AZ, THDC + AZ, n = 2 samples per group). The expression of 9 target
genes was evaluated using real-time quantitative PCR and the BioRad iCycler iQ detection
system. The chosen target genes were MMP1, MMP2, MMP7, MMP14, IRF1, IL11B,
SOD2, NQO1, and CES1. PCR primers were purchased from Realtimeprimers (Elkins
Park, PA, USA) and reactions were performed using AzuraQuant Green Fast qPCR Mix
Fluor (Azura Genomics, Raynham, MA, USA). The ∆∆Ct method was used to estimate
relative expression with hypoxanthine phosphoribosyltransferase 1 (HPRT1) as a reference
gene [91].

4.11. Effects of THDC (±AZ) on Collagen Production

The effect of THDC (±AZ) on collagen production was evaluated in exponentially
growing neonatal and adult human adult dermal fibroblasts (nHDF and aHDF). Test mate-
rials were dissolved in DMSO at 20 mg/mL. All further dilutions of stock solution were
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made in sterile distilled water. Samples were added to nHDF (Cell Applications, San Diego,
CA, USA, cat. no. 106K-05n) or aHDF (Cell Applications, San Diego, CA, USA, cat. no.
106K-05a). Cells were cultured in DMEM and 10% FBS. At the end of the experiment,
biomarkers were quantified in cells and/or cell culture media. Collagen I quantification
was performed using reagents from Southern Biotechnology (Birmingham, AL, USA) fol-
lowing a previously described sandwich ELISA protocol [92,93]. Collagens IV and VI were
quantified in formalin-fixed cultures by direct ELISA assays using Southern Biotechnology
(Birmingham, AL, USA) biotinylated anti-type IV collagen antibody/streptavidin-HRP
(cat. no. 1340-08) and Santa Cruz Biotechnology (Dallas, TX, USA) HRP-conjugated anti-
type VI collagen monoclonal antibody (cat. no. Sc-377143HRP). Collagen IV was quantified
in cell culture conditioned medium by sandwich ELISA assay using an R&D systems
(Minneapolis, MN, USA) anti-collagen IV α1 antibody for capture (cat. no. AF6308) and
Novus (Centennial, CO, USA) polyclonal biotinylated anti-collagen IV antibody (cat. no.
NBP1-26550) followed by streptavidin-HRP. Collagen VI was quantified using a Santa
Cruz HRP-conjugated anti-type VI collagen monoclonal antibody (cat. no. Sc-377143HRP).
Tetramethylbenzidine (TMB) reagent was used for detection. Total insoluble (cytoskeletal)
proteins were quantified using the sulforhodamine B method to standardize collagen sig-
nals to cell numbers [94]. Magnesium ascorbyl phosphate (MAP) was used as a positive
control and sterile distilled water was the negative control. All colorimetric measure-
ments were performed using the Molecular Devices (San Jose, CA, USA) microplate reader
MAX190 and SoftMax3.1.2PRO software.

4.12. Effect of THDC (±AZ) on MMP Activity

The effects of THDC (±AZ) on the activity of MMP-1, MMP-2, MMP-3 and MMP-
12 were evaluated. 0.1 g of sample was dissolved in 1 mL DMSO and diluted 100-fold
with MMP buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM CaCl2, 5µM ZnSO4, 0.01%
Brij-35) to make stock solution. Serial dilutions of the sample (1-to-1) were then made
to determine the IC50. Sample and 5 ng/well MMP-1 enzyme (Anaspec, Fremont, CA,
USA, cat. no. AS-72004), MMP-2 enzyme (Anaspec, cat. no. AS-72005), or MMP-3 enzyme
(Anaspec, cat. no. AS-72006) were incubated at 37 ◦C for 10 min. After 10 min, we
added 0.2 µM/well 520 MMP FRET Substrate XIV (QXL® 520-γ-Abu-P-Cha-Abu-Smc-HA-
Dab(5-FAM)-AK-NH2 (Smc = S-Methyl-L-cysteine)) (Anaspec, cat. no. AS-60581). The
fluorescence signal was monitored at an excitation of 485 nm and emission of 530 nm. To
evaluate MMP-12 activity, sample was mixed with 0.2 mM/well AAAPVN (N-Succinyl-Ala-
Ala-Ala-p-nitroanilide) substrate (Sigma, cat. no. S4760), 139 ng/well elastase (Alfa Aesar,
Haverhill, MA, USA, cat. no. J61874) and readings were obtained following previously
described methods [95].

4.13. Effect of THDC (±AZ) on Survival of H2O2-Stressed KCs

We evaluated effects of THDC (±AZ) on the viability of HaCaT KCs incubated with
hydrogen peroxide. The project design was based on previously described methods [96].
Test materials were dissolved in DMSO at 20 mg/mL with further dilutions made using
sterile distilled water. Samples were added to exponentially growing adult HaCaT ker-
atinocytes (Addexbio, San Diego, CA, USA) cultured in a 96 well plate in DMEM and
10% FBS. Test materials were added 1 h before H2O2 (10 mM) and the incubation period
in the presence of test substances was an additional 1 h. After this time, cells were rinsed
and viability was determined by the neutral red uptake assay with a Molecular Devices
microplate reader MAX190 and SoftMax3.1.2PRO software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168756/s1, Figure S1. Effects of THDC (±AZ) on collagen IV and VI proteins. Figure S2.
Microarray fluorescent pseudoimages. Figure S3. Affymetrix quality control metrics. Figure S4.
Differential expression analyses.
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