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Background: Tumour tissue contains not only tumour cells but also some stromal cells and immune cells. 
This is one composition of the immune microenvironment of the tumour and causes a significant effect on 
the prognostic factors and recurrence of malignant tumor. 
Methods: In this research, single-cell RNA data from triple-negative breast cancers (TNBCs) were 
comprehensively analyzed and 1,527 marker genes expressed in immune cells were identified. Subsequently, 
RNA sequencing and clinical data from 360 patients in the Triple Negative Breast Cancer database at the 
Fudan University Shanghai Cancer Center (FUSCC) were divided into two groups in a 1:1 ratio, the training 
group and the validation group. An eight-gene Immune Cell-Associated Predictive Gene (ICAPG) model for 
predicting breast cancer (BC) recurrence was developed using mRNA data from the training group combined 
with immune cell marker genes. Based on this model, subjects were divided into two different risk level 
groups. The predictive power of the model was fully validated using the validation group and The Cancer 
Genome Atlas (TCGA) database. The localization and expression of these eight genes were then confirmed 
in a single-cell database. ssGSEA and CIBERSORT algorithms were used to characterize the differences in 
immune cell infiltration between the two different risk groups.
Results: The eight-gene ICAPG model was proven to be effective in the validation group. The low-
risk group patients presented higher criterion of infiltration of CD8+ T cells and higher levels of tumour-
infiltrating lymphocytes (TILs). In addition, the relationship between predictive models and homologous 
recombination deficiency (HRD) was explored and it was revealed that subjects from the high-risk group 
tended to have higher HRD values.
Conclusions: This research established a new predictive model on the basis of immune cell marker genes 
that might effectively predict relapse in TNBC patients.
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Introduction

Currently, breast carcinoma has become one of the most 
common cancers among Chinese women and seriously 
endangers women’s health (1). Triple-negative breast 
cancer (TNBC) is defined as the deficiency of estrogen or 
progesterone receptors (ER or PR), and human epidermal 
growth factor receptor 2 (HER2) expression (2). TNBC 
breast cancer (BC) accounts for 10–20% of all BC types (3).  
It occurs mostly in young women and has the most 
aggressive behaviour of all BC types. In addition, TNBC 
has a very high rate of recurrence, especially in a few years 
after implementation of adjuvant chemotherapy (4-6). 
Because of these characteristics, the prognosis of TNBC 
is also worse than that of other types (7). Therefore, 
predicting TNBC recurrence may act as a more important 
part in guiding treatment and improving patient care.

It is well known that tumour tissue includes more than 
just tumour cells; the environment in which tumour cells 
reside is known as the tumour immune microenvironment 
(TME) (8-10). The components of the TME are diverse 
and include diverse stromal cells, immune cells, extracellular 
matrix molecules, and other various cytokines (11). The 
new-found evidence suggests that the cellular and cell-
free elements in the TME can alter tumorigenesis, growth, 
invasions, metastases, and answer to therapy (12). In the 
adaptive immune system, CD8+ T cells become the most 
fatal effectors in the antitumour immunoreaction and are 
deemed to be the main reasons of antitumour immunity (13). 
CD8+ tumour-infiltrating lymphocytes (TILs) intercede 
rejection of tumour by recognizing cancer antigens and 
immediately eliminating transformed cells. Effector CD8+ 
T cells in the cancer microenvironment generate IL-2, IL-

12, and IFNγ, that improve the cytotoxic ability of CD8+ 
T cells and guide to specified tumour cell elimination. 
Rising levels of cytotoxic CD8+ T cells in the cancer 
microenvironment are related with enhanced antitumour 
abilities and prognosis in all kinds of tumours. Macrophages 
infiltrate heavily into malignant tissues and become 
tumour-associated macrophages (TAMs), which many 
studies have shown to be closely associated with tumour  
progression (14). TAM promotes immunosuppression, 
tumour growth, invasion, and metastasis by interacting 
with tumour cells. TAMs have two polarized forms, M1 
and M2. Numerous studies have shown that M1 TAMs 
have some antitumour effects, while a higher density of M2 
TAMs is closely related with poorer clinical prognoses in 
various of cancers. B cells have a unique role in antitumour  
immunity (15). Tumour-infiltrating B lymphocytes (TIBs) 
can be observed at all phases of tumour progress. TIBs are 
involved in both humorall and cellular immunity, and B cells 
have both tumour-promoting and tumour-suppressive roles. 
Some studies have shown that TIBs restrain tumour growth 
by producing immunoglobulins, improving T-cell reactions, 
and directly eliminating tumour cells (15). Other studies 
have noticed that B cells may make suppressive functions 
work due to the various immune-suppressive subtypes.

