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Adaptive Resonance Theory, or ART, is a neural model that explains how normal and
abnormal brains may learn to categorize and recognize objects and events in a changing
world, and how these learned categories may be remembered for a long time. This
article uses ART to propose and unify the explanation of diverse data about normal and
abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance
control determines whether learned categories will be general and abstract, or specific
and concrete. ART models how vigilance may be regulated by ACh release in layer
5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh
release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated
by unexpected events. The article additionally discusses data about ACh-mediated
tonic control of vigilance. ART proposes that there are often dynamic breakdowns of
tonic control in mental disorders such as autism, where vigilance remains high, and
medial temporal amnesia, where vigilance remains low. Tonic control also occurs during
sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise
in ACh-modulated laminar cortical ART circuits that carry out processes in awake
individuals of contrast normalization, attentional modulation, decision-making, activity-
dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits
interact with circuits that control circadian rhythms and memory consolidation. Tonic
control properties also clarify how Alzheimer’s disease symptoms follow from a massive
structural degeneration that includes undermining vigilance control by ACh in cortical
layers 3 and 5. Sleep disruptions before and during Alzheimer’s disease, and how they
contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from
this perspective.

Keywords: acetylcholine, adaptive resonance theory, vigilance, autism, medial temporal amnesia, slow wave
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1. INTRODUCTION: MODELING NEURAL
SYSTEMS THAT INCLUDE
NEUROMODULATORS

Wikipedia states that ‘‘Neuromodulation is the physiological
process by which a given neuron uses one or more chemicals
to regulate diverse populations of neurons. This is in contrast
to classical synaptic transmission, in which one presynaptic
neuron directly influences a single postsynaptic partner. . .’’
Thus, in order to understand how a neuromodulator works,
one needs to characterize the neural system or systems upon
which it acts, notably the neural mechanisms of which it is
composed, the psychological functions that it enables, and how
the neuromodulator may alter both. A complete understanding
of a neuromodulator thus requires that a linkage be established
between brain mechanisms and mental functions. Without
such a link, the mechanisms of the brain have no functional
significance, the functions of behavior have no mechanistic
explanation, and it will remain unclear how neuromodulators do
their job.

Establishing such a link with sufficient clarity for it to
be scientifically predictive requires rigorous mathematical
models that can simultaneously describe multiple levels
of brain and behavioral organization. A rapidly growing
number of such models can now quantitatively simulate the

FIGURE 1 | This modeling method and cycle clarifies how increasingly refined neural models can explain and predict increasingly large interdisciplinary behavioral
and neurobiological data bases. See text for details.

neurophysiologically recorded dynamics of identified nerve
cells in known anatomies and the behaviors that they control.
In addition to providing unified explanations of abundant
psychological and neurobiological data, many predictions of
these models have been supported by subsequent experiments
over the years. See Grossberg (2013, 2017) for reviews.

One successful approach uses a theoretical method that has
been developed and applied during the past 60 years (Grossberg,
1999). Because brain evolution needs to achieve behavioral
success, this ‘‘method of minimal anatomies’’ begins with a
theoretical analysis of scores or even hundreds of parametrically
structured behavioral experiments (Figure 1). Starting with
behavioral data enables derivation of models whose brain
mechanisms have been shaped during evolution by behavioral
success. A unified mechanistic explanation of large numbers of
behavioral experiments is sought to rule out many otherwise
seemingly plausible answers.

The method uses such a large behavioral database to discover
novel design principles and mechanisms to explain how an
individual, behaving in real time, can generate these data
as emergent properties. Despite being based on psychological
constraints, the minimal mathematical models that realize these
design principles have always looked like part of a brain
(Figure 1). Sixty years of modeling have hereby supported the
hypothesis that brains look the way that they do because they
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embody natural computational designs whereby individuals can
autonomously adapt to changing environments in real time.
Moreover, this kind of behavior-to-principle-to-model-to-brain
theoretical derivation has often disclosed unexpected functional
roles of the derived brain mechanisms that are not clear from
neural data alone.

The minimal model is first derived. Minimality here means
that removing any of the model’s mechanisms prevents it
from explaining a key set of previously explained data. Once
a connection is made top-down from behavior to brain,
mathematical and computational analysis discloses what the
minimal model, and its variations, can and cannot explain. An
analysis of this ‘‘boundary between the known and unknown’’
focuses attention upon design principles that the current model
does not embody. These new design principles and their
mechanistic realizations are then consistently assimilated into
the model. Indeed, if such a model unlumping process, or
‘‘embedding’’, is not possible, then that is strong meta-theoretical
evidence that the current model contains a serious error.

This theoretical cycle has been successfully repeated multiple
times since 1957, thereby disclosing a series of progressively
unlumped models, each consistent with the others, and each
with an increasing broad explanatory and predictive range.
Although one cannot ‘‘derive an entire brain’’ in one step
using this method, an increasing number of these models
can individually explain psychological, neurophysiological,
neuroanatomical, biophysical, and even biochemical data. They
hereby illustrate a sense in which the classical Mind/Body
Problem is currently being solved. As part of this ‘‘conceptual
evolution’’ of models, increasingly detailed insights about various
roles for neuromodulators have been discovered. Some of these
progressively unlumped models are described in this article,
along with new results as well, especially about how properties
of slow wave sleep and Alzheimer’s disease are clarified by
model laminar cortical circuits that also explain many data about
normal awake behaviors.

2. CATEGORY LEARNING VIA
FEATURE-CATEGORY RESONANCES

2.1. Adaptive Resonance Solves the
Stability-Plasticity Dilemma
One such model, called Adaptive Resonance Theory, or ART,
proposes how the brain learns categories whereby to attend,
recognize, and predict objects and events. This is accomplished
in ART using feedback interactions between attended feature
patterns and an active recognition category, leading to a feature-
category resonance (Figure 2). In this conception, attended
feature patterns activate bottom-up adaptive filter pathways,
while activated recognition categories active their top-down
learned expectation pathways.

Bottom-up inputs to the feature pattern level are matched
against active top-down expectations. An active top-down
expectation, in the absence of bottom-up inputs, can modulate,
or prime, the feature-selective cells to anticipate expected feature
patterns, but cannot, by themselves, fire these cells. When a

good enough match occurs, the system locks into an attentive
resonant state that synchronizes, amplifies, and prolongs system
response (Figure 2). Such a feature-category resonance drives
the recognition learning process whereby the adaptive weights,
or LTM traces, in the bottom-up and top-down pathways
can learn from the patterns of resonating activities, or STM
traces; hence the term adaptive resonance. By focusing on
attended features, the resonance also suppresses unattended
features, thereby helping to solve the stability-plasticity dilemma
(Grossberg, 1980), whereby the brain can learn quickly, without
being also forced to catastrophically forget already learned, but
still useful, knowledge.

ART has predicted that all conscious brain states are
resonant states, and that feature-category resonances support
the recognition of objects and events (Grossberg, 1980, 2017).
More generally, ART predicts a link between brain processes of
consciousness, learning, expectation, attention, and synchrony;
the so-called CLEARS processes, and that all brain systems that
are capable of supporting conscious experiences embody such a
linkage between CLEARS processes.

2.2. Attentional and Orienting Systems
Regulate Category Learning and Search
Category learning in ART is controlled by interactions between
an attentional system and an orienting system (Figure 3).
These two systems embody computationally complementary laws
(Grossberg, 2000a). The attentional system (levels F1 and F2 in
Figure 3) carries out processes like attention, category learning,
expectation, and resonance in response to familiar and expected
events. The orienting system (level A in Figure 3) enables the
attentional system to learn about unfamiliar and unexpected
information using processes like reset, memory search, and
hypothesis testing. The attentional system includes brain regions
like temporal cortex and prefrontal cortex (PFC). The orienting
system includes brain regions like the nonspecific thalamus and
hippocampus (HPC).

If an input pattern causes a sufficiently bad mismatch
to occur within the attentional system, it will activate the
orienting system. The orienting system, in turn, resets the
active recognition category and initiates a memory search, or
hypothesis-testing for a better-matching category, possibly an
entirely new one. Figure 3 summarizes this ART search and
learning cycle.

Object attention is carried in an ART network by a top-down,
modulatory on-center, off-surround network. Such a circuit is said
to obey the ART Matching Rule. Due to the ART Matching
Rule, attention can modulate, sensitize, or prime an expected
critical pattern of feature-selective cells, but cannot fully excite
them unless enough of them also receive matched bottom-up
featural inputs. The off-surround network can actively inhibit
unexpected features at the same time. Carpenter and Grossberg
(1987) have mathematically proved that category learning is
stable in response to an arbitrary sequence of input patterns if the
ART Matching Rule is obeyed, but can easily become unstable
if it is not, leading to catastrophic forgetting of previously
learned categories. See Grossberg (2013, 2017) for a summary
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FIGURE 2 | A feature-category resonance can develop when there is a good enough match between a bottom-up input pattern to a network of feature detectors
and a learned top-down expectation from an active recognition category. The resonant state synchronizes, amplifies, and prolongs the responses of cells within it,
which create and sustain an attentional focus, and thereby triggers learning in the corresponding bottom-up adaptive filters and top-down expectations, hence the
name adaptive resonance. At the same time, outliers are suppressed, thereby enabling fast learning without catastrophic forgetting. See text for details.

of the abundant psychological and neurobiological evidence that
supports the prediction that object attention obeys the ART
Matching Rule.

