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Background: Malignant cerebral edema (MCE), a potential complication following endovascular 
thrombectomy (EVT) in the treatment of acute ischemic stroke (AIS), can result in significant disability and 
mortality. This study aimed to develop a nomogram model based on the hyperattenuated imaging marker 
(HIM), characterized by hyperattenuation on head noncontrast computed tomography (CT) immediately 
after thrombectomy, to predict MCE in patients receiving EVT.
Methods: In this retrospective cohort study, we selected 151 patients with anterior circulation large-vessel 
occlusion who received endovascular treatment. The patients were randomly allocated into training (n=121) 
and test (n=30) cohorts. HIM was used to extract radiomics characteristics. Conventional clinical and 
radiological features associated with MCE were also extracted. A model based on extreme gradient boosting 
(XGBoost) machine learning using fivefold cross-validation was employed to acquire radiomics and clinical 
features. Based on HIM, clinical and radiological signatures were used to construct a prediction nomogram 
for MCE. Subsequently, the signatures were merged through logistic regression (LR) analysis in order to 
create a comprehensive clinical radiomics nomogram.
Results: A total of 28 patients out of 151 (18.54%) developed MCE. The analysis of the receiver operating 
characteristic curve indicated an area under the curve (AUC) of 0.999 for the prediction of MCE in the 
training group and an AUC of 0.938 in the test group. The clinical and radiomics nomogram together 
showed the highest accuracy in predicting outcomes in both the training and test groups.
Conclusions: The novel nomogram, which combines clinical manifestations and imaging findings based 
on postinterventional HIM, may serve as a predictor for MCE in patients experiencing AIS after EVT.
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Introduction

Endovascular thrombectomy (EVT) is a well-established 
treatment for anterior circulation stroke with large-vessel 
occlusion. Despite its success, a considerable portion 
of patients (approximately 45%) still experience poor 
functional outcomes following the procedure (1). One of the 
major complications is malignant cerebral edema (MCE), 
which occurs in up to 75% of cases (2) and is associated 
with an 80% mortality rate, which can offset the benefits 
of EVT (3). MCE typically manifests within 2–5 days 
postthrombectomy (4). Timely recognition of individuals 
susceptible to MCE is crucial for implementing appropriate 
treatments and interventions to mitigate complications, 
such as edema, brain herniation, and secondary injuries, and 
to improve patient outcomes (5). Several factors have been 
identified as potential predictors of MCE, including age, 
National Institutes of Health Stroke Scale (NIHSS) score, 
successful revascularization, cerebral blood supply, history 
of hypertension, area of cerebral ischemia, and etiology of 
ischemic stroke (2). However, current prediction models 
for MCE after EVT have not yet achieved satisfactory  
accuracy (6).

The hyperattenuated imaging marker (HIM) has been 
observed in 31.2% to 60.0% of patients in immediate post-
EVT computed tomography (CT) images (7). HIM is 
characterized by hyperattenuation on head noncontrast 
CT (NCCT) immediately after the procedure, likely due 
to blood-brain barrier disruption (8). Studies have shown 
that HIM is associated with an increased risk of adverse 
functional outcomes at 90 days, suggesting its potential as a 
prognostic indicator following EVT (9). However, previous 
studies have not yielded satisfactory prediction results, 
specifically for MCE risk (10,11).

Radiomics analysis is an emerging technique in 
precision medicine that enables the automated extraction 
of radiomics features from clinical images. This approach 
can potentially overcome the limitations associated with 
visual image assessment and improve the prediction and 
evaluation of neurological diseases (12). Although prior 
studies have explored the application of radiomics analysis 
to predict factors such as hemorrhage and poor functional 
recovery in postthrombectomy stroke outcomes, there is 
a lack of research specifically focusing on the prediction 
or evaluation of MCE following thrombectomy based on 
HIM (13). Therefore, studies that explore the potential of 
radiomics analysis in this particular context are warranted.

This study thus aimed to examine the association 

between radiomics features extracted from immediate 
post-EVT CT images and the development of MCE in 
patients with acute anterior circulation cerebral infarction. 
Furthermore, we aimed to develop a predictive model for 
MCE and assess its performance. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-24-99/rc).