The therapeutic regimen for TNBC is very restricted 
due to the lack of targets. Homologous recombination 
deficiency (HRD) can be used as a predictor of BRCA 
mutations to guide treatment of TNBC. The HRD score is 
an unweighted numerical sum of deletion of heterozygosity 
value, telomere allele imbalance (TAI) value, and large 
segment shift (LST) score. Clinical trials have confirmed 
that TNBC patients with high HRD scores do better with 
platinum-containing chemotherapeutic agents and poly 
(ADP-ribose) polymerase inhibitors (16,17).

For the past few years, the progress of single-cell RNA-
seq technology has advanced rapidly, which provides an 
opportunity to reveal different cell clusters in the TME (18).  
In this study, scRNA-seq of TNBC was performed to 
identify three cell clusters associated with immunity and to 
identify marker genes differentially expressed in immune 
cells. Next, immune cell-associated predictive genes 
(ICAPG) were identified in the Fudan University Shanghai 
Cancer Center (FUSCC) Triple Negative Breast Cancer 
training group by Cox and least absolute shrinkage and 
selection operator (LASSO) regression analysis for the 
prediction of TNBC recurrence. In addition, the accuracy 
of the prediction model in the validation group was also be 
confirmed. Finally, immune cell infiltration was investigated 
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in the high-risk and low-risk groups. We present this 
article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2608/rc).

Methods

Data extraction

Six samples from the Gene Expression Omnibus (GEO) 
database, 7 clinical samples from the The Cancer Genome 
Atlas (TCGA) database downloaded from UCSC Xena, and 
360 TNBC samples from the FUSCC-TNBC cohort were 
included in this study. All patients were clearly diagnosed 
with TNBC. GEO data were used to identify differential 
genes in immune cells. A portion of the FUSCC-TNBC 
cohort was used for model development, and another 
portion of the FUSCC-TNBC as well as TCGA data were 
used for validation. Single-cell RNA sequencing data of 
TNBC examples from GSE118389 were obtained from 
the GEO database and applied to identify differentially 
expressed genes (DEGs) in TNBC immune cells. RNA-
seq and clinical data of TNBC were acquired from the 
cohort of the TNBC study at the Shanghai Cancer 
Center of Fudan University (19). This retrospective study 
used datasets from GEO and TCGA which are publicly 
available, and data from FUSCC-TNBC. The study was 
conducted with the approval of the Ethics Committee of 
Fudan University Cancer Hospital (No. 2019171) and 
operated in compliance with the Helsinki Declaration (as 
revised in 2013) (20). Informed consent was obtained from 
the participants.

Definition of immune cell marker genes by scRNA 
sequencing

The software packages “Seurat” and “SingleR” were used 
to analyze the scRNA sequencing data. First, the raw data 
were filtered for genes expressed in at least 3 single cells, 
and only cells expressing >50 genes were retained, and only 
cells expressing less than 5% of mitochondrial genes were 
retained. Next, the data were normalized by setting the 
normalization method to “LogNormalize” and using the 
“FindVariableFeatures” function to determine the top 1,500 
highly variable genes. After that, the “RunPCA” function 
was run to perform principal component (PC) analysis 
on these 1,500 genes. JackStraw analysis was applied 
to select 20 PCs with P values <0.05 for cell clustering 

analysis. Using the “FindNeighbors”, “FindClusters” and 
“RunTSNE” functions, cell proximity distances were first 
calculated, and then cell clustering analysis was performed. 
The “TSNEplot” command was used to output the visual 
map. Finally, the “FindAllMarkers” command was used 
to find the differentially expressed genes (DEGs) in each 
cluster. The modified P value was set to <0.05 and |log2 
(fold change)| to >1.

Pathway and functional enrichment analyses

The R package “clusterProfiler” was applied to execute 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses. Annotated P values <0.05 
were viewed remarkable enrichment.