2.3. Vigilance Control Determines the
Criterion for Resonance vs. Reset
How good amatch is required for resonance, sustained attention,
learning, and consciousness, to occur? This criterion is set by
a vigilance parameter ρ that is computed within the orienting
system (Carpenter and Grossberg, 1987). The size of the vigilance
parameter determines the generality of the recognition categories
that will be learned. If vigilance is high, then learning of a
concrete or specific category occurs, such as recognition of a
frontal view of a friend’s face. If vigilance is low, then learning
of an abstract or general category occurs, such as recognition
that everyone has a face. In general, vigilance is chosen as low
as possible to conserve memory resources, without causing a
reduction in predictive success. Because this baseline vigilance
level is initially set at the lowest level that has led to predictive
success in the past, ART models try to learn the most general
category that is consistent with the data. This tendency can lead
to the type of overgeneralization that is seen in young children

(Brooks et al., 1999) until subsequent learning leads to category
refinement (Tomasello and Herron, 1988).

When a given task requires a finer categorization, vigilance
is raised. Vigilance can be automatically adjusted to learn
either specific or general information in response to predictive
failures, or disconfirmations, within each environment. Such a
predictive failure could occur, for example, if a viewer classifies
an object as a dog, whereas it is really a fox. Within ART,
such a predictive disconfirmation causes a memory search
that shifts attention to focus on a different combination of
features that can successfully be used to recognize that the
object is, in fact, a fox, and perhaps to recognize other
foxes as well.

2.4. How Vigilance Is Computed
Vigilance is computed within the orienting system of an ART
model (Figures 3B–D). This can happen because the orienting
system measures how good a match occurs in the attentional
system. It does so in the following way: An input pattern
I activates two bifurcating pathways. One pathway activates
feature detectors at level F1 in the attentional system. This
activity pattern is denoted by X in Figure 3A. After a top-down
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FIGURE 3 | How Adaptive Resonance Theory (ART) searches for and learns a new recognition category using cycles of match-induced resonance and
mismatch-induced reset due to interactions of an attentional system and an orienting system. Active cells are shaded gray; inhibited cells are not shaded. (A) Input
pattern I is instated across feature detectors at level F1 of the attentional system as an activity pattern X, at the same time that it generates excitatory signals to the
orienting system A with a gain ρ that is called the vigilance parameter. Activity pattern X generates inhibitory signals to the orienting system A as it generates a
bottom-up input pattern S to the category level F2. A dynamic balance within A between excitatory inputs from I and inhibitory inputs from S keeps A quiet. The
bottom-up signals in S are multiplied by learned adaptive weights to form the input pattern T to F2. The inputs T are contrast-enhanced and normalized within F2 by
recurrent lateral inhibitory signals that obey the membrane equations of neurophysiology, otherwise called shunting interactions. This competition leads to selection
and activation of a small number of cells within F2 that receive the largest inputs. The chosen cells represent the category Y that codes for the feature pattern at F1.
In this figure, a winner-take-all category is chosen, represented by a single cell (population). (B) The category activity Y generates top-down signals U that are
multiplied by adaptive weights to form a prototype, or critical feature pattern, V that encodes the expectation that the active F2 category has learned for what feature
pattern to expect at F1. This top-down expectation input V is added at F1 cells using the ART Matching Rule. If V mismatches I at F1, then a new short-term memory
(STM) activity pattern X∗ (the gray pattern), is selected at cells where the patterns match well enough. In other words, X∗ is active at I features that are confirmed by
V. Mismatched features (white area) are inhibited. When X changes to X∗, total inhibition decreases from F1 to A. (C) If inhibition decreases sufficiently, the orienting
system A releases a nonspecific arousal burst to F2; that is, “novel events are arousing”. Within the orienting system A, a vigilance parameter ρ determines how bad
a match will be tolerated before a burst of nonspecific arousal is triggered. This arousal burst triggers a memory search for a better-matching category, as follows:
Arousal resets F2 by inhibiting Y. (D) After Y is inhibited, X is reinstated and Y stays inhibited as X activates a different winner-take-all category Y∗, at F2. Search
continues until a better matching, or novel, category is selected. When search ends, an attentive resonance triggers learning of the attended data in adaptive weights
within both the bottom-up and top-down pathways. As learning stabilizes, inputs I can activate their globally best-matching categories directly through the adaptive
filter, without activating the orienting system (adapted with permission from Carpenter and Grossberg, 1987).

expectation V is also activated, the number of active feature
detector cells decreases as the match of I with the top-down
expectation gets worse. This attended activity pattern is denoted
by X∗ in Figures 3B,C. The second pathway that is activated
by I sends converging excitatory signals to the orienting system
A. After the feature detectors in F1 are activated, they also

activate two bifurcating pathways. One pathway sends a signal
pattern S via an adaptive filter to level F2, where they activate
category-coding cells that compete to be stored in short-term
memory (STM). The other pathway sends converging inhibitory
signals to the orienting system A. In this way, I and X∗

compete within A. A nonspecific reset signal is emitted by
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A if the inhibition from X∗ to A is less than the excitation
from I to A.

Here is where the vigilance parameter plays a role. The
vigilance parameter ρ multiplies the bottom-up excitatory inputs
I to A; that is, ρ is the gain of the excitatory inputs to A.
The orienting system A is activated when the total excitatory
input ρI is greater than the total inhibition from the features
X∗ across F1 that survive top-down matching. This occurs when
ρ|I| − |X∗| > 0, where |.| denotes the number of positive
inputs or matched features. This inequality can be rewritten as
ρ > |X∗| |I|−1 to show that the orienting system is activated
whenever ρ is chosen higher than the ratio of active X∗

matched features in F1 to total features in I. In other words,
the vigilance parameter controls how bad a match can be before
reset of the current category, and search for a new category, is
initiated.

If the vigilance parameter is low, then many exemplars can
all influence the learning of a shared category prototype, by
chipping away at the features that are not shared with all the
coded exemplars. If the vigilance parameter is high, then even a
small difference between a new exemplar and a known prototype
(e.g., F vs. E) can drive the search for a new category with which
to represent F.

2.5. Minimax Learning by Match Tracking:
Learn the Most General Predictive
Categories
Vigilance can be automatically adjusted in response to a
predictive disconfirmation (e.g., E is predicted in response
to F). One particularly useful way is called match tracking.
Suppose that on every learning trial, a predictive failure causes
vigilance to increase by the smallest amount that can trigger
reset of the currently active category. That is, increase ρ until
ρ > |X∗||I|−1. Reset is followed by a memory search for a
new recognition category that can correct the error. As a result
of such a memory search, a category will be learned that
is just general enough to eliminate the error, because every
increase in vigilance reduces the generality of learned categories,
and vigilance was increased by the minimum amount that
was needed to learn a new category. This scheme is called
match tracking because vigilance tracks the degree of match
between the input pattern I and the attended feature pattern X∗.
Match tracking leads to minimax learning, or learning that can
minimize predictive errors while it conjointlymaximizes category
generality. In other words, match tracking uses the minimum
memory resources that are needed to correct the predictive
error.

Because vigilance can vary during match tracking in a manner
that reflects current predictive success, recognition categories
capable of encoding widely differing degrees of generalization or
abstraction can be learned by a single ART system (Carpenter
and Grossberg, 1987, 1991). Thus a single ART system may be
used, say, to learn abstract prototypes with which to recognize
abstract categories of faces and dogs, as well as ‘‘exemplar
prototypes’’ with which to recognize individual views of faces and
dogs, depending on task requirements.

3. TWO DISTINCT PROCESSES OF
MEMORY CONSOLIDATION

ART has predicted that two different, but interacting, memory
consolidation processes occur, one during the learning of
perceptual or cognitive recognition categories, and the other
during the learning of cognitive-emotional interactions.

The consolidation of recognition categories is illustrated by
the search and learning cycle that is summarized in Figure 3. As
sequences of inputs are practiced over learning trials, thememory
search process leads to learning of recognition categories
that are stably maintained during subsequent experiences. As
categorization of familiar inputs stabilizes, memory search
automatically ends and familiar inputs directly access the
category whose prototype provides the globally best match,
without undergoing any search, while unfamiliar inputs can
continue to engage the orienting system to trigger memory
searches for better categories until they also become familiar.
Direct access to a familiar recognition category represents a kind
of dynamically-maintainedmemory consolidation that can occur
entirely within perceptual and cognitive circuits to discover and
learn stable recognition categories.

Carpenter and Grossberg (1987) have mathematically proved
this property in an ART model. In other words, ART provides
a solution of the local minimum problem that various other
algorithms, such as back propagation (Baldi and Hornik, 1989;
Gori and Tesi, 1992), and its Deep Learning refinement (LeCun
et al., 2015), do not solve. This process of search and category
learning continues until the memory capacity, which can be
chosen arbitrarily large, is fully utilized.