Methods 

Ethical approval of the study protocol

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of the Fourth Affiliated 
Hospital of School of Medicine, and International School 
of Medicine, International Institutes of Medicine, Zhejiang 
University (approval No. Y2024029). The requirement for 
individual consent in this retrospective analysis was waived.

Data acquisition

Individuals who received EVT for large-vessel occlusive 
stroke in the anterior circulation at the Fourth Affiliated 
Hospital of School of Medicine, and International School 
of Medicine, International Institutes of Medicine, Zhejiang 
University, between September 2016 and November 2021, 
were included in this retrospective study. The inclusion and 
exclusion criteria for EVT and thrombolysis were based on 
the most recent guidelines (14,15). Data on general clinical 
features, laboratory examinations, clinical presentations, 
and imaging were analyzed.

Patients were included if they had head NCCT following 
mechanical thrombectomy, with the scan performed within 
30 minutes of the procedure and showing HIM, which 
is characterized by increased attenuation in the brain 
parenchyma and/or subarachnoid space. The exclusion 
criteria were as follows: (I) a follow-up time of NCCT 
after mechanical thrombectomy not within the range 
of 2–5 days, (II) artifacts (e.g., metal artifacts or motion 
artifacts) affecting the judgment of HIM or MCE, and (III) 
patients with posterior circulation stroke. Figure 1 displays a 
flowchart of participant inclusion in this study.

CT data acquisition

Images of the first postthrombectomy head nonenhanced 

https://qims.amegroups.com/article/view/10.21037/qims-24-99/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-99/rc
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CT were obtained within 30 minutes after thrombectomy 
from a 64-row spiral CT scanner (SOMATOM Definition 
AS, Siemens Healthineers, Erlangen, Germany) and a 
62-row spiral scanner (Optima CT620, GE HealthCare, 
Chicago, IL, USA). The scanning parameters were as 
follows: axial mode, tube voltage 120 kV, tube current  
250–300 mAs, scanning range from the skull base to the 
cranial roof, section thickness 5 mm, and reconstruction 
with the standard algorithm. Imaging data were evaluated 
randomly by two neuroradiologists with more than  
5 years of working experience who were blinded to the 
clinical situation. For any discrepancies, the two evaluators 
discussed the images to reach a consensus.

Identification of HIM and MCE

HIM was evaluated on NCCT immediately after EVT. 
MCE was determined 2–5 days on follow-up NCCT 
following EVT therapy. In this study, two neuroradiology 
staff members (S.H. and Z.W., both with over 5 years of 
experience in neuroradiology) independently evaluated 
all the training and test datasets without knowledge of 
the patient outcome. Any discrepancy was resolved by 
consensus. We conducted a review of the NCCT images 
obtained after EVT. The development of MCE was defined 
as the occurrence of midline brain shift, specifically a 

displacement of the septum pellucidum of ≥5 mm, within 
the first 5 days after admission.

Data preprocessing

In this study, 151 patients were enrolled, with 121 cases 
randomly assigned to the training cohort and 30 patients 
to the test cohort. Patient charts, procedure notes, and 
follow-up notes were reviewed to extract baseline and 
preprocedural factors including age, sex, history of drinking 
or smoking, hypertension, hyperlipidemia, diabetes mellitus, 
atrial fibrillation, coronary artery disease, and baseline 
NIHSS score. MCE imaging markers, such as midline 
shift (MLS), were obtained from the patient’s medical 
records. Two experienced neuroradiologists, each with 
over 5 years of experience, determined the Baseline Alberta 
Stroke Program Early Computed Tomography Score 
(ASPECTS) in both the anterior and posterior circulation, 
as well as the maximum Hounsfield unit (HUmax), 
through discussions while being unaware of the patient’s 
clinical information. Furthermore, we collected modified 
thrombolysis in cerebral infarction (mTICI) scores and 
various preinterventional parameters, including intravenous 
thrombolysis therapy. Additionally, interventional 
parameters were recorded, such as the percentage of stent 
implantation, stent pass number, and the type of stent.