Construction and verification of the eight-gene ICAPG 
model based on immune cell marker genes

First, The FUSCC-TNBC cohort data consisting of 360 
samples were randomly divided into two groups in a 1:1 
ratio, including the training group and the validation group. 
A blinded assessment method was used to construct the 
model. Univariate Cox regression analysis was performed 
to select genes with P<0.05. Next, LASSO regression was 
performed for the selected genes to reduce overfitting. 
Cross-validation was then performed using the “cv.
glmnet” function to select the best model. Finally, model 
construction was performed based on the genes screened 
using the training set data. Stepwise multivariate Cox 
regression analysis was applied to identify the genes that 
best predicted recurrence. In addition, patients were 
divided into two groups based on median, including a low-
risk group and a high-risk group. To validate the predictive 
power of ICAPG, the Kaplan-Meier method was applied 
to both the training and validation groups. In addition, 
the area under the curve (AUC) was planned using the 
“survROC” package. Finally, patients’ risk values were 
ranked using the “pHeatmap” software package to plot 
recurrence risk curves and heat maps.

Construction and verification of the nomogram model

Based on data availability and clinical evidence, a nomogram 
was constructed to integrate risk scores for eight genes, 
mRNA isoforms, Ki67, T, N, and surgical modality. 
The predictive power of the nomogram was assessed by 
calibration curve and decision curve analysis.

https://tcr.amegroups.com/article/view/10.21037/tcr-22-2608/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-2608/rc
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Table 1 Clinical characteristics of triple-negative breast carcinoma 
patients from the Fudan University Shanghai Cancer Centre cohort

Characteristic Values

Sex

Female, n [%] 360 [100]

Age at surgery (years), mean ± SD 53.27±11.36

Intrinsic subtype, n [%]

Basal 277 [77]

Other 83 [23]

mRNA subtype, n [%]

BLIS 132 [37]

IM 80 [22]

LAR 79 [22]

MES 69 [19]

Size (cm), median [interquartile range] 2.5 [2–3]

Ki67, median [interquartile range] 60 [30–70]

T, n [%]

1 131 [36]

2 220 [61]

3 9 [3]

N, n [%]

0 210 [58]

1 98 [26]

1mi 3 [1]

2 32 [9]

3 17 [5]

Follow-up (months), median  
[interquartile range]

45.6 [34.82–58.56]

RFS status, n [%]

0 311 [86]

1 49 [14]

RFS time (days), median  
[interquartile range]

1,359  
[1,031.75–1,768.25]

Surgery, n [%]

BCS 5 [1]

MRM 265 [74]

MTX 88 [24]

MTX + SLN 2 [1]

SD, standard deviation; BLIS, basal-like immune-suppressive; 
IM, immunomodulatory; LAR, luminal androgen receptor; MES, 
mesenchymal-like; T, tumour of the Tumour, Node, Metastasis 
staging system; N, node of the Tumour, Node, Metastasis 
staging system; RFS, recurrence-free survival; BCS, breast-
conserving surgery; MRM, modified radical mastectomy; MTX, 
mastectomy; SLN, sentinel lymph node. 

Differential analysis of the infiltration in immune cell

The CIBERSORT and ssGSEA algorithms were used to 
assess immune cell infiltration. Immune cell infiltration was 
then compared between patients in the high-risk and low-
risk groups and box plots were drawn.

HRD score

DNA was analyzed by applying a recently published next-
generation sequencing-based assay to produce genome-
wide single nucleotide polymorphism (SNP) profiles from 
which three elements of HRD values were calculated: TAI, 
loss of heterozygosity (LOH) and LST. The HRD value 
was explained as the unweighted sum of the TAI, LOH and 
LST values: HRD = TAI + LOH + LST.

Statistical analysis

All statistical analyses were done by using R. The chi-squared 
test and Fisher’s exact test were applied to determine the 
clinical features of FUSCC-TNBC subjects. The predictive 
value of ICAPG was investigated using univariate, 
multivariate Cox regression, and LASSO regression 
analyses. P<0.05 was deemed statistically significant.

Results

Baseline patient features

Table 1 describes the pathological and clinical features of 
360 patients with FUSCC-TNBC. Overall, the mean age 
at surgery was 53.27 (±11.36) years; the mean tumour size 
at the time of surgery was 2.5 (interquartile range, 2–3) cm; 
the follow-up time was 45.6 (interquartile range, 34.82–
58.56) months. Most patients (74%) underwent modified 
radical mastectomy (MRM); 49 of the 360 patients (14%) 
were diagnosed with recurrence; and the median time of 
recurrence-free survival (RFS) was 1,359 (interquartile 
range, 1,031.75–1,768.25) days.

