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Abstract

The vertebrate neural tube is a representative example of a morphogen-patterned tissue that generates different cell types with 
spatial and temporal precision. More specifically, the development of the dorsal region of the neural tube is of particular interest 
because of its highly dynamic behavior. First, early premigratory neural crest progenitors undergo an epithelial-to-mesenchymal 
transition, exit the neural primordium, and generate, among many derivatives, most of the peripheral nervous system.  
Subsequently, the dorsal neural tube becomes populated by definitive roof plate cells that constitute an organizing center for dorsal 
interneurons and guide axonal patterning. In turn, roof plate cells transform into dorsal radial glia that contributes to and shapes 
the formation of the dorsal ependyma of the central nervous system. 

To form a normal functional spinal cord, these extraordinary transitions should be tightly regulated in time and space. Thus far, 
the underlying cellular changes and molecular mechanisms are only beginning to be uncovered. In this review, we discuss recent 
results that shed light on the end of neural crest production and delamination, the early formation of the definitive roof plate, and 
its further maturation into radial glia. The last of these processes culminate in the formation of the dorsal ependyma, a component 
of the stem cell niche of the central nervous system. We highlight how similar mechanisms operate throughout these transitions, 
which may serve to reveal common design principles applicable to the ontogeny of epithelial tissues. 
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Introduction
During embryonic development, dynamic cellular events are  
decisive for the appropriate organization of the definitive body  
plan, proper cellular differentiation, and eventual tissue and  
organ function. A representative example of an embryonic  
domain exhibiting continuous changes over time is provided 
by the development of the dorsal domain of the neural tube  
(NT). This region first becomes apparent during NT closure, 
when bilateral neural folds come close to each other and fuse  
in the midline1–4. Opposing morphogen gradients generate  
distinct identities along the dorso-ventral axis of the NT. Bone  
morphogenetic protein (BMP) and Wnt emanate from the 
dorsal NT and act across the dorsal third of the NT5,6, Sonic  
hedgehog produced in notochord and later floor plate acts  
primarily in the ventral region, and retinoic acid (RA) from 
the paraxial mesoderm acts at an early stage to pattern the  
dorso-ventral and rostro-caudal embryonic axes7–10. The inte-
gration of the above signals establishes a transcriptional 
gene regulatory network that first defines the premigratory  
neural crest (NC)11,12, an epithelial cell subset that tran-
siently populates the NT. Owing to a remarkable process of  
epithelial-to-mesenchymal transition (EMT), these progenitors  
leave the NT13 to form a rich collection of cell types, such as 
sensory and autonomic neurons, satellite cells, and Schwann  
cells of the peripheral nervous system as well as pigment 
cells, ectomesenchyme and endocrine derivatives, organized in  
combinations unique to specific axial levels14,15. Upon comple-
tion of NC production and emigration, a subset of progenitors  
initially localized ventral to the premigratory cohort of NC 
cells, relocate dorsally to home at the dorsal NT midline, 
where they become the definitive roof plate (RP) of the spinal  
cord16. The RP is flanked ventrally by dorsal interneurons and  
significantly contributes to the specification and/or differen-
tiation of selected interneuron populations17–20. Subsequently, 
the RP is transformed into radial glia (RG)-like cells21–24 
that shape the growth of spinal cord axons and contribute to  
generating the stem cell-containing dorsal ependymal zone of  
the adult spinal cord of humans and rodents21,25,26.

A key question imposed by the above knowledge is the  
elucidation of temporal mechanisms. For example, how does 
the sequential production of different cell types at the same  
location, but not necessarily from the same progenitors,  
contribute to the generation of cell type diversity? In spite 
of extensive knowledge on the formation, emigration, and  
migration of NC progenitors, little is known about the mech-
anisms that account for the completion of the NC period.  
Furthermore, how is the ensuing formation of the RP  
regulated? Are the end of NC and the establishment of the  
RP interconnected or autonomously regulated processes?  
What mechanisms account for the transformation of epithelial 
RP cells into RG during the transition into a mature spinal cord  
structure? How do RG cells affect the formation of the local 
ependyma? Recent studies, as discussed here, have begun 
clarifying meaningful cellular and molecular processes under-
lying these important events and set the basis for further  
in-depth investigation.