ART has predicted that this learning and memory
consolidation process often utilizes cortico-hippocampal
interactions, where thalamocortical circuits play the role of
the attentional system, and the hippocampus playing the
role of the orienting system (Figure 3). This conception is
supported by several types of experiments. In particular, the
role of hippocampus in mismatch-mediated novelty detection
has been known for many years (Sokolov, 1960; Vinogradova,
1975; Deadwyler et al., 1979, 1981). Indeed, the hippocampal
CA1 and CA3 regions have been shown to be involved in a
process of comparison between a prior conditioned stimulus
and a current stimulus by rats in a non-spatial auditory task,
the continuous non-matching-to-sample task (Sakurai, 1990).
During performance of the task, single unit activity was recorded
from several areas: CA1 and CA3, dentate gyrus (DG), entorhinal
cortex, subicular complex, motor cortex (MC), prefrontal cortex
and dorsomedial thalamus. GO and NO-GO responses indicated
whether the current tone was perceived, respectively, as the same
as (match) or different from (mismatch) the preceding tone.
About half of the units inMC, CA1, CA3 andDG had increments
of activity immediately prior to a GO response, and were thus
implicated in motor or decisional aspects of making a match
response. On mismatch trials, units were also found in CA1 and
CA3 with activity correlated to a correct NO-GO response. Otto
and Eichenbaum (1992) furthermore reported that CA1 cells
compare cortical representations of current perceptual processes
to previous representations stored in parahippocampal and
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neocortical structures to detect mismatch in an odor-guided
task. They noted that ‘‘the hippocampus maintains neither active
nor passive memory representations’’ (p. 332).

Human Event-Related Potential, or ERP, data of Banquet
and Grossberg (1987) supported the prediction that, during
an ART memory search, sequences of mismatch (Figure 3B),
arousal (Figure 3C) and reset (Figure 3D) events occur. These
events were interpreted in terms of properties of P120, N200 and
P300 ERPs, respectively, which, as predicted, occur together in
the predicted temporal order.

More recently, Brincat and Miller (2015) reported
neurophysiological data that support the distinction between
a category learning attentional system that includes prefrontal
cortex, and an orienting system that includes the hippocampus.
Their data from prefrontal cortex (PFC) and hippocampus
(HPC) in monkeys learning object-pair associations led them
to conclude (p. 576): ‘‘PFC spiking activity reflected learning
in parallel with behavioral performance, while HPC neurons
reflected feedback about whether trial-and-error guesses were

correct or incorrect. . .Rapid object associative learning may
occur in PFC, while HPC may guide neocortical plasticity by
signaling success or failure via oscillatory synchrony in different
frequency bands’’.

A second kind of memory consolidation occurs during
cognitive-emotional interactions. During this kind of
consolidation, after learning trials end, early vs. late
ablations of hippocampus, amygdala, orbitofrontal cortex
and thalamus can have different effects on the memory
consolidation process. Although this memory consolidation
process is not an explanatory target of the current article,
mechanistic explanations of this complex data pattern are
provided in Franklin and Grossberg (2017), along with
computer simulations of the main properties of these
consolidation data. These explanations also suggest a role
for neuromodulation by describing how brain-derived
neurotrophic factor, or BDNF, abets the memory consolidation
process. This model is accordingly called the neurotrophic
Spectrally Timed ART, or nSTART, model due to the

FIGURE 4 | The neurotrophic START, or nSTART, macrocircuit is formed from parallel and interconencted networks that support both delay and trace conditioing.
Connectivity between thalamus and sensory cortex includes pathways from the amygdala and hippocampus (HPC), as does connectivity between sensory cortex
and prefrontal cortex (PFC), specifically orbitofrontal cortex. These circuits are homologous. Hence the model lumps the thalamus and sensory cortex together and
simulates only sensory cortical dynamics. Multiple types of learning and neurotrophic mechanisms of memory consolidation cooperate in these circuits to generate
adaptively timed responses. Connections from sensory cortex to orbitofrontal cortex support category learning. Reciprocal connections from orbitofrontal cortex to
sensory cortex support attention. Habituative transmitter gates modulate excitatory conductances at all processing stages. Connections from sensory cortex to
amygdala support conditioned reinforcer learning. Connections from amygdala to orbitofrontal cortex support incentive motivation learning. Hippocampal adaptive
timing and BDNF bridge temporal delays between conditioned stimuli (CS) offset and unconditioned stimuli (US) onset during trace conditioning acquisition. BDNF
also supports long-term memory consolidation within sensory cortex to hippocampal pathways and from hippocampal to orbitofrontal pathways. The pontine nuclei
serve as a final common pathway for reading-out conditioned responses. Cerebellar dynamics are not simulated in nSTART. Key: arrowhead = excitatory synapse;
hemidisc = adaptive weight; square = habituative transmitter gate; square followed by a hemidisc = habituative transmitter gate followed by an adaptive weight
(reprinted with permission from Franklin and Grossberg, 2017).
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simulated role of BDNF in the memory consolidation process
(Figure 4).

The process of Spectral Timing that is part of the nSTART
name models how the hippocampus can bridge temporal gaps,
that are often hundreds of milliseconds long, between the
stimuli that are being associated through learning. Such temporal
gaps between conditioned stimuli (CSs) and unconditioned
stimuli (USs) occur during trace conditioning and delayed-non-
match-to-sample, among other experimental paradigms. The
hippocampus uses Spectral Timing to bridge these temporal gaps
in an adaptively timed way that can be tuned to match the
interstimulus interval between the stimuli being associated. The
nSTART model, and the START model before it (Grossberg
and Schmajuk, 1989; Grossberg and Merrill, 1992, 1996; Fiala
et al., 1996), posited a critical role for the metabotropic
glutamate receptor, or mGLuR, system in defining the spectra
that bridge these long temporal gaps. nSTART further proposes
how learning of this temporal bridge is modulated by BDNF
(Figure 4).

In summary, ART proposes that two types of memory
consolidation can occur: One uses cortico-hippocampal
interactions to enable category learning to occur, and to
achieve direct access, without hippocampal involvement, to
familiar recognition categories after they are learned. The other
strengthens partially learned recognition categories and other
learned associations during cognitive-emotional interactions
using the ability of the hippocampus to bridge temporal gaps and
to thereby provide modulatory support for the consolidation of
these learning processes.

4. ACETYLCHOLINE
NEUROMODULATION IN VIGILANCE
CONTROL

Since the concept of vigilance control was first mathematically
described and simulated by Carpenter and Grossberg (1987),
quite a bit of new modeling and data have been published that
support and refine ART predictions about how vigilance may be
regulated in the brain. In particular, neuromodulation by ACh
seems to play a major role in vigilance control through brain
regions like the nucleus basalis (NB) of Meynert (Grossberg and
Versace, 2008; Palma et al., 2012a,b). More will be said about how
this is proposed to work in Section 8.

5. HIGH OR LOW VIGILANCE INFLUENCE
AUTISM OR AMNESIA SYMPTOMS:
VIGILANCE DISEASES

It has also been predicted that vigilance cannot dynamically
adjust itself sufficiently in some individuals to flexibly respond
to task demands, leading to problems of attention, learning,
and recognition. Grossberg and Seidman (2006) have, for
example, proposed that various individuals with autism have
their vigilance stuck at an abnormally high value, leading to the
learning of abnormally concrete and hyperspecific recognition
categories, as well as to a correspondingly narrow focus of

attention. Indeed, the imbalanced Spectrally Timed ART, or
iSTART, model of Grossberg and Seidman (2006) proposes that
hypervigilance leads to hyperspecific learning.

Psychophysical experiments have successfully tested the
prediction about hyperspecific recognition and attention in
high-functioning autistic individuals (Church et al., 2010;
Vladusich et al., 2010). It is also known that there is abnormal
cholinergic activity in the parietal and frontal cortices of autistic
individuals that is correlated with abnormalities in the nucleus
basalis (Perry et al., 2001), consistent with the predicted role of
the nucleus basalis and ACh in regulating vigilance.

Low vigilance has been predicted to occur in various
individuals with medial temporal amnesia. Abnormal ACh
modulation could, in principle, cause this problem as well. It
remains to more thoroughly study how ACh dynamics may be
impaired in autistic and amnesic individuals.

Even if AChmodulation is normal, a hippocampal lesion may
damage or eliminate the orienting system during the cortico-
hippocampal interactions that control resonance and reset in
Figure 3. If mismatch-mediated reset and memory search are
prevented, the ability to learn new categories will be degraded.
Such a hippocampal lesion that eliminates reset would, in effect,
reduce vigilance to zero. Any category learning that can occur
without mismatch-mediated reset and memory search would
only form very general categories.

Carpenter and Grossberg (1993) and Grossberg (2013) have
noted how such a disruption of memory search when the model
hippocampus is ablated can qualitatively explain quite a few
data about medial temporal amnesia. These properties include
unlimited anterograde amnesia because memory search is no
longer possible; limited retrograde amnesia because memory
search is no longer needed after category memories consolidate
and direct access to them occur; and difficulties in orienting to
novel cues, perseveration, and a failure of recombinant context-
sensitive processing because a mismatch-mediated reset is no
longer possible.