Identification of immune cell marker genes

An overview of the research design is shown in Figure 1. 
Based on GSE118389, gene expression profiles of different 
cells from six major TNBC samples were obtained. First, 
the top 1,500 genes that were significant were screened 
(Figure 2A), and the dimensionality using PCA was reduced 
to identify 20 PCs (Figure 2B). Subsequently, clustering 
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Identification of immune cell marker genes 

using GEO database (n=6)

Defining ICAPG to predict recurrence of TNBC

Defining ICAPG using the FUSCC-TNBC 

database (n=360)

Train group (n=180)

K-M analysis, ROCTNBC data validation (N=7)Enrichment analysis

Tingle cell analysis

Train:Test =1:1

Nomogram

Immune cell infiltration 

analysis

Homologous recombination 

deficiency score

Validation group (n=180)

K-M analysis, ROC

Figure 1 Design flow chart. ICAPG, immune cell-associated predictive genes; TNBC, triple-negative breast cancer; GEO, Gene Expression 
Omnibus; FUSCC, Fudan University Shanghai Cancer Center; K-M, Kaplan-Meier; ROC, receiver operating characteristic. 

analysis was performed and annotated the genomes, with 
CD8+ T cells in Group 5, macrophages in Group 7, and 
B cells in Group 10 (Figure 2C,2D, Table 2). In addition, 
heatmaps of the distribution of genes in different clusters 
(Figure 2E) that were identified as marker genes for 
immune cells in TNBC were drawn (available online: 
https://cdn.amegroups.cn/static/public/tcr-22-2608-1.xlsx).  
Enrichment of functionality, such as GO and KEGG 
analyses, proved that immune cell marker genes are almost 
entirely associated with immunologic function for example 
positive regulation of cytokine production, immune 
response regulation, and signalling pathway mononuclear 
cells (Figure 3A,3B).

Construction of a novel eight-gene ICAPG model

The RNA sequencing results of immune cell-related 
marker genes from single cell analysis and FUSCC-

TNBC patients were first compared, and 910 differentially-
expressed genes were screened. Next, the subjects were 
divided into two groups by randomization, a training group 
(n=180) and a validation group (n=1,800). In the training 
group, we eight genes were selected using Cox and LOSSO 
regression models, including ASTN2, INSR, MOG, NR4A2, 
TMEM212, HLA-DRB6, PFKFB3, and RNASE1 (Table 3). 
The outcome event was patient recurrence. The formula 
for the genomic risk value was as shown below: genomic 
risk value =−0.666378645 × ASTN2 + 0.584943064 × 
INSR + 0.442594812 × MOG + 0.444171212 × NR4A2 − 
0.842061141 × TMEM212 − 0.704936712 × HLA-DRB6 
+ 0.755100196 × PFKFB + 0.360498366 × RNASE1.  
Figure 4A shows the results of the eight-gene multifactorial 
Cox analysis. Next, the patients were divided into two 
groups, high-risk group or low-risk group, in terms of 
the median. Kaplan-Meier as well as receiver operating 
characteristic (ROC) curves were used to assess the ICAPG 

https://cdn.amegroups.cn/static/public/tcr-22-2608-1.xlsx
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Figure 2 Single-cell RNA sequencing analysis identifies marker genes for immune. (A) Gene expression of original TNBC samples; genes 
with significant differences in expression are in red. (B) Twenty PCs defined using PCA. (C) t-SNE plot coloured by various cell clusters. 
(D) Annotated diagram of various cell fractions. (E) Heatmap showing the top 10 marker genes in each cell cluster and highly expressed 
genes are marked in yellow. PC, principal component; t-SNE, technique of Stochastic Neighbor Embedding; TNBC, triple-negative breast 
cancer; PCA, principal component analysis. 
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predictive effect (Figure 4B,4C). The AUC at 1-, 3-, and 
5-year were 0.777, 0.816, and 0.844 in the training set, 
respectively. The risk curves and gene expression heatmap 
also validated the findings (Figure 4D,4E). A list of 
predictive models is in Table 3.