Initial database (N=304)

Training cohort (N=121) Test cohort (N=30)

Eligible patients (N=151)

Excluded (N=153)

• EVT not performed (n=25)

• No HIM was found (n=106)

• Initial head NCCT time >30 min after EVT (n=4)

• Follow-up time of nonenhanced head CT 

after EVT was not in the range of 2-5d (n=5)

• Posterior circulation stroke (n=10)

• Artifacts affected the judgement of HIM (n=3)

Figure 1 Flowchart of patient enrolment. EVT, endovascular thrombectomy; HIM, hyperattenuated imaging marker; NCCT, noncontrast 
computed tomography; CT, computed tomography.
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Radiomics feature extraction

The NCCT images were reconstructed with a voxel size 
of 1×1×1 mm3 and gray-scale discretization to standardize 
the images acquired by different CT scanners. Two 
radiologists independently segmented HIM using a double-
blind approach, and their measurements were compared 
to calculate the intraclass correlation coefficient (ICC). 
An ICC value of ≥0.75 was considered robust. To extract 
radiomic features from the HIM in the NCCT images, we 
use Pyradiomic’s internal feature analysis software (http://
pyradiomics.readthedocs.io). A total of 1834 radiomics 
features were extracted from the NCCT images. These 
features were derived using various texture feature extraction 
methods, including first-order statistics, shape-based 
features, gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), neighboring gray-tone 
difference matrix (NGTDM), gray-level size zone matrix 
(GLSZM), and gray-level dependence matrix (GLDM).

Development of the radiomics signature

The feature dimensions were reduced, as outlined below, 
to minimize radiomics bias. Characteristics demonstrating 
strong agreement within and between observers, as indicated 
by an ICC exceeding 0.75, were chosen. Following this, 
a Mann-Whitney test was conducted, and characteristics 
with a P value less than 0.05 were retained. Furthermore, 
the Spearman rank correlation coefficient was computed 
to evaluate the correlation between features that exhibited 
strong repeatability. If the correlation coefficient between any 
two features exceeded 0.9, we retained one of the features.

In addition, a methodical recursive elimination approach 
was employed for feature selection, in which the feature 
with the highest overlap in the existing set was removed in 
each step. Following this, the least absolute shrinkage and 
selection operator (LASSO) regression model was used on 
the discovery dataset to create a signature. LASSO shrinks 
regression coefficients toward zero and sets coefficients 
of irrelevant features to zero based on the regularization 
weight λ. The optimal λ value was determined using 10-
fold cross-validation with the minimum criteria, with the 
value that yielded the lowest cross-validation error being 
selected. To build the radiomics signatures, regression 
models were fitted through an analysis of the features that 
had nonzero coefficients. The radiomics score (Rad-score) 
for every patient was calculated as a linear combination of 
the selected features weighted by their respective LASSO 

coefficients.
Various radiomics models were created and evaluated 

with seven machine learning classification algorithms, 
including logistic regression (LR), support vector machine 
(SVM), k-nearest neighbor (KNN), random forest (RF), 
extremely randomized trees (Extra-Trees), extreme gradient 
boosting (XGBoost), and light gradient boosting machine 
(LightGBM). Among these models, the XGBoost machine 
learning model demonstrated a balanced average area under 
the curve (AUC) on the test set for both the radiomics 
model and clinical model. The chosen characteristics 
were then entered into the XGBoost algorithm to create 
the risk prediction model. The final radiomics signature 
was obtained through a fivefold cross-validation process.  
Figure 2 illustrates the detailed process of model building.

Development of the clinical signature

Univariable LR analysis was conducted to investigate the 
clinical factors associated with predicting MCE in the 
training cohort. Significant variables identified from the 
univariable analysis were then included in a multivariable 
LR analysis using a backward stepwise selection procedure, 
with a P value threshold of <0.05 as the retention criteria. 
Subsequently, the chosen clinical characteristics were 
entered into the XGBoost machine learning model that was 
previously employed for the radiomics signature in order 
to develop the risk model, and fivefold cross-validation was 
conducted to obtain the final clinical markers. 

Construction of the clinical radiomics nomogram

The clinical radiomics nomogram was created using LR 
analysis. The AUC was used to evaluate the diagnostic 
accuracy of the clinical model, radiomics model, and clinical 
radiomics nomogram in both the training and test cohorts. 