Differential learning by amnesics and normal individuals
has been reported on easy vs. demanding categorization
tasks. Knowlton and Squire (1993) have shown that amnesic
subjects and normal subjects perform equally well on easy
categorization tasks, but amnesic subjects perform far worse on
more demanding tasks. Knowlton and Squire (1993) surmised
from their data that two separate memory systems exist. In
contrast, Zaki et al. (2003) quantitatively fit the Knowlton
and Squire data with a single exemplar-based model whose
sensitivity parameter was chosen lower for amnesics than for
normal subjects. This exemplar model is usually expressed in
terms of formal algebraic equations that implicitly use non-local
interactions to compute its most important equations. Amis et al.
(2009) have shown that the Zaki et al. (2003) exemplar model
may, in fact, be interpreted as a real-time dynamical process
undergoing only locally defined interactions. This dynamical
process computes learned prototypes of top-down expectations
that strikingly resemble ART processes. With this comparison
in mind, it can be shown that a low sensitivity parameter c in
the exemplar model (see their equation (4)) plays a role similar
to that played by a low vigilance parameter ρ in an ART model
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that can be caused by ablation of the ART orienting system in
Figure 3.

Combining these several types of experimental paradigms
described in Sections 2.6–2.8 should enable a deeper mechanistic
understanding to be achieved. This will be particularly the case
when the predicted role of ACh in vigilance control, as explained
in the following sections, is also included.

6. HIPPOCAMPAL FUNCTIONS: SPACE,
TIME, NOVELTY, CONSOLIDATION
AND EPISODIC LEARNING

The ART models that are summarized above explain how
more than one hippocampal process may be disrupted by a
hippocampal lesion during the memory consolidation process.
In particular, hippocampal ablation can interfere with both
novelty-sensitive memory search that helps to discover and learn
better-matching categories, and adaptively timed maintenance
of resonances that can support learning between stimuli that
are separated in time. Both of these processes were included in
STARTmodel circuit (Grossberg and Schmajuk, 1989; Grossberg
and Merrill, 1992, 1996), but without the enhancements that
have enabled the nSTART model (Franklin and Grossberg,
2017) to simulate a more complete set of data about how early
vs. late lesions of hippocampus, amygdala, orbitofrontal cortex
and thalamus alter memory consolidation after delay and trace
conditioning.

Franklin and Grossberg (2017) also review other functional
roles that are played by the hippocampus in vivo, including
critical role for the hippocampus in spatial navigation through
interactions between entorhinal grid cells and hippocampal
place cells. The hippocampus hereby illustrates an issue that
is confronted whenever one studies how a given brain region
works: Why does each brain region support a particular
combination of processes, rather than a different one? How
do these processes interact in a way that makes functional
sense of the fact that they all take place within the same brain
region? Recent modeling articles about how grid and place cells
may develop clarify why this is the case; e.g., Grossberg and
Pilly (2012, 2014) and Pilly and Grossberg (2012, 2013, 2014)
by noting, in particular, how homologous circuits in parallel
entorhinal-hippocampal streams may give rise to maintenance of
adaptively-timed motivated attention on the one hand (spectral
timing) via the lateral entorhinal-hippocampal cortical stream,
and spatial navigation using grid cells and place cells on the other
(spectral spacing) via themedial entorhinal-hippocampal cortical
stream.

7. LAMINAR NEOCORTICAL ART
CIRCUITS: 3D LAMINART, cARTWORD
AND LIST PARSE

A finer understanding of how vigilance is proposed to work is
achieved in ART models that are realized by laminar neocortical
circuits with spiking neurons. These and related modeling
developments are mentioned here to illustrate the generality of
the conclusions below about ACh-modulated vigilance control

in laminar neocortical circuits, in both normal and abnormal
brains.

The modeling of how ART mechanisms may be embodied
within known laminar microcircuits of the cerebral cortex
began in Grossberg (1999). This laminar version of ART is
called LAMINART (Figure 5). The LAMINART embedding
is not a mere relabeling of the previous ART theory. Rather,
this unlumping of the previous non-laminar ART model
resolved a long-standing conceptual problem and enabled the
explanation and prediction of much more psychological and
brain data. See Grossberg (2013; sections 26 and 27) for a
review. In so doing, it unified two major streams of research
activity:

(1) ART as a theory of category learning and prediction.
As reviewed above, this stream emphasized bottom-up
and top-down interactions during the learning of visual
recognition categories by higher-level cortical circuits such
as cortical areas V4, inferotemporal cortex and PFC;

(2) FACADE (Form-And-Color-And-DEpth) as a theory of 3D
vision and figure-ground perception (e.g., Grossberg, 1994,
1997; Grossberg and McLoughlin, 1997; Grossberg et al.,
2007). This stream emphasized bottom-up and horizontal
interactions for completion of boundaries during perceptual
grouping, and for filling-in of surface brightness and
color by lower cortical processing areas such as V1, V2
and V4.

The unification of these two research streams in LAMINART
proposed how all neocortical areas combine bottom-up,
horizontal, and top-down interactions, thereby clarifying in all
granular neocortical areas functional roles for the identified cells
in the six main cell layers of such cortices (Felleman and Van
Essen, 1991). It was also shown how this shared laminar circuit
design may be specialized to carry out qualitatively different
kinds of biological intelligence, and used them to explain and
predict psychological and neurobiological data about vision,
speech and cognition:

• Vision. 3D LAMINART integrates bottom-up and
horizontal processes of 3D boundary formation and
perceptual grouping, surface filling-in, and figure-
ground separation with top-down attentional matching
in cortical areas such as V1, V2 and V4 (e.g., Grossberg
and Howe, 2003; Grossberg and Swaminathan, 2004; Cao
and Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh,
2005; Grossberg et al., 2008b; Fang and Grossberg, 2009;
Léveillé et al., 2010).
• Speech. cARTWORD models how bottom-up, horizontal
and top-down interactions within a hierarchy of laminar
cortical processing stages, modulated by the basal ganglia,
can generate a conscious speech percept that is embodied
by a resonant wave of activation that occurs between
acoustic features, item chunks and list chunks (Grossberg
and Kazerounian, 2011; Kazerounian and Grossberg, 2014).
Chunk-mediated gating via the basal ganglia allows speech
to be heard in the correct temporal order, even when what
is consciously heard depends upon using future context
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FIGURE 5 | The LAMINART model clarifies how bottom-up, horizontal and
top-down interactions within and across cortical layers in V1 and V2 interblob
and pale stripe regions, respectively, carry out bottom-up adaptive filtering,
horizontal grouping, and top-down attention. Similar interactions seem to
occur in all six-layered cortices. Inhibitory interneurons are shown filled-in
black. (A) The lateral geniculate nucleus (LGN) provides bottom-up activation
to layer 4 via two routes. Firstly, it makes a strong connection directly into layer
4. Secondly, LGN axons send collaterals into layer 6, and thereby also activate
layer 4 via the 6→4 on-center off-surround path. Thus, the combined effect of
the bottom-up LGN pathways is to stimulate layer 4 via an on-center
off-surround, which provides divisive contrast normalization (Grossberg, 1973,
1980; Heeger, 1992) of layer 4 cell responses. (B) Folded feedback carries
attentional signals from higher cortex into layer 4 of V1, via the modulatory
6→4 path. Corticocortical feedback axons tend preferentially to originate in
layer 6 of the higher area and to terminate in the lower cortex’s layer 1 (Salin
and Bullier, 1995, p.110), where they can excite the apical dendrites of layer
5 pyramidal cells whose axons send collaterals into layer 6 (the triangle in the
figure represents such a layer 5 pyramidal cell). Several other routes through
which feedback can pass into V1 layer 6 also exist. Having arrived in layer 6,
the feedback is then “folded” back up into the feedforward stream by passing
through the 6→4 on-center off-surround path (Bullier et al., 1996). Although
the off-surround is drawn as a feedforward circuit, for simplicity, the inhibitory
interneurons actually inhibit one another as well to form a self-normalizing
recurrent circuit. This property is needed to make the circuit work properly, as
well as to explain sleep Up and Down state properties, as described in
Section 11. (C) Connecting the 6→4 on-center off-surround to the layer
2/3 grouping circuit: Like-oriented layer 4 simple cells with opposite contrast
polarities compete (not shown) before generating half-wave rectified outputs
that converge onto layer 2/3 complex cells in the column above them. Just like
attentional signals from higher cortex, groupings that form within layer 2/3 also
send activation into the folded feedback path, to enhance their own positions
in layer 4 beneath them via the 6→4 on-center, and to suppress input to other
groupings via the 6→4 off-surround. The layer 6-to-4 circuit thus realizes a
decision interface at which pre-attentive groupings and top-down attention
cooperate and compete to determine a consensus decision. There exist direct
layer 2/3→6 connections in macaque V1, as well as indirect routes via layer 5.