Validation of ICAPG

Patients were also divided from validation group into two 
subgroups, high-risk and low-risk subgroups, to validate the 
correctness of the eight-gene model. Figure 5A,5B reveal 
the Kaplan-Meier curves (P=2.536×10−2 and ROC curves 
(1-year AUC =0.870, 3-year AUC =0.622, and 5-year AUC 
=0.609) for the validation group. The risk curves and gene 
expression heatmaps of the validation group also validated 

the predictive ability of ICAPG (Figure 5C,5D).
In addition, The TCGA database was used to further 

verify the model accuracy. Due to the lack of RFS data 
in the database, only 7 samples were found with relevant 
records, 2 of which were recurrences. By calculation, we 
detected that patients with recurrence had higher values 
and were assigned to the high-risk group (Table S1). Due 
to the small number of included samples, the Kaplan-Meier 
analysis, although not statistically significant (P=0.1161), 
also clearly showed that RFS times were shorter in high-
risk patients (Figure S1).

Construction and verification of the nomogram

The eight-gene score was combined with mRNA subtypes, 

https://cdn.amegroups.cn/static/public/TCR-22-2608-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-2608-Supplementary.pdf
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Table 2 Correspondence between cell clusters and cell types

Cluster Cell type

0 Epithelial cells

1 Epithelial cells

2 Adipocytes

3 Epithelial cells

4 Epithelial cells

5 CD8+ T-cells

6 Epithelial cells

7 Macrophages

8 Fibroblasts

9 Chondrocytes

10 B-cells

11 Chondrocytes

12 Chondrocytes

13 Endothelial cells

14 Fibroblasts

Figure 3 Functional enrichment manipulation. (A) Ten BPs, 10 MFs, and 10 CCs are shown, (B) 30 KEGG pathways are shown. The colour 
of the dots shows −Log10 (FDR) and the size of the dots indicates the number of genes enriched in the analysis. BP, biological process; CC, 
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate. 
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Ki67, T, N, and surgical modalities to construct a line plot 
of RFS predictions using data from the training group 
(Figure 6A). Then, the nomogram was validated, and the 
calibration analysis of the 5-year RFS prediction showed a 
close fit of the red solid line to the grey dashed line, which 
indicated that the nomogram had a high prediction accuracy 
and prediction precision (Figure 6B).

Expression of eight genes in single cells

The GEO single-cell genome sequencing data was 
used to observe the cellular locations of the eight genes  
(Figure 7A-7C). The results proved that in addition to 
their high expression in immune cells, some of the genes 
were also highly expressed in other cell types. ASTN2, 
MOG, and TMEM212 were also highly expressed in 
adipocytes; INSR, HLA-DRB6, and PFKFB3 were also 
highly expressed in epithelial cells, endothelial cells, and 
chondrocytes, respectively.
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Figure 4 Predictive genetic modelling in the training group. (A) Plot of multifactorial Cox analysis. (B) Kaplan-Meier curves comparing 
RFS of TNBC patients between high- and low-risk groups. (C) ROC curves predicting the risk of recurrence at 1, 3, and 5 years. (D) 
Distribution of risk scores and recurrence status. (E) Heatmap showing the expression characteristics of the identified eight genes. *, P<0.05. 
ASTN2, astrotactin 2; INSR, insulin receptor; MOG, myelin oligodendrocyte glycoprotein; NR4A2, nuclear receptor subfamily 4 group 
A member 2; TMEM212, transmembrane protein 212; HLA-DRB6, major histocompatibility complex, class II, DR beta 6; PFKFB3, 
6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3; RNASE1, ribonuclease A family member 1; RFS, recurrence-free survival; AUC, 
area under the curve; TNBC, triple-negative breast cancer; ROC, receiver operating characteristic. 