Statistics analysis

Statistical analysis was conducted using SPSS version 26.0 
(IBM Corp., Armonk, NY, USA). The normality of the 
evaluated variables was assessed using the Kolmogorov-
Smirnov and Shapiro-Wilk tests. Continuous variables are 
expressed as means with standard deviations, and categorical 
variables are expressed as frequency counts and percentages. 
Categorical variables were compared using chi-square or 
Fisher exact tests, while continuous variables were compared 
using the Mann-Whitney tests or independent t-test. Python 

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
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3.11.1 (Python Software Foundation, Wilmington, DE, USA) 
was used for extracting features, screening, and constructing 
models. The “rms” (regression modeling strategies) package 
in R (The R Foundation for Statistical Computing) was 
employed to develop the nomogram. The three nomograms 
were assessed based on metrics including AUC with the 95% 
CI, accuracy, sensitivity, and specificity. For all tests, a P value 
less than 0.05 was deemed to be statistically significant.

Results

Patient characteristics

This study included 151 patients, comprising 121 patients in 
the training cohort and 30 patients in the test cohort. The 

baseline demographic, clinical, and imaging characteristics 
of the patients are summarized in Table 1. Among the 151 
patients, 28 developed MCE. There were no significant 
differences in clinical characteristics between the training 
and test cohorts.

Evaluation and development of the clinical signatures

The results of the univariate analysis for clinical risk factors 
associated with MCE in the training cohort are presented 
in Table 2. After multivariate LR, two clinical features were 
selected: HUmax ≥90 and ASPECTS. These two features 
were then used to establish the clinical signature for 
predicting the occurrence of MCE.

Figure 2 The workflow of the radiomics model construction. NCCT, non-contrast computed tomography; ROI, region of interest; t-SNE, 
t-distributed stochastic neighbor embedding; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, 
neighboring gray-tone difference matrix; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; LASSO, the least 
absolute shrinkage and selection operator; MSE, mean square error; ROC, receiver operating characteristic; AUC, area under the curve; CI, 
confidence interval; DCA, decision curve analysis. 

Segmentation Feature extraction Feature selection Model construction

Coefficients of the selected 
features

Distribution of the features

LASSO ROC

DCAMSE

MSE

NCCT



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 4941

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4936-4949 | https://dx.doi.org/10.21037/qims-24-99

Extraction, selection, and construction of the radiomics 
signatures

Initially, a total of 1,834 radiomics characteristics were 
extracted from the reconstructed images of NCCT in this 
study. An assessment of intraobserver and interobserver 
reproducibility was conducted to ensure the reliability of 
these features. Among the extracted features, 1,681 (ICC 
>0.75) demonstrated satisfactory reproducibility and were 
retained for further analysis. Pairs with high correlations 
were omitted to reduce redundancy and multicollinearity 
among the features. This step resulted in a final set of 219 
features per patient for subsequent selection. After LASSO 
analysis, a total of 22 significant features were identified 
and used to construct the radiomics signature. The optimal 
parameter, which controls the degree of feature selection, 

was found to be 0.0193 (Figure 3A,3B). Figure 3C illustrates 
the 22 selected features along with their corresponding 
weights.

Establishment of the clinical radiomics nomogram

The combined clinical radiomics nomogram used 
to calculate the risk MCE occurrence is depicted in  
Figure 4. To calculate the risk of MCE, each influencing 
factor is assigned a score based on its contribution to the 
overall risk. The sum of these scores is used to determine 
the overall value. From the total score, a line is drawn to the 
risk axis on the nomogram, allowing for the determination 
of the corresponding MCE risk. A greater MCE risk is 
correlated with a higher total score. 