(Continued)

FIGURE 5 | Continued
(D) Top-down corticogeniculate feedback from V1 layer 6 to LGN also has an
on-center off-surround anatomy, similar to the 6→4 path. The on-center
feedback selectively enhances LGN cells that are consistent with the
activation that they cause (Sillito et al., 1994), and the off-surround contributes
to length-sensitive (endstopped) responses that facilitate grouping
perpendicular to line ends. (E) The entire V1/V2 circuit: V2 repeats the laminar
pattern of V1 circuitry, but at a larger spatial scale. In particular, the horizontal
layer 2/3 connections have a longer range in V2, allowing above-threshold
perceptual groupings between more widely spaced inducing stimuli to form
(Amir et al., 1993). V1 layer 2/3 projects up to V2 layers 6 and 4, just as LGN
projects to layers 6 and 4 of V1. Higher cortical areas send feedback into
V2 which ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1
(Sandell and Schiller, 1982). Feedback paths from higher cortical areas
straight into V1 (not shown) can complement and enhance feedback from
V2 into V1 (reprinted with permission from Raizada and Grossberg, 2001).

to disambiguate noise-occluded sounds, as occurs during
phonemic restoration.
• Cognition. LIST PARSE models how bottom-up, horizontal,
and top-down interactions within the laminar circuits of
lateral PFC may carry out working memory storage of event
sequences within layers 6 and 4, unitization of these event
sequences through learning of list, or sequence, categories
within layer 2/3, and recall of the stored sequences at variable
rates that are under volitional control by the basal ganglia
(Grossberg and Pearson, 2008). In particular, the model uses
variations of the same circuitry to quantitatively simulate
human cognitive data about immediate serial recall and
immediate, delayed, and continuous distractor free recall;
and monkey neurophysiological data from the PFC obtained
during sequential sensory-motor imitation and planned
performance.

8. SMART: ACh VIGILANCE CONTROL
IN LAMINAR CORTICAL ART MODELS
WITH SPIKING NEURONS

8.1. From Rate-Based to Spiking ART
Models
The LAMINART model was developed in articles such as
Grossberg and Raizada (2000) and Raizada and Grossberg (2001)
to simulate psychological and neurobiological data about 2D
visual perception using rate-based neurons. 3D LAMINART
unlumped, and generalized, these analyses to the perception of
objects in depth. LAMINART was also unlumped in another
direction by the Synchronous Matching ART, or SMART, model
(Figure 6; Grossberg and Versace, 2008; Grossberg et al., 2016)
wherein rate-based neurons were replaced with spiking neurons,
among other refinements.

The SMART model predicted that vigilance is controlled
by modifying the excitability of cortical layer 5 cells using
acetylcholine (ACh) that is released there in response
to mismatch events (Figure 7). The anatomical pathway
leading to ACh release has been clarified by anatomical and
neurophysiological studies in monkeys, cats and rats. These
studies show that the nonspecific thalamus—in particular, the
midline and central lateral thalamic nuclei—are sensitive to the

Frontiers in Neural Circuits | www.frontiersin.org 10 November 2017 | Volume 11 | Article 82

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Grossberg Acetylcholine and Vigilance in ART

FIGURE 6 | The Synchronous Matching ART, or SMART, model clarifies how laminar neocortical circuits in multiple cortical areas interact with specific and
nonspecific thalamic nuclei to regulate learning on multiple organizational levels, ranging from spikes to cognitive dynamics. The thalamus is subdivided into specific
first-order and second-order nuclei, nonspecific nucleus, and thalamic reticular nucleus (TRN). The first-order thalamic matrix cells (shown as an open ring) provide
nonspecific excitatory priming to layer 1 in response to bottom-up input, priming layer 5 cells and allowing them to respond to layer 2/3 input. This allows layer 5 to
close the intracortical loop and activate the pulvinar (PULV). V1 layer 4 receives inputs from two parallel bottom-up thalamocortical pathways: a direct
LGN→4 excitatory input, and a 6I

→4 modulatory on-center, off-surround network that contrast-normalizes the pattern of layer 4 activation via the recurrent
4→2/3→5→6I

→4 loop. V1 activates the bottom-up V1→V2 corticocortical pathways from V1 layer 2/3 to V2 layers 6I and 4, as well as the bottom-up
corticothalamocortical pathway from V1 layer 5 to the PULV, which projects to V2 layers 6I and 4. In V2, as in V1, the layer 6I

→4 pathway provides divisive contrast
normalization to V2 layer 4 cells. Corticocortical feedback from V2 layer 6II reaches V1 layer 1, where it activates apical dendrites of layer 5 cells. Layer 5 cells, in turn,
activate the modulatory 6I

→4 pathway in V1, which projects a V1 top-down expectation to the LGN. TRN cells of the two thalamic sectors are linked via gap
junctions, which synchronize activation across the two thalamocortical sectors when processing bottom-up stimuli. The nonspecific thalamic nucleus receives
convergent bottom-up excitatory input from specific thalamic nuclei and inhibition from the TRN, and projects to layer 1 of the laminar cortical circuit, where it
regulates mismatch-activated reset and hypothesis testing in the cortical circuit. Corticocortical feedback connections from layer 6II of the higher cortical area
terminate in layer 1 of the lower cortical area, whereas corticothalamic feedback from layer 6II terminates in its specific thalamus and on the TRN. This
corticothalamic feedback is matched against bottom-up input in the specific thalamus (reprinted with permission from Grossberg and Versace, 2008).

degree of mismatch (Figures 6, 7), and project to the cholinergic
nucleus basalis of Meynert (Figure 7; Van der Werf et al.,
2002) which, in turn, is one of the main sources of cholinergic
innervation to layer 5 of the cerebral cortex.

How ACh may influence vigilance is illustrated by
experiments of Saar et al. (2001), who have shown that
ACh release reduces the after-hyperpolarization (AHP) current
and increases cell excitability in cortical layer 5 cortical cells.
In SMART, this increased layer 5 excitability due to predictive
mismatch may cause reset via the layer 5-to-6I-to-4 circuit
(Figures 6, 7), even in cases where top-down feedback may
earlier have sufficiently matched bottom-up input, which is a key
property of vigilance control. An increase of ACh might hereby
trigger a search for finer recognition categories in response to
environmental feedback, even when bottom-up and top-down
signals have a pretty good match in the nonspecific thalamus
based on similarity alone.

8.2. Match-Induced Gamma Oscillations
and Mismatch-Induced Beta Oscillations
Grossberg and Versace (2008) used the SMART model to
make other predictions that are related to the ACh-modulated
vigilance prediction, and that may be combined with it to
design new kinds of experimental tests. In particular, within
SMART, a good enough top-down attentive match with a
bottom-up feature pattern yields (faster) gamma oscillations,
whereas a big enough mismatch-and-reset yields (slower) beta
oscillations. The model also predicts how the mismatch is
triggered in deeper layers of cortex (Figure 7B) before the reset
can reorganize processing in all the cortical layers (Figure 7C).
Both types of oscillations are emergent properties of network
dynamics.

Grossberg (2013, Section 38) reviews the fact that this
predicted match–mismatch gamma–beta dichotomy has

Frontiers in Neural Circuits | www.frontiersin.org 11 November 2017 | Volume 11 | Article 82

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Grossberg Acetylcholine and Vigilance in ART

FIGURE 7 | The large shaded gray arrows in the figure indicate the SMART pathways involved in the generation of the (A) AROUSAL burst, (B) RESET, (C) SEARCH
and (D), VIGILANCE control. See text for details (reprinted with permission from Grossberg and Versace, 2008).

subsequently been supported by neurophysiological experiments
from at least three laboratories recording in three different parts
of the brain. These reports include data about higher amounts
of average gamma in superficial cortical layers vs. more beta
(or alpha) power in deep cortical layers of cortical area V1
(Buffalo et al., 2011), beta synchronized with spatial attention
shifts in the frontal eye fields (Buschman and Miller, 2009), and
an inverted-U in beta power through time during learning of
place cells in hippocampus during the navigation of novel spatial
environments (Berke et al., 2008). Combining the gamma-beta
prediction with the ACh-vigilance prediction suggests that an
ACh-modulated increase of vigilance will, other things being
equal, reduce the amount of gamma relative to beta power
by increasing the number of mismatch reset events per unit
time.

The match–mismatch gamma–beta prediction can also be
tested by redoing the experiments of Spitzer et al. (1988)

in which neurophysiological data are recorded from cortical
area V4 during the learning by monkeys of easy vs. difficult
discriminations. These authors report that ‘‘in the difficult
condition, the animals adopted a stricter internal criterion for
discriminating matching from non-matching stimuli. . . The
animal’s internal representations of the stimuli were better
separated. . . increased effort appeared to cause enhancement
of the responses and sharpened selectivity for attended
stimuli. . .’’ These are all properties of ART vigilance control,
where higher vigilance is needed to make more difficult
discriminations. These V4 effects could, for example, be due
to vigilance-modulated selective attention from inferotemporal
cortex (IT). Such object attention is focused via vigilance-
modulated top-down expectations that are learned along with
the bottom-up adaptive pathways that select IT recognition
categories. Other things being equal, one would expect to find
more beta power in the difficult than the easy discrimination
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condition. Direct activation of nucleus basalis or appropriate
ACh target neurons might also be expected to increase beta
power.