Table 3 Genes included in the prognostic model for the eight genes

ID Coef HR HR.95L HR.95H P value

ASTN2 −0.666378645 0.513565016 0.193519995 1.362903226 0.180831058

INSR 0.584943064 1.794888789 1.106607434 2.911263440 0.017765136

MOG 0.442594812 1.556741434 1.002410566 2.417616068 0.048759999

NR4A2 0.444171212 1.559197416 0.936874133 2.594902021 0.087438823

TMEM212 −0.842061141 0.430821623 0.191538041 0.969036074 0.041748840

HLA-DRB6 −0.704936712 0.494139846 0.220339577 1.108172172 0.087135142

PFKFB3 0.755100196 2.127824712 1.194436889 3.790604631 0.010375754

RNASE1 0.360498366 1.434043916 1.003771347 2.048755385 0.047631043

Coef, coefficient; HR, hazard ratio.
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Figure 5 Predictive genetic modelling in the validation group. (A) Kaplan-Meier curves comparing RFS of TNBC patients between high- 
and low-risk groups. (B) ROC curves predicting the risk of recurrence at 1, 3, and 5 years. (C) Distribution of risk scores and recurrence 
status. (D) Heatmap showing the expression characteristics of the identified 8 genes in the validation group. RFS, recurrence-free survival; 
AUC, area under the curve; MOG, myelin oligodendrocyte glycoprotein; HLA-DRB6, major histocompatibility complex, class II, DR beta 
6; RNASE1, ribonuclease A family member 1; INSR, insulin receptor; PFKFB3, 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3; 
TMEM212, transmembrane protein 212; ASTN2, astrotactin 2; NR4A2, nuclear receptor subfamily 4 group A member 2; TNBC, triple-
negative breast cancer; ROC, receiver operating characteristic. 

Eight genes are related with infiltration of immune cell in 
the TME

The relationship between these eight genes and immune 
cell infiltration in TNBC patients was investigated. The 
CIBERSORT algorithm was used to assess the degree 
of infiltration of various types of immune cells in the 
TME of TNBC patients. The results showed that low-
risk subjects had higher levels of CD8+ T-cell infiltration 
(Figure 8A,8B). CD8+ T cells may exert antitumour effects 
through specific immunity, which explains why the high-
risk group may have a higher risk of recurrence to some 
extent. Furthermore, the values of the ssGSEA algorithm 
also proved higher levels of CD8+ T cells and TILs in the 
low-risk group (Figure 8C).

Relationship between HRD score and ICAPG

The HRD scores were also explored in both high-risk and 

low-risk groups, including LOH, TAI, and LST scores 
(Figure 9A-9D). The results revealed that the high-risk 
group showed higher HRD, LOH, and LST scores (P<0.05). 
Previous studies have confirmed that subjects with high 
HRD scores have better results with platinum-containing 
chemotherapy drugs or poly(ADP-ribose) polymerase 
(PARP) inhibitors. This finding may also guide future drug 
selection.

Discussion

We first screened the immune-related marker genes of 
TNBC using single-cell genome sequencing data from the 
database of GEO. Subsequently, we defined ICAPG using 
a training data set of 180 samples from FUSCC-TNBC, 
which included eight genes, namely, ASTN2, INSR, MOG, 
NR4A2, TMEM212, HLA-DRB6, PFKFB3, and RNASE1. 
We then validated the constructed model with data from the 
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Figure 6 A predictive nomogram was created in the training group. (A) The nomogram was constructed from six factors: eight-gene 
predictive model score, mRNA subtype, Ki67, T, N, and surgical modality. (B) Calibration plot of the nomogram for 5-year RFS. IM, 
immunomodulatory; MES, mesenchymal-like; BLIS, basal-like immune-suppressive; T, tumour of the Tumour, Node, Metastasis staging 
system; N, node of the Tumour, Node, Metastasis staging system; MTX, mastectomy; SLN, sentinel lymph node; MRM, modified radical 
mastectomy; OS, overall survival; RFS, recurrence-free survival. 
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validation set. In addition, we tried to combine the ICAPG 
score with other clinical and pathological characteristics of 
the patients (including mRNA subtypes, Ki67, T, N, and 
surgical modality) to estimate the likelihood of recurrence 
in TNBC patients and drew a nomogram. In addition, we 
divided the subjects into two groups, low-risk and high-
risk groups, according to the median and performed a test 
to measure the infiltration of immune cell. The results 
proved that the levels of CD8+ T cells and TILs from 
high-risk group were lower. Finally, we also explored the 
relationship between the collected HRD scores and ICAPG 
and detected that the HDR values from high-risk group 
were higher, which also predicts that the high-risk group 
might have more sensitivities to platinum-containing drugs 
or PARP inhibitors.

Through further investigation, we found that four of 
the eight genes, ASTN2, INSR, NR4A2, and PFKFB3, 
were related with tumorigenesis and progression. Wang  
et al. reported that ASTN2 (astrotactin 2) can be linked to 
PAPPA antisense to constitute chimeric RNA (21). ASTN2-
PAPPA antisense can aggravate human oesophageal cancer 
tumour progression and metastasis by regulating OCT4. 
In addition, the chimaera also enhances the stemness 
of tumour cells. Hu et al. found that polymorphisms 
of INSR (insulin receptor) are of great importance for 
sensitivity to chemotherapy in ovarian cancer patients (22). 