Table 1 Characteristics of the training and test sets

Feature name Training Test P value

Age (years), mean ± SD 67.60±14.01 65.67±16.22 0.514

Males, n (%) 75 (61.98) 20 (66.67) 0.637

Atrial fibrillation, n (%) 45 (37.19) 4 (13.33) 0.778

Hypertension, n (%) 69 (57.02) 16 (53.33) 0.717

Hyperlipidemia, n (%) 2 (1.65) 2 (6.67) 0.128

Diabetes mellitus, n (%) 13 (10.74) 3 (10.00) 0.690

Coronary artery disease, n (%) 14 (11.57) 6 (20.00) 0.225

Drinking, n (%) 24 (19.83) 6 (20.00) 0.984

Smoking, n (%) 25 (20.66) 10 (33.33) 0.143

Thrombolysis, n (%) 50 (41.32) 13 (43.33) 0.843

Baseline NIHSS, median [Q1, Q3] 15 [13, 18] 15 [11, 20] 0.106

ASPECTS, median [Q1, Q3] 9 [8, 10] 8 [6, 9] 0.753

HUmax ≥90, n (%) 39 (32.23) 9 (30.00) 0.816

mTICI beyond 2b, n (%) 108 (89.26) 27 (90.00) 0.906

Stent type, n (%) 　 　 0.482

Solitaire 72 (59.50) 15 (50.00) 　

Trevo 21 (17.36) 6 (20.00) 　

Solitaire + Trevo 11 (9.09) 6 (20.00) 　

Others 17 (14.05) 3 (10.00) 　

Pass number, median [Q1, Q3] 2 [1, 3] 2 [1, 4] 0.541

Stent implantation, n (%) 26 (21.49) 5 (16.67) 0.561

SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; Q1, first quartile; Q3, third quartile; ASPECTS, Alberta Stroke 
Program Early Computed Tomography Score; HUmax, maximum Hounsfield unit; mTICI, modified thrombolysis in cerebral infarction.
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Performance of the clinical, radiomics, and combined 
nomograms

The diagnostic accuracy of the clinical, radiomics, and 
combined nomograms is outlined in Table 3. The AUC 
values in the training group were 0.999 for the model that 
combined both radiomics and clinical data, 0.999 for the 
radiomics-only model, and 0.790 for the clinical data-only 
model. Following validation, the AUC scores were 0.938 for 
the integrated model, 0.868 for the clinical model, and 0.875 
for the radiomics model, as shown in Table 3 and Figure 5. 

Discussion

In this study, a nomogram was developed and validated to 

predict the occurrence of MCE after EVT. The nomogram 
combines clinical features highly correlated with MCE and 
five robust radiomics features extracted from HIM images 
on CT immediately after EVT. Our findings demonstrate 
the nomogram’s relatively high predictive power, with AUC 
values of 0.999 and 0.938 for the training and test groups, 
respectively. Importantly, this study is the first to use a 
combination of clinical variables and HIM-based radiomics 
to identify patients at risk of developing MCE.

MCE following EVT occurs due to the altered 
permeability of the blood-brain barrier, disrupting tight 
junctions between endothelial cells and forming ionic or 
vasogenic edema (16). The severity of blood-brain barrier 
disruption is directly associated with the likelihood of 

Table 2 Characteristics of the non-MCE and MCE sets

Feature name Non-MCE MCE P value

Age (years), mean ± SD 67.86±13.29 67.07±14.74 0.794

Males, n (%) 74 (61.16) 21 (75.00) 0.144

Atrial fibrillation, n (%) 48 (39.02) 9 (32.14) 0.501

Hypertension, n (%) 70 (56.91) 16 (57.14) 0.920

Hyperlipidemia, n (%) 2 (1.63) 2 (7.14) 0.102

Diabetes mellitus, n (%) 13 (10.57) 4 (14.29) 0.577

Coronary artery disease, n (%) 15 (12.20) 5 (17.86) 0.428

Drinking, n (%) 22 (17.89) 8 (28.57) 0.203

Smoking, n (%) 27 (21.95) 8 (28.57) 0.457

Thrombolysis, n (%) 53 (43.09) 10 (35.71) 0.478

Baseline NIHSS, median [Q1, Q3] 15 [13, 18] 15 [11, 20] 0.942

ASPECTS, median [Q1, Q3] 9 [8, 10] 8 [6, 9] 0.003*

HUmax ≥90, n (%) 30 (24.39) 18 (64.29) 0.000*

mTICI beyond 2b, n (%) 111 (90.24) 24 (85.71) 0.485

Stent type, n (%) 0.217

Solitaire 67 (54.47) 20 (71.43)