8.3. How ACh Modulates AHP Currents
in Spiking Networks to Regulate Vigilance
How does a reduction of AHP current by ACh increase
cell excitability in cortical layer 5 cortical cells (Saar et al.,
2001)? Many cortical networks contain recurrent on-center
off-surround networks that transform input patterns before
storing them in STM. A series of theorems in the 1970s
(e.g., Grossberg, 1973; Grossberg and Levine, 1975) proved
how the feedback signal functions in rate-based recurrent
on-center off-surround networks control this STM storage
process. In particular, sigmoid signal functions in such
networks induce a quenching threshold below which inputs
are suppressed as noise and above which they are contrast-
enhanced before being stored in STM. A sudden decrease
of the quenching threshold, other things being equal,
can cause a reset burst and thus act like an increase in
vigilance.

What action of ACh modulation could cause a sudden
decrease in quenching threshold? If a mismatch-mediated
burst of ACh suitably changes the shape of a sigmoid
signal function, say by decreasing its threshold and
increasing its slope, then that may decrease the quenching
threshold.

A sigmoid signal can be explicitly defined in a rate-based
neural network. In contrast, in an unlumped network
composed of spiking neurons, the shape of the signal
function is an emergent property of several factors that
interact together. Palma et al. (2012a,b) showed how
AHP currents that act on three different time scales can
together control sigmoid signal threshold and slope in
networks of spiking neurons. These properties clarify how
activation of ACh by basal forebrain circuits, notably
nucleus basalis of Meynert, may alter the brain’s sensitivity
to predictive mismatches, and thus the vigilance with which
the learning of recognition categories is modulated in the
brain.

These AHP currents are predominantly carried by calcium-
dependent potassium channels (Hotson and Prince, 1980;
Lancaster and Adams, 1986), but also partly by calcium-
independent potassium currents (Lorenzon and Foehring, 1992,
1995). In layer 5 Betz cells of cat sensorimotor cortex (Schwindt
et al., 1988) and pyramidal cells in layers 3–6 of human
neocortex (Lorenzon and Foehring, 1992) three distinct AHP
currents—a fast (fAHP), medium (mAHP), and slow current
(sAHP)—have been identified. Similar mAHP and sAHP
currents occur in rat slices (Storm, 1987, 1989; Lee et al., 2005).
How the different time courses of these AHP currents arise
has not been completely explained, but proximity to calcium
channels may be a key factor rather than the time constant of
calcium binding to the channels themselves (Lima and Marrion,
2007).

The Palma et al. (2012b) simulations demonstrated that,
in spiking neurons, a leftward threshold shift in the sigmoid

signal occurs when the sAHP and mAHP currents decrease, as
the fAHP current increases, whereas the slope of the transfer
function becomes steeper when the sAHP and fAHP currents
decrease, as the mAHP current increases. Both of these changes
can reduce the quenching threshold and thereby increase
vigilance.

9. SUSTAINED vs. TRANSIENT VIGILANCE
CONTROL BY ACh

Vigilance can change over multiple timescales, from the rapid
transients during pattern matching processes to the contextual
or task-based setting of baseline vigilance levels. That ACh
concentration transients can occur rapidly at the timescale
of a behavioral episode has been demonstrated in several
articles (e.g., Sarter et al., 2005; Parikh and Sarter, 2006; Parikh
et al., 2007). On slower timescales, ACh levels are known to
oscillate with circadian rhythms (Williams et al., 1994; Marrosu
et al., 1995; Crouzier et al., 2006), increase with caffeine
administration through its action as an adenosine receptor
antagonist (Carter et al., 1995; Kurokawa et al., 1996), and vary
in a task-dependent manner that correlates with attentional
demands as confirmed by microdialysis (Marrosu et al., 1995;
Arnold et al., 2002) and newer techniques (Parikh et al., 2007).
The variation of ACh levels with circadian rhythms are relevant
to the discussion in Section 11 of a link between ACh and
sleep.

These results are consistent with reports that basal forebrain
neurons, notably their cholinergic projections, are involved in
both tonic and phasic activations of the cerebral cortex, including
a close link between basal forebrain activity and the EEG (Détári
et al., 1999).

The largest fluctuations in vigilance may be expected during
tasks that require rapid learning of novel information in an ART
system. In this regard, it is known that activity of the nucleus
basalis of Meynert facilitates plasticity of cortical maps both
in primary auditory cortex (Kilgard and Merzenich, 1998) and
in motor cortex (Ramanathan et al., 2009). ART predicts that
the highest levels of vigilance, and consequently ACh, should
occur when incorporating novel exemplars into memory during
mismatch processing, while lower levels of AChmay be sufficient
to refine category representations during match episodes.
Correspondingly, studies of how scopolamine influences human
memory formation suggest that high levels of ACh promote
rapid encoding, whereas low levels of ACh support consolidation
(Rasch et al., 2006). Lowering ACh with scopolamine has also
been proposed to improve memory consolidation by preventing
possible interference with conflicting information (Winters
et al., 2007). Interference in both cases could be interpreted as
learning of categories that are too general for the more difficult
task.

10. ACh MODULATION OF LEARNED
CATEGORY GENERALITY THROUGH TIME

The baseline vigilance in ART sets the criterion for expectation
mismatch and novelty detection, and thereby indirectly
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determines learned category generality, with low baseline
vigilance favoring general, or abstract, categories and high
baseline vigilance more specific, or concrete, categories. General
categories may fail to discriminate when a task involves pattern
interference that may be due to featural overlap across categories.
Correspondingly, object discrimination studies in rats show that
scopolamine reduces the novelty discrimination ratio (Ballaz,
2009).

In this regard, other experiments also suggest that fluctuations
in cortical ACh are necessary for learning mainly when there is
featural overlap during perceptual categorization (Chiba et al.,
1995; Atri et al., 2004; Botly and De Rosa, 2007, 2009; Hata et al.,
2007; Winters et al., 2007), consistent with the ART prediction
that ACh can increase vigilance to achieve better categorical
separation.

For example, lesions in rats of the nucleus basalis of Meynert
have little impact on learning rate, except when high interference
can occur between the categories to be learned because they share
the same features in a certain dimension (Botly and De Rosa,
2007, 2009). Studies in humans also show that scopolamine, by
competitively binding muscarinic receptors, diminishes learning
of overlapping word pairs more than non-overlapping pairs
(Atri et al., 2004). Associative learning studies in rats with
combinations of light and tone report that the concentration
of released ACh increases more during discrimination learning
experiments in which an individual stimulus (A, e.g., light)
signals reward and a compound stimulus (AB, e.g., light +
tone) signals no reward, than during element discrimination, in
which one stimulus (A, e.g., light) signals reward and another
stimulus (B, e.g., tone) signals no reward (Hata et al., 2007).
Finally, donepezil, which increases cortical ACh by inhibiting its
degradation by Acetylcholinesterase (AChE), has been shown by
fMRI to reduce the expanse of response in V1 from a pulsating
visual stimulus (Silver et al., 2008). Taken together, these data
suggest that increased ACh, and with it better focused attention,
help to cause more selective categorical representations to form.

ACh release may also cause desynchronization between
cortical cells (Goard and Dan, 2009) in conjunction
with up-regulation of high gamma oscillations (Canolty
et al., 2006). Other experiments suggest that both this
desynchronization (Pandya et al., 2005) and gamma oscillation
regulation (Keizer et al., 2010) may be crucial for interference
learning. Further experiments would be needed to determine
if the desynchronization corresponds to predicted ART
mismatch-reset and beta oscillations in response to increased
ACh-modulated vigilance, followed by gamma oscillations
during the next match state.

Further experiments would also be needed to investigate
the following issue: How is the baseline vigilance determined
in environments that contain few novel events and/or easy
discriminations vs. in environments that contain many novel
events and/or difficult discriminations? One might imagine,
if baseline vigilance is at all sensitive to such environmental
statistical factors, that it increases in environments that include
many novel events and/or difficult discriminations. Such a
change in baseline vigilance could be achieved by a process of
automatic gain control. Here, each mismatch event would add to

a time-average of mismatch bursts (the ‘‘gain’’) that increments
the baseline vigilance when novelty and/or difficulty are high,
and decrements the baseline vigilance when novelty and/or
difficulty are low. Similar automatic gain control processes seem
to occur in many brain processes that respond to changing
environmental statistics. For example, automatic gain control can
speed up or slow down the speech processing rate in response to
the average rate of speech in different environments, and thereby
supports the learning of a rate-invariant code for language
meaning (Repp, 1980; Grossberg et al., 1997; Grossberg, 2017).

11. ACh, VIGILANCE, NUCLEUS BASALIS
AND SLOW WAVE SLEEP

11.1. Some Sleep Data
At the other end of the continuum from high vigilance and
environmentally-sensitive attention, learning, and recognition
are the complex phenomena that occur during sleep. A
full analysis of the complexities of sleep is not attempted
here. Rather, relevant sleep data are summarized to set the
stage for the proposal that specific properties of laminar
neocortical circuits that have been used to simulate data about
perception and cognition in awake individuals (Figures 5–7)
may also shed light on the dynamics of slow wave sleep. This
proposed connection suggests that these properties of sleep
may emerge from vigilance changes in the same model laminar
neocortical circuits that have successfully modeled various awake
behaviors.