The end of neural crest production and emigration
The end of NC production entails a set of significant changes 
occurring in the dorsal NT. These include the downregulation  
of NC-specific genes, a structural reorganization of the region, 
and the cessation of EMT and cell emigration. Our under-
standing of the end of NC production and the transition into an  
RP was hindered by the lack of genes uniquely transcribed in 
either NC or RP populations, respectively. A recent transcrip-
tome analysis, performed at the trunk level of quail embryos,  
compared the dorsal NT at premigratory NC and RP stages, 
respectively. This yielded a selection of genes expressed in RP  
but not premigratory NC, including components of the BMP, 
Wnt, and RA pathways, that serve both for defining these struc-
tures and for functional analysis, as discussed below in this  
section27. Initially, prospective NC and RP progenitors, being 
part of the FoxD3+ lineage, exhibit the same gene expression  
profile28. It is during a ventro-dorsal cellular relocation 
induced by the onset and progression of NC EMT that RP 
progenitors downregulate the NC genes foxd3, snai2, sox9, 
and so on, thus segregating from the NC lineage28. This is of  
particular interest as it implies that the end of cell emigration  
is not necessarily accounted for by the exhaustion of the  
NC progenitor pool but rather by a tightly regulated molecular 
switch.

Consistent with this notion, BMP signaling was shown to 
be necessary for the early development of both NC and RP  
populations17,29–31. This effect is transient, as at later stages  
dorsal progenitors lose competence to generate these cell 
types and instead yield dorsal interneurons32. Indeed, whereas 
both NC and RP progenitors exhibit BMP activity, the nascent  
RP becomes refractory to BMP30.

In a recent study, the loss of responsiveness to BMP was found 
to depend on RA newly produced in the dorsal NT5. Upon 
inhibition of RA signaling, expression of an NC-specific  
molecular signature, cell proliferation, lack of an organized  
apicobasal architecture, and (most importantly) cell emigration  
were all extended well into the RP stage5. These data show 
that the local synthesis of RA in the nascent RP, acting via 
BMP, is the switch that turns off the NC period of dorsal NT  
development.

These results raised the obvious question of the mechanism  
underlying the onset of RA production in RP. The expres-
sion of Raldh2, the enzyme responsible for RA synthesis, is 
upregulated in RP concomitant with the downregulation of  
foxd3, snai2, and sox9. Furthermore, NC and RP genes stand  
in a mutually repressive interaction, suggesting that cross inhi-
bition is a factor responsible for setting the timing of events in  
this domain5 (Figure 1).

The transition into a definitive roof plate
In the previous section, we described that RA signaling  
emanating from the nascent RP itself inhibits BMP activ-
ity, which altogether accounts for the end of the NC stage5. A  
fundamental question is whether ending the production of  
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NC cells is sufficient to induce RP formation or, alternatively, 
whether additional factors are required. Whereas inhibiting 
RA signaling was sufficient to prevent the timely expression  
of RP-specific genes that encode BMP inhibitors such as  
BAMBI, Grem1, and hes4, additional genes unique to RP, such 
as Rspo1, draxin, and NDP, were normally expressed5. This  
suggests that RP formation takes place under these conditions  
and thus can be mechanistically distinguished from its NC  
predecessors in the dorsal NT. However, the resulting RP was  
not normal, as the entire cytoarchitecture of the RP, compris-
ing apicobasal polarity and lack of cell proliferation, was  
compromised5. Furthermore, single cells co-expressing both 
NC and RP traits were apparent. Together, this indicates that 
proper NC/RP lineage segregation requires RA-dependent  
termination of BMP signaling and typical BMP-dependent  
traits (Figure 1). This finding is consistent with, and provides 
further mechanistic insights on, recent data emphasizing that  
lineage determination in the NC system is initiated by  
co-activation of competing modules, followed by a cell fate 
bias before final segregation33. It would be relevant to exam-
ine whether the same molecular modules operate to control  
NC-to-RP transition in additional animal species.