Trevo 25 (20.33) 2 (7.14)

Solitaire + Trevo 13 (10.57) 4 (14.29)

Others 18 (14.63) 2 (7.14)

Pass number, median [Q1, Q3] 2 [1, 3] 2 [1, 4] 0.015*

Stent implantation, n (%) 27 (21.95) 4 (14.29) 0.368

*, P<0.05. MCE, malignant cerebral edema; SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; Q1, first quartile; 
Q3, third quartile; ASPECTS, Alberta Stroke Program Early Computed Tomography Score; HUmax, maximum Hounsfield unit; mTICI, 
modified thrombolysis in cerebral infarction.
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MCE. In this study, the clinical model incorporated two 
clinical features that exhibited the highest correlation with 
MCE: ASPECTS score and HUmax ≥90. The test set 
of the clinical model demonstrated a strong correlation 
between these two features and the occurrence of MCE, 
with an AUC of 0.868. Previous studies have also indicated 
that lower ASPECTS scores are linked to a higher risk of 
MCE (17). The ASPECTS score reflects the extent of early 
ischemic changes on CT and can indicate the severity of 
the stroke. A lower ASPECTS score suggests a larger area 
of ischemia and may indicate a higher risk of developing 
MCE. The HUmax of a patient’s HIM reflects the degree 
of blood-brain barrier damage, with a higher HUmax value 
indicating more severe blood-brain barrier disruption. 
When the HUmax exceeds a 90-HU threshold, this 
suggests significant blood-brain barrier damage and a higher 
risk of developing MCE (18). Incorporating these clinical 
features into the model made it possible to predict the risk 
of MCE after EVT more accurately. This information can 

help guide clinical decision-making and potentially improve 
patient outcomes through the identification of patients at a 
higher risk of developing MCE.

Previous research has established that the extent and 
severity of HIM are associated with cerebral hemorrhage 
and poor clinical outcomes in patients who have undergone 
the procedure (19). Additionally, the presence of HIM 
has been identified as a reliable predictor of MCE (9). 
A retrospective analysis of 39 patients (11) found that 
an HIM-to-hemispheric area ratio greater than 0.2 on 
immediate post-EVT head CT is linked to an increased risk 
of developing MCE. However, the authors acknowledged 
that the threshold of 0.2 may vary among patients and may 
not be universally applicable. Wang et al. (10) investigated 
the spatial distribution of HIM on post-EVT CT scans 
within 24 hours, using ASPECTS as a reference. They 
developed a scoring system that measures the extent of 
hyperattenuation. This scoring system demonstrated high 
specificity (0.87), but its sensitivity (0.73) was insufficient for 

Table 3 Prediction performance of the three models in the training cohort and test cohort 

Model
Training cohort (n=121) Test cohort (n=30)

AUC (95% CI) Sensitivity* Specificity* AUC (95% CI) Sensitivity* Specificity*

Clinical model 0.790 (0.683–0.898) 0.455 0.909 0.868 (0.738–0.998) 0.833 0.792

Radiomics model 0.999 (0.996–1.000) 0.955 0.980 0.875 (0.730–1.000) 0.667 0.792

Radiomics + clinical model 0.999 (0.996–1.000) 0.955 0.970 0.938 (0.834–1.000) 0.667 0.917

*, balanced sensitivity and specificity at the cutoff yielding the largest Youden index value. AUC, area under the curve; CI, confidence 
interval.
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Figure 5 ROC curves of the radiomics model, clinical model, and radiomics + clinical model in the training cohort (A) and test cohort (B). 
ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.
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predicting MCE. We developed a predictive tool for MCE 
that exhibited good performance according to our findings. 
This tool can be valuable for identifying patients at risk for 
MCE after EVT.

Previous research has primarily relied on visual 
assessment of conventional imaging methods, such as CT 
scans, to extract relevant information. However, these 
methods may not be optimal for the identifying features 
of HIM. On the other hand, radiomics analysis allows 
for a noninvasive assessment of disease heterogeneity by 
capturing parameters that are not visible to the naked eye, 
such as entropy, kurtosis, and pixel distribution. These 
parameters provide insights into angiogenesis, cell density, 
and necrosis, enhancing our understanding of the disease 
process (20). CT-based radiomics analysis has shown 
promising results in various aspects in the management 
of acute ischemic stroke (AIS). It has been shown to 
successfully identify AIS lesions, assess the extent of 
ischemic lesions, and predict symptom onset related to basal 
ganglia infarction (21,22).