They determined that INSR rs2252673 and rs3745546 
polymorphisms were linked with sensitive level to platinum-
based chemotherapy in patients with epithelial ovarian 
cancer through a clinical study. NR4A2 is an element 
of nuclear receptor family 4 subgroup A. Establishing 
a coculture model of intrahepatic cholangiocarcinoma 
cells and hepatic stellate cells, Jing et al. found that HSCs 
stimulated the expression of NR4A2 (23). NR4A2 acts 
as a transcription factor to promote tumour proliferation 
and metastasis and can serve as an independent prognostic 
index of all the survival in patients with intrahepatic 
cholangiocarcinoma. Mechanistically, NR4A2 enhances 
Wnt/β-linked protein signalling activity by upregulating 
bone bridge protein expression through transcriptional 
activation. Furthermore, Karki et al. demonstrated that 
NR4A2 can promote the proliferation, invasion, and 
migration of glioblastoma tumours (24). Bisindole-derived 
NR4A2 antagonists could be effective agents for the 
treatment of glioblastoma. PFKFB3 (6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3) has been shown 
to play a role in carcinogenetic effect, cancer cell spread, 
vascular invasiveness, resistance to drugs, and the tumour 
microenvironment in breast, pancreatic, gastric, and colon 
cancers (25).

However, this study has several limitations. Firstly, 
additional clinical data need to be included to validate 
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Figure 7 Distribution of the eight genes in single cells. (A) Scatter plot of the distribution of eight genes in single cells. (B) Fiddle plot of gene 
distribution. (C) Bubble diagram of gene distribution, with darker colours representing higher levels of gene expression. t-SNE, technique 
of Stochastic Neighbor Embedding; ASTN2, astrotactin 2; INSR, insulin receptor; MOG, myelin oligodendrocyte glycoprotein; NR4A2, 
nuclear receptor subfamily 4 group A member 2; TMEM212, transmembrane protein 212; HLA-DRB6, major histocompatibility complex, 
class II, DR beta 6; PFKFB3, 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3; RNASE1, ribonuclease A family member 1. 
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Figure 9 Scores of indicators related to homologous recombination deficiency in the high-risk and low-risk groups. Related indicators for 
homologous recombination deficiency score: (A) HRD, (B) LOH, (C) TAI, (D) LST. HRD, homologous recombination deficiency; LOH, 
loss of heterozygosity; TAI, telomere allele imbalance; LST, large segment shift. 
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Figure 8 Relationship between high and low ICAPG risk scores and immune cell infiltration in the TME. (A) Percentage bar graph 
comparing the level of immune cell infiltration between the high-risk and low-risk groups. (B) Box plot comparing the level of immune cell 
infiltration between the high- and low-risk groups using the CIBERSORT algorithm. (C) Comparison of immune cell infiltration between 
the high- and low-risk groups using the ssGSEA algorithm. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance. CCR, cell-cycle risk; 
HLA, human leukocyte antigen; MHC, major histocompatibility complex; PDCs, plasmacytoid dendritic cells; TILs, tumour-infiltrating 
lymphocytes; IFN, immune interferon; ICAPG, immune cell-associated predictive gene; TME, tumour immune microenvironment; 
ssGSEA; single-sample gene set enrichment analysis.
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the reliability of the prediction model in this research. 
Secondly, only make predictions at the mRNA level and did 
not discuss them at the protein level. Future studies could 
search after the expression as well as prognostic effects of 

the eight genes on the level of protein. In conclusion, this 
study is descriptive in nature. The underlying mechanism 
between ICAPG gene expression and TNBC recurrence 
can be explored in future studies.
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Conclusions

In summary, this study identified TNBC immune cell 
marker genes using single-cell data. A new eight-gene 
signature model was defined and validated using the 
FUSCC-TNBC database and TCGA database, followed 
by the construction of a nomogram combining mRNA 
subtypes, Ki67, T, N and surgical approaches to predict 
RFS. Finally, immune cell infiltration and HRD were 
assessed. This may have implications for postoperative 
follow-up time and drug selection for TNBC patients.
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