The Dreher mutant mouse, a spontaneous neurological mutation  
defective in Lmx1a34, was also instrumental in addressing  
the potential role of BMP signaling in RP formation.  
Normally, Lmx1a expression is apparent in both premigratory  
NC and RP. In Dreher mutants, RP formation is perturbed 
with reduced formation of dI1 interneurons. Expression of  
Lmx1a was not maintained through the mature RP, yet it was 
unaltered in NC, which revealed no phenotypic changes.  
Notably, loss of Lmx1a was accompanied by a complete failure  

of bmp6 and gdf7 expression throughout NT development35, 
yet some features of the RP were still maintained in the trunk of  
the mutants. In the hindbrain, only certain rostro-caudal regions 
of the RP were lost34,36, indicating heterogeneity within the  
RP27,37 and/or that Lmx1a-dependent BMP signaling may not  
be necessary for all aspects of RP development.

Notch-Delta signaling was found to mediate the mainte-
nance of the hindbrain RP epithelium37. Subsequent results 
documented a crucial role for this pathway in de novo RP  
formation. In the absence of Notch function, no RP or dI1  
interneurons formed in mouse embryos. Reciprocally, the 
gain of Notch produced an ectopic RP at the RP-interneuron  
interface. Moreover, Notch signaling was found to be sufficient  
for the choice between RP and dI1 interneuron fates while 
exhibiting no effect on early NC development27. Notably, moni-
toring activated Notch revealed activity throughout the NT  
except within the RP, and so was the expression pattern of 
Notch ligands. Hence, Notch signaling drives the initiation of  
RP specification in neighboring cells, likely by establishing a 
boundary between prospective RP and dorsal interneurons27.  
Together, the precedent data lend experimental support to the 
idea that despite being sequentially produced, separate signals  
are needed for ending NC production and for stimulating  
the emergence of an RP.

Sequential maturation of the roof plate into radial 
glia and dorsal ependyma
Cell-cell interactions in remodeling of the dorsal 
neuroepithelium
During the transition from an NT composed of pseudostratified  
epithelial progenitors to a nascent spinal cord, emigrating NC 

Figure 1. The role of retinoic acid (RA) in the transition from neural crest (NC) to roof plate (RP). A proposed model for the transition 
between NC (green) and RP (purple) stages. In the early stages, reciprocal gradients of RA and fibroblast growth factor in the paraxial 
mesoderm result in the downregulation of the bone morphogenetic protein (BMP) inhibitor Noggin in the dorsal neural tube (dNT). This leads 
to the activation of BMP and Wnt signaling pathways, which promote cell proliferation and induce NC epithelial-to-mesenchymal transition 
(EMT). As NC cells delaminate and leave the neural tube, NC-specific genes (foxd3, sox9, and snai2) are downregulated. The latter genes 
were shown to inhibit the synthesis of Raldh2 in the nascent RP; thus, their disappearance enables the onset of Raldh2 expression leading to 
the local synthesis of RA in RP. RA in turn inhibits BMP and consequently Wnt signaling, either directly or via upregulation of BMP inhibitors 
(BAMBI, hairy1, and Grem1). Hence, mutual cross-inhibitory interactions between NC- and RP-specific genes underlie the establishment of a 
temporal sequence leading to the formation of the definitive RP and its segregation from NC. In addition, Notch signaling stemming from the 
RP/interneuron boundary is essential for RP formation yet has no apparent effect on early NC development.
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progenitors are replaced by RP cells16,28,30,38. Subsequently,  
cellular morphology changes dramatically: the NT lumen 
gradually shrinks, forming the central canal, and a median 
septum extends along the dorso-ventral axis, a process that  
concerns the dorsal domain of the NT21,23,24,39,40 exclusively.  
Recent studies in zebrafish, chick, and mouse embryos revealed 
that the RP stretches during this transition with long proc-
esses abutting the central canal apically and the pial surface  
basally26,39,41 (Figure 2). These findings raised the questions  
of how precisely the NT lumen shrinks into a small and round 
central canal, and what the role of the elongating dorsal  
RG in this process is23,24.

A recent study addressed these questions. The authors describe 
the formation of a cellular bridge spanning the two sides of the 
dorsal ventricular lumen, located 2 to 8 cell diameters below its 
dorsal edge41. Ventricular cells dorsal to this bridge undergo 
progressive attrition, contributing to the reduction of lumen  
size. RG cells, spanning the entire apicobasal epithelium, were 
found to contact these ventricular progenitors at their apical  
aspect to induce their delamination away from the forming  
central canal. Mechanistically, RG cells were reported to 
secrete a soluble form of the apical polarity protein Crumbs2 
that promotes loss of cell polarity and delamination of the  
adjacent ventricular cells expressing transmembrane Crumbs241. 
This intriguing repetitive mechanism links cell elongation with  
delamination and dorsal collapse.