Moreover, radiomics analysis has demonstrated 
superiority over previous methods in predicting the 
occurrence of MCE after EVT in those with AIS. Wen 
et al. (23) developed a predictive model using radiomic 
features extracted from preoperative NCCT images before 
EVT. This model outperformed previous models and 
achieved AUC values of 0.870 and 0.837 for the training 
and test sets, respectively. However, it is essential to note 
that the predictive accuracy of preoperative NCCT for 
postoperative outcomes is limited, which might have 
resulted in suboptimal effectiveness in this study. 

Moreover,  we focused on CT images acquired 
immediately after EVT to construct a radiomics model 
for predicting the occurrence of MCE. By selecting post-
EVT images, we aimed to eliminate the potential impact 
of preoperative waiting time and unforeseen events during 
surgery, thus improving the model’s accuracy. From a 
pool of 1,834 candidate radiomics features, we rigorously 
selected 22 features that showed a high correlation with 
MCE. The radiomic features identified, particularly 
firstorder_Kurtosis, glszm_large area high gray level 
emphasis (LAHGLE) and exponential_glszm_Size zone 
non-uniformity, are derived from kurtosis and GLSZM 
transformations. Kurtosis features describe the sharpness or 
flatness of the intensity distribution across relevant image 
regions, while GLSZM features quantify the occurrence of 
specific gray levels across varying regional sizes within an 
image. The LAHGLE feature, associated with GLSZM, 

signifies the presence of larger bright areas in the image 
and is correlated with a broader range of high-density 
regions on CT scans. These variations in radiomic features 
align with the pathophysiological disruption of the blood-
brain barrier and cellular damage. These features reflect 
the heterogeneity of the tissue under investigation and 
correlate with the degree of blood-brain barrier damage. 
Betrouni et al. (24) reported there to be a correlation 
between radiomic features and damaged brain parenchyma 
in rats, particularly emphasizing the relationship between 
kurtosis and alterations in neural structures. This suggests 
the presence of a link between radiomics features and 
the structural changes resulting from blood-brain barrier 
damage. In essence, the changes in brain tissue caused 
by blood-brain barrier disruption can be monitored 
through radiomic features, which play a crucial role in the 
pathogenesis of MCE. Previous research has suggested that 
HIMs of greater intensity and extent are associated with an 
increased risk of MCE (10,11) and are potentially linked 
to ionic or vasogenic edema formation following blood-
brain barrier damage. Machine learning algorithms have 
proven to be highly effective in identifying associations and 
patterns in complex data, surpassing traditional statistical 
methods such as LR. With increased computing power and 
storage capacity, machine learning algorithms can quickly 
analyze complex data and generate accurate outputs. In 
this study, a machine learning classifier was employed to 
extract features from the HIM observed on NCCT scans 
after EVT to predict MCE occurrence. Among the seven 
machine learning classifiers used, XGBoost demonstrated 
the highest predictive performance. XGBoost is a boosting 
algorithm that combines multiple weak classifiers to create a 
robust classifier. Its built-in regularization feature minimizes 
output variability and prevents overfitting. Consistent with 
previous research (25) on low-dimensional structured data 
analysis, XGBoost exhibited enhanced processing speed and 
increased accuracy. The radiomics model, which included 
the XGBoost classifier, performed better than did the 
clinical model in both the training and test sets. However, 
the nomogram model achieved the best performance, which 
combined clinical and radiomics features. 