Relevant sleep data include the following: Steriade (2004,
p. 179) has noted that: ‘‘Fast rhythms (20–60 Hz) appear
during the sustained depolarization of thalamic and neocortical
neurons during brain-active states that are accompanied by
increased release of ACh in the thalamus and cerebral
cortex. Such fast rhythms also occur during the depolarizing
phases of the slow oscillation (0.5–1 Hz) in non-REM
sleep. Intracellular recordings of neocortical neurons during
natural states of waking and sleep demonstrate stable and
increased input resistance of corticocortical and corticothalamic
neurons during the sustained depolarization in wakefulness,
compared to the depolarizing phase of the slow oscillation in
non-REM sleep. Despite the highly increased synaptic inputs
along different afferent systems that open many conductances
of cortical neurons during wakefulness, the increased input
resistance is attributed to the effect of ACh on cortical
neurons’’.

An earlier study of Metherate et al. (1992, p. 4701) reported
compatible data: ‘‘In the mammalian neocortex, the EEG
reflects the state of behavioral arousal. The EEG undergoes a
transformation, known as activation, during the transition from
sleep to waking. Abundant evidence indicates the involvement
of the neurotransmitter acetylcholine (ACh) in EEG activation;
however, the cellular basis of this involvement remains unclear.
We have used electrophysiological techniques with in vivo and
in vitro preparations to demonstrate actions of endogenous ACh
on neurons in auditory neocortex. In vivo stimulation of the
nucleus basalis (NB), a primary source of neocortical ACh:
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(1) elicited EEG activation via cortical muscarinic receptors;
(2) depolarized cortical neurons; and (3) produced a change
in subthreshold membrane potential fluctuations from large-
amplitude, slow (1–5 Hz) oscillations to low-amplitude, fast
(20–40 Hz) oscillations. The NB-mediated change in pattern
of membrane potential fluctuations resulted in a shift of spike
discharge pattern from phasic to tonic. Stimulation of afferents
in the in vitro neocortex elicited cholinergic actions on putative
layer 5 pyramidal neurons. Acting via muscarinic receptors,
endogenous ACh: (1) reduced slow, rhythmic burst discharge
and facilitated higher-frequency, single-spike discharge in burst-
generating neurons; and (2) facilitated the appearance and
magnitude of intrinsic membrane potential oscillations. These
in vivo and in vitro observations suggest that neocortical
activation results frommuscarinic modulation of intrinsic neural
oscillations and firing modes. . .’’

Further quantification of the role of basal forebrain ACh
release during wakefulness and sleep was provided by the study
of Vazquez and Baghdoyan (2001, p. R598) who reported that:
‘‘Cortical ACh release is greatest during waking and rapid
eye movement (REM) sleep and reduced during non-REM
(NREM) sleep. Loss of basal forebrain cholinergic neurons
contributes to sleep disruption and to the cognitive deficits
of many neurological disorders. ACh release within the basal
forebrain previously has not been quantified during sleep. This
study used in vivo microdialysis to test the hypothesis that
basal forebrain ACh release varies as a function of sleep and
waking. Cats were trained to sleep in a head-stable position, and
dialysis samples were collected during polygraphically defined
states of waking, NREM sleep, and REM sleep. Results from
22 experiments in four animals demonstrated that means ± SE
ACh release (pmol/10 min) was greatest during REM sleep
(0.77 ± 0.07), intermediate during waking (0.58 ± 0.03), and
lowest during NREM sleep (0.34 ± 0.01). . .’’. The fact that
ACh release was greater during REM sleep than wakefulness
is a reminder that conscious awareness does not depend only
on ACh modulation. Neural models describe some of the other
brain processes that are proposed to play a key role during
conscious awareness. For recent reviews, see Grossberg (2016,
2017).

More recent experiments provide further details confirming
the causal relationship between cholinergic neurons of the basal
forebrain and sleep homeostasis (e.g., Kalinchuk et al., 2015; Nair
et al., 2016).

11.2. Laminar Cortical Model Circuits Unify
Properties of Sleep and Awake Dynamics
This section and the next one describe how laminar cortical
ART models that provide a unified explanation in the awake
individual of processes of boundary completion, contrast
normalization, attentional modulation, decision-making,
activity-dependent habituation, and mismatch-mediated reset,
also exhibit properties of Up and Down states during slow
wave sleep. First some additional data about slow wave sleep are
reviewed before suggesting how theymay arise frommechanisms
that have earlier been characterized for the above processes in
awake individuals.

As noted above, NREM sleep often exhibits a slow <1 Hz
rhythm in the EEG that appears to have a cortical origin
(Steriade, 1991; Steriade et al., 1993a,b; Timofeev and Steriade,
1996; Sanchez-Vives and McCormick, 2000; Crunelli and
Hughes, 2010; Sanchez-Vives and Mattia, 2014). This slow
rhythm has been proposed to carry out multiple functions,
ranging from metabolic clearance from the brain (Xie et al.,
2013) to memory consolidation (Steriade and Timofeev, 2003;
Marshall et al., 2006; Franklin and Grossberg, 2017). Lesions
of the basal forebrain cholinergic nuclei, or pharmacological
block of muscarinic receptors, lead to such slow waves
throughout the neocortex (Buzsaki et al., 1988; Vanderwolf,
1988).

Slow wave generation in layer 5 (Calvet et al., 1973;
Ball et al., 1977; Rappelsberger et al., 1982) is supported by
bursting pyramidal cells in layer 5 that synchronize activity
across the neocortex (e.g., Connors, 1984; Chagnac-Amitai
and Connors, 1989; Silva et al., 1991; Wang and McCormick,
1993). Intrinsically bursting cells have also been reported in
layer 3 (Steriade et al., 1993a,b). In the transition from sleep
to wakefulness, this spontaneous burst firing is replaced by
the spike sequences that are frequency-modulated by input
intensities and related parameters. Livingstone and Hubel (1981)
have, for example, reported a marked increase in activity in
layers 5 and 6 during wakefulness as compared to during
sleep. This transition is supported by a significant increase in
the extracellular concentration of ACh (Szerb, 1967; Phillis,
1968).

An important property of the Up and Down states of
slow wave sleep is that, as Volgushev et al. (2006, p. 5671)
have observed: ‘‘all cells, excitatory as well as inhibitory, were
involved in the same slow rhythm, and we never observed
a cell to be systematically active while other neurons were
silent. . .high synchrony of the silent state onsets implies the
existence of a network mechanism that switches activity to
silence. . . This would lead to termination of activity of both
excitatory and inhibitory cells, including those cells that have
generated the silencing discharge’’. These authors go on to
review evidence that bursting neurons in layer 5 large pyramidal
cells initiate this activity cycle, and that fast-spiking inhibitory
interneurons have an early onset during the subsequent Up
and Down states. These dynamics are, moreover, due to
intracortical interactions that occur even when thalamic gates
do not permit the intrusion of signals from the outside world
during slow wave sleep (e.g., Steriade and Timofeev, 2003). An
intracortical origin for these slow waves is also supported by
their survival after extensive thalamic lesions (Steriade et al.,
1993b) and by the absence of slow waves in the thalamus
of decorticated cats (Timofeev and Steriade, 1996). In their
mean field model of the Up-Down cycle, Sanchez-Vives and
Mattia (2014) have also observed a role for ‘‘activity-dependent
fatigue’’ in regulating the relative duration of the Down
state.

In order to more fully understand how such properties of
slow wave sleep may arise, it is informative to link them to
laminar neocortical circuits that also play important functional
roles during the awake state. Ideally, many properties of slow
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wave sleep could then be shown to arise as natural emergent
properties of these cortical circuits, in just the same way that
their properties during awake states do. Such a connection will
be outlined below. This proposed link between awake and sleep
states also sheds some light on the following questions: Why
do not the bursts that occur during slow wave sleep cause
movement, let alone consciousness, especially given that layer
5 cells project to movement causing areas of the brain such as
the superior colliculus and spinal cord, as well as subcortical
targets such as the pontine nuclei (Wang andMcCormick, 1993)?
Multiple mechanisms may contribute to this result, but it is
shown here how a prescribed intracortical mechanism may also
play a role.

Several experimental and modeling studies have contributed
insights into the cellular mechanisms of slow wave sleep and
how it may transition to the waking state (e.g., Bazhenov et al.,
2002; Esser et al., 2009). These studies have not, however, tried
to connect their studies of sleep to laminar cortical models
that have been used to quantitatively simulate psychological
and neurophysiological data that have been collected during
awake behaviors. Such a connection is made here, and adds new
concepts and circuit mechanisms to this discussion. In particular,
these are network mechanisms that seem to be conserved in
multiple neocortical regions, and that can help to explain
synchronization and wave-like properties of slow wave sleep
across the neocortex (Massimini et al., 2004; Volgushev et al.,
2006).