In the context of RP development, it is worth mentioning 
the formation of the glycogen body, an RP-derived struc-
ture unique to Aves that is confined to the lumbar level of the  
neuraxis42–44. There is no axonal crossing at the dorsal midline  
that occurs at the level of the glycogen body, whereas at  

axial levels, rostral and caudal to it, decussation is apparent. 
Thus, the glycogen body was suggested to serve as a physical  
barrier for axonal decussation at the sciatic plexus level. This 
observation is of biological significance, as it may account 
for the alternative pattern of hindlimb locomotor activity.  
This contrasts with dorsal midline crossing at brachial levels  
that is associated with synchronous wing movements45. 
Whether the formation of the glycogen body is preceded by 
an earlier stretching of RP into RG and/or by subsequent 
establishment of dorsal ependyma at this level has yet to be  
explored.

Roof plate derivatives form in a spatially restricted pattern
Lineage tracing studies and expression of specific transcription  
factors suggest that dorsal spinal cord RG and ependymal  
cells specifically derive from the RP21,26. Another impor-
tant message emerging from recent data is that spinal cord 
ependymal cells in mice and humans maintain a dorso-ventral  
pattern of gene expression reminiscent of their embryonic  
predecessors21,25,26,46. Specifically, the dorsal ependyma was  
reported to express Zic (Zic1, Zic2, Zic4, and Zic5) and Msx1  
transcription factors that characterize the early dorsal NT25,46.  
These Msx1+ radial cells were only a subset of the dorsal  
ependymal population, suggesting that molecular heterogeneity  
is maintained in the adult dorsal spinal cord, similar to  
observations in the nascent embryonic RP27. Likewise, dorsal 
ependymal cells in rodents express genes encoding Bmp6 and  
Wnt446, reminiscent of the well-documented activity of both  
BMP and Wnt signaling pathways during early development. 
Together, these data indicate that mature dorsal ependyma 
derives from and retains some properties of the embryonic  
RP. The functions of the above genes and morphogens  
at late stages remain to be clarified (see next section).

Figure 2. Reiterative roles of Wnt signaling throughout the maturation of the dorsal neural tube (NT). The dorsal NT undergoes a 
series of structural transformations during embryonic development. An initial neural crest (NC)-producing domain (A) turns into a definitive 
epithelial roof plate (RP) (B), which later reorganizes into radial glial (RG) cells stretched along the dorsal extent of the spinal cord between 
the central canal and the pia mater (C). (A) The dorsal NT continuously produces and secretes Wnt ligands (e.g., Wnt1 and Wnt3a) and also 
responds to Wnt signals. Premigratory NC cells exhibit high levels of Wnt signaling, responsible for their proliferation as well as for epithelial-
to-mesenchymal transition. (B) During the transition into a definitive RP, Wnt activity persists at lower levels and the RP continues secreting 
Wnt ligands, important for the development of dorsal interneuron progenitors. (C) In mice, Wnt signaling in nascent RG was found to be 
necessary for their proper alignment in the dorsal midline (upper arrows). Later in development, Wnt ligands secreted from the ventral tips of 
dorsal RG are, in turn, crucial for the proliferation of dorsal ependymal cells (lower arrows).
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The roles of Wnt signaling
Expression of Wnt1 and Wnt3a, which is prominent in the  
early dorsal NT39,47,48, is maintained in stretched RP cells. In  
mice, Wnt-responsive progenitors are restricted to the dorsal 
region of the central canal, where dorsal ependymal cells are  
generated. Wnt secretion by RP cells is required for the  
proliferation of these ependymal progenitors and affects RG  
organization but has no effect on RG formation. Furthermore, 
Wnt signaling is active in postnatal and adult ependymal cells, 
where it contributes to their proliferation under homeostatic  
conditions and also following spinal cord injury21,26 (Figure 2).

Common principles acting in the dorsal neural tube 
over time
Available results highlight a number of reiterative motifs  
operating in the dorsal NT during development that are briefly 
summarized below. For instance, the onset of NC delamination  
is regulated by a dynamic counter gradient of BMP and 
its inhibitor Noggin, and BMP is a master regulator of NC  
EMT49–51. Likewise, it appears that one of the mechanisms 
responsible for the end of NC production and EMT involves 
an interplay between BMP signaling and at least three of its 
inhibitors (Grem1, HES4, and BAMBI) that are specifically  
upregulated in the nascent RP5.