Nomograms function as visual aids in clinical decision-
making, simplifying the interpretation of prognostic models. 
This enables healthcare professionals to intuitively evaluate 
disease risks and patient outcomes (26). They are particularly 
instrumental in managing AIS, for which they can predict 
the efficacy of intravenous thrombolysis (27), estimate the 
likelihood of recurrence, and assess hemorrhage risk 
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postthrombectomy (28). This can guide the formulation 
of personalized treatment strategies. MCE, a severe 
postendovascular thrombectomy complication, can 
increase mortality risk and neurological deterioration. Our 
nomogram, which combines radiomics features with clinical 
data, enhances prediction accuracy and facilitates the early 
identification of MCE risk factors and the implementation 
of preventive measures. These measures encompass 
intracranial pressure monitoring, elevated head position, 
osmotic therapy with agents such as mannitol or hypertonic 
saline, therapeutic hypothermia, hyperventilation, and 
decompressive craniectomy. Nomograms aid in rapidly 
communicating the need for surgical interventions to 
medical teams and families, thereby facilitating timely 
therapeutic decisions and potentially reducing the severity 
and associated risks of MCE. 

This study has several limitations which should be 
addressed. First, the use of varied CT equipment from our 
institution for image acquisition might have introduced 
bias stemming from differences in technology and 
imaging protocols. Although CT remains the standard 
for emergency stroke assessment, we acknowledge that 
integrating additional imaging methods, including MRI, 
could bolster the robustness of our findings. Moving 
forward, we intend to incorporate a range of imaging 
modalities in our future research to enhance the model’s 
broad applicability and predictive precision. Second, 
while evidence from the literature supports the stability 
of the selected radiomic features across various imaging 
conditions (24,29), we still took measures to ensure the 
uniformity of image processing, including adopting a 
standardized slice thickness and window width and level, 
alongside resampling and normalizing the features. We 
also use LASSO to minimize the influence of irrelevant 
and redundant features and employed cross-validation to 
bolster the model’s reproducibility. However, we recognize 
that the limitations posed by the small sample size and 
the imbalanced distribution within groups may reduce the 
model’s robustness. Future research will focus on increasing 
the sample size and pursuing multicenter collaborations 
to address these concerns. Although our study suggests 
potential correlations between radiomics features and 
the development of MCE, we acknowledge that these 
hypotheses need to be validated in further experimental and 
pathological evaluations. Moreover, we intend to conduct 
external validation to assess the applicability and accuracy 
of these models in a variety of clinical scenarios. Third, 
we acknowledge the inefficiency, subjectivity, and absence 

of standardized protocols in manual delineation during 
emergencies, which can affect reproducibility. Therefore, 
we intend to explore automated or semiautomated methods 
of segmentation and analytical techniques in the future to 
enhance efficiency and consistency. Fourth, our study used 
advanced statistical methods but did not incorporate the 
latest technologies, such as deep learning. Therefore, we 
intend to integrate deep learning algorithms into future 
research to improve the model’s performance and predictive 
accuracy and to enhance the clinical interpretability of our 
findings for greater applicability. Fifth, we recognize that 
our study did not include comprehensive clinical markers, 
such as serum C-reactive protein, to enhance model 
precision, nor did we employ outcome metrics such as the 
90-day modified Rankin Scale for assessment. We believe 
that the integration of clinical and outcome indicators 
will contribute to the development of a more precise and 
clinically relevant predictive model. Consequently, we 
plan to incorporate these factors in our future research 
to provide more valuable information for the clinical 
management of stroke survivors. Lastly, the clinical 
application of nomograms presents challenges, including 
their complexity, which may require additional training for 
effective utilization, and the risk of overfitting, which could 
compromise generalizability. Furthermore, biases in variable 
selection and the constraints of single-center data impede 
widespread applicability (30). To address these issues, we 
aim to enhance the model’s practicality and clinical utility by 
standardizing data, fostering multicenter collaborations, and 
integrating models within clinical practice, including the 
development of more user-friendly dynamic nomograms. 
Despite these limitations, this study successfully developed 
a predictive model for MCE after EVT by combining 
radiomics features and clinical factors. This model has the 
potential to serve as a foundation for early and accurate 
clinical decision-making and for predicting the risk of 
MCE in patients with acute anterior circulation infarction 
following EVT.

Conclusions

We used both clinical characteristics and radiomics 
modeling of HIM post-EVT to create a nomogram that 
can predict MCE in patients with acute anterior circulation 
infarction who have received EVT. The nomogram 
may serve as a valuable tool for the accurate and timely 
prediction of MCE risk, assisting clinicians in making 
informed clinical decisions.
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