Canonical Wnt signals emanate from the dorsal NT and are 
mitogenic for early NC cells downstream of BMP48, as well as 
for more ventrally localized neuroepithelial cells52, and seem 
to keep this activity vis-à-vis developing and adult ependymal  
cells21,26 (Figure 2). Although Wnt signaling via β-catenin  
plays an essential role in proliferation, cell-intrinsic and envi-
ronmental properties change over time, probably modulating  
the nature of cellular responses. Thus, the possibility that  
Wnts perform additional functions at later development remains  
open.

The RA pathway also reveals a continuum of different activities 
toward dorsal NT progenitors. At gastrulation, RA is required 
for NC specification. Next, during somite formation, somitic  
RA is necessary for the onset of emigration of specified  
NC progenitors, but at advanced somite stages, it is dispensable  
for the subsequent maintenance of NC EMT53. Recently, we  
reported that RP-derived RA ends NC production by inhib-
iting BMP/Wnt signaling without affecting dorso-ventral  
patterning of the neuroepithelium5. Together, this highlights a 
dynamic and context-dependent behavior of RA at sequential 
stages of NC ontogeny. These results also suggest that a network  
linking RA activity with BMP and Wnt signaling pathways  
might operate throughout dorsal spinal cord development.

EMT, an evolutionarily conserved morphogenic process, is 
defined by the loss of epithelial characteristics, acquisition of 
a mesenchymal phenotype, and altered patterns of intercellular  
communication leading to changes in cell migration and  
invasion54,55. Data discussed here highlight reiterative events  
of EMT during dorsal NT ontogeny. NC EMT is a tempo-
rally regulated process that involves reciprocal interactions 

between NT and adjacent mesoderm to modulate the activ-
ity of BMP/Wnt factors (reviewed in 20). This raises the 
question of whether the mechanisms acting upstream of  
Crumbs2-mediated delamination of dorsal ventricular cells by  
RG41 resemble those mediating NC EMT.

Conclusions and open questions
The preceding results indicate that RA activity at NC and RP  
stages, respectively, is differently interpreted by the cells. This 
might be accounted for by the origin of the signal stemming  
from either mesoderm or NT. A different origin could account 
for various forms of local interactions mediated through  
membrane protrusions56–58, either in addition or alternative to  
signal diffusion through the extracellular space. This question  
is still wide open to investigation.

Recent data highlight an array of molecular differences  
between premigratory NC and young RP cells27. It would  
be interesting to examine whether the expression of those  
genes that define the nascent RP is also maintained throughout  
RG and ependymal formation and, if so, to investigate their  
functions at the various stages.

Likewise, it remains unknown how these structures segregate  
at different levels of the neural axis. For instance, using  
single-cell spatial transcriptomics in embryos aged 7 somite  
pairs, a recent study revealed the existence of various sub-
domains in the dorsal NT corresponding to the midbrain level; 
one of these subsets was located ventral to the premigratory  
NC and displayed both pluripotency and neural genes59. This  
raises the intriguing possibility that stem-like cells in this 
early niche are the progenitors of later RP and RG. Notably,  
these reported “neural stem cells” do not express classic 
NC markers such as Foxd3, Sox9, or Snai2, whereas, in the  
trunk, RP progenitors stem from a Foxd3+ lineage28. Hence, 
the reported neural stem cells in Lignell et al.59 might not 
be the source of RP and RG; alternatively, RP and RG cells  
might differ in their origin along the axis.

The results discussed here also bear clinical significance. Spinal 
cord ependymal cells may behave as a pool of quiescent stem  
cells with neurogenic and/or gliogenic potential to treat spinal  
cord injury60. A future challenge will be how to harness this  
endogenous potential for designing regenerative strategies.  
Furthermore, abnormal regulation of Wnt/β-catenin signaling  
is at the origin of several malignant tumors61. Since Wnts are 
also key regulators of ependymal proliferation21,26, this raises 
the question of whether the formation of ependymomas and/or  
additional central nervous system tumors might result from  
abnormal levels of Wnt activity.
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