11.3. Self-Normalizing Laminar Cortical
Circuits Balance Excitation and Inhibition
The discussion in this section will focus on the laminar
cortical circuits in the visual cortex that are modeled by the
LAMINART model, and its 3D LAMINART extension. Similar
laminar circuits, with suitable specializations, have been used
to simulate speech perception data using the cARTWORD
model, and data about cognitive working memory and list
chunking using the LIST PARSE model (Section 7). These
mechanisms thus seem to be conserved, albeit with suitable
specializations to carry out different psychological functions,
across at least the granular neocortex, with its characteristic
architecture of six layers of cells and their sublaminae, and the
characteristic bottom-up, top-down, and horizontal interactions
that enable their functional capabilities (Brodmann, 1909;
Martin, 1989).

Two kinds of interactions within layers 2/3 and 5/6 are of
special interest to the explanatory goals herein: Long-range
excitatory horizontal connections, and shorter-range
self-normalizing networks that balance excitatory and inhibitory
interactions. The long-range horizontal connections within
cortical layers 2/3 in LAMINART carry out the process of
boundary completion, also called perceptual grouping (e.g.,
Grossberg and Raizada, 2000; Raizada and Grossberg, 2001,
2003; Grossberg and Swaminathan, 2004; Grossberg and
Yazdanbakhsh, 2005; Fang and Grossberg, 2009; Léveillé
et al., 2010). In addition, perceptual grouping can support
a traveling wave in response to a spatial focus of attention
(Grossberg and Raizada, 2000, Figure 3; Roelfsema et al.,

1998). Shorter-range excitatory horizontal connections in
layers 2/3 and 5/6 carry out processes such as binocular fusion
(Grossberg and Howe, 2003, Figure 18). These features of cells
in cortical layers 2/3 and 5/6 take on new significance in the
context of sleep research for at least two reasons: (1) layers
3 and 5 contain intrinsically bursting neurons that may be
influenced by ACh modulation (Calvet et al., 1973; Ball et al.,
1977; Rappelsberger et al., 1982; Connors, 1984; Chagnac-
Amitai and Connors, 1989; Silva et al., 1991; Steriade et al.,
1993a,b; Wang and McCormick, 1993); (2) long-range excitatory
connections may help to both synchronize the ACh-modulated
slow waves within local cortical networks, and to facilitate
the propagation of these synchronous activations in traveling
waves across the cortex (Massimini et al., 2004; Volgushev et al.,
2006).

The networks with self-normalizing balanced excitatory and
recurrent inhibitory interneurons are at least as important from
the present perspective. They occur, with a similar design,
in both layers 2/3 and 5/6. In layers 2/3, they are part of
a larger circuit that also includes the long-range excitatory
horizontal connections. Figures 5C,E simplify the depiction of
the inhibition in layer 2/3 as a single inhibitory interneuron.
Together with the long-range horizontal connections, the
shorter-range recurrent inhibitory network helps to realize the
bipole property that enables perceptual grouping to occur in
the following way (Figure 8; Grossberg, 1984a; von der Heydt
et al., 1984; Grossberg and Mingolla, 1985; Peterhans and von
der Heydt, 1989).

In Figure 8A, a single pac man figure (in black) induces
a boundary representation using simple and complex cells in
cortical area V1 whose orientation preferences are the same
as, or similar to, those of the pac man’s bounding contour.
This boundary representation activates long-range excitatory
horizontal connections in layer 2/3 of cortical area V2. Excitatory
signals in these horizontal connections also excite inhibitory
interneurons on their way to target cells in layer 2/3. The
inhibition from the disynaptic inhibitory interneurons balances
the excitation from the long-range horizontal connection,
thereby preventing the target cell from firing. It is a case of one-
against-one. By this mechanism, a single contrast in an image is
prevented from creating outwardly spreading boundaries across
the entire image.

In Figure 8B, two like-oriented pac man figures are aligned
across space, and are sufficiently near one another to complete
a boundary between them. In this case, the excitatory signals
from their long-range horizontal connections summate at
the target cell. The disynaptic inhibitory signals from the
inhibitory interneurons also summate there. Why, then, does
not the total inhibition again cancel the total excitation?
This is because—and this is the main point—the inhibitory
interneurons also inhibit each other to form a recurrent lateral
inhibitory network. It was mathematically proved in Grossberg
(1973; see also Grossberg, 1980) that, if the inhibitory cells
in such a recurrent network obey the membrane equations
of neurophysiology—also called shunting dynamics—then their
total activity tends to be normalized, and independent of the
number of active inhibitory cells. Thus, although the total
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excitation increases, the total inhibition does not. It is a case
of two-against-one, so excitation wins and the boundary can
form.

Layers 5/6 also include the same kind of recurrent
self-normalizing circuit. This kind of circuit, in fact, seems to
occur in many parts of the neocortex. In Figures 5A–C,E, these
inhibitory interneurons are drawn as a feedforward network,

FIGURE 8 | Summary of boundary completion dynamics in layer 2/3.
Pyramidal cells with collinear, coaxial receptive fields (shown as ovals) excite
each other via long-range horizontal axons (Bosking et al., 1997; Schmidt
et al., 1997), which also give rise to short-range, disynaptic inhibition via pools
of interneurons, shown filled-in black (McGuire et al., 1991). This balance of
excitation and inhibition helps to implement the bipole property: (A) Horizontal
input coming in from just one side is insufficient to cause above-threshold
excitation in a pyramidal cell (henceforth referred to as the target) whose
receptive field does not itself receive any bottom-up input. The inducing
stimulus (e.g., a Kanizsa pac man, shown here) excites the oriented receptive
fields of layer 2/3 cells, which send out long-range horizontal excitation onto
the target pyramidal cell. However, this excitation brings with it a balanced
amount of disynaptic inhibition. This creates a case of “one-against-one”, and
the target pyramidal is not excited above threshold. The boundary
representation of the solitary pac man inducer produces only weak,
subthreshold collinear extensions (thin dashed lines). (B) When two collinearly
aligned inducing stimuli are present, one on each side of the target pyramidal
cell’s receptive field, a boundary grouping can form. Long-range excitatory
inputs from both sides summate. However, these inputs activate a shared
pool of inhibitory interneurons, which, as well as inhibiting the target
pyramidal, also inhibit each other (Tamás et al., 1998), thus normalizing the
total amount of inhibition emanating from the interneuron pool, without any
individual interneuron saturating. Summating excitation and normalizing
inhibition together create a case of “two-against-one”, and the target
pyramidal is excited above threshold. This process occurs along the whole
boundary grouping, which thereby becomes represented by a line of
suprathreshold layer 2/3 cells (thick dotted line). Boundary strength scales in a
graded analog manner with the strength of the inducing signals (reprinted with
permission from Raizada and Grossberg, 2001).

for simplicity. In actuality, they also inhibit each other in the
LAMINART model, thereby creating self-normalizing total
inhibition. This property helps to ensure properties in the adult
of contrast normalization, attentional modulation, decision-
making, activity-dependent habituation, and mismatch-
mediated reset in a wide variety of visual processes (e.g., Francis
et al., 1994; Francis and Grossberg, 1996; Grossberg, 2003, 2016;
Cao and Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh,
2005; Grossberg and Pilly, 2008; Grossberg and Versace, 2008).

11.4. Why Are Self-Normalizing Circuits
Needed?
The need for such self-normalizing inhibition can be understood
by considering Figure 5A. Here, the network from layer 6-to-
4 is supposed to create a modulatory on-center as part of the
on-center off-surround network that inputs to layer 4. Such a
modulatory on-center requires that excitatory and inhibitory
inputs are approximately equal, or balanced, to the on-center
cells. The lateral geniculate nucleus (LGN) is able to fire target
cells in layer 4 by also activating a direct LGN-to-4 excitatory
pathway. The indirect LGN-to-6-to-4 is not useless, however.
The direct LGN-to-4 pathway, combined with the LGN-to-
6-to-4 network, can both activate and contrast-normalize the
inputs to layer 4 cells in response to input patterns from
the LGN.

Why is the combination of a direct LGN-to-4 network and
a modulatory on-center off-surround network from LGN-to-
6-to-4 needed? Why could not the LGN-to-6-to-4 network
be designed so that its excitatory on-center could, all by
itself, fire target layer 4 cells, thereby eliminating the need
for a separate LGN-to-4 pathway? This can be understood
by considering how the modulatory on-center in the 6-
to-4 network helps to realize top-down attention via the
ART Matching Rule in Figure 5B. As noted in Section
2.2, the ART Matching Rule asserts that top-down object
attention is achieved using a top-down, modulatory on-center,
off-surround network in order to achieve stable learning and
memory. The excitation and inhibition in the on-center of
the layer 6-to-4 network thus need to be approximately
balanced. This constraint clarifies the need for a direct
LGN-to-4 pathway that is sufficient to fire target layer
4 cells.

11.5. Recurrent Off-Surround Normalizes
Cell Responses to Converging Sources
The above considerations explain why the layer 6-to-4 on-center
is modulatory, but not why the off-surround needs to be a
recurrent inhibitory network. The main design constraint that
forces recurrence is that the modulatory requirement must
be maintained both when multiple input sources contribute
simultaneously to the total top-down attentional priming signal,
or to the total bottom-up feature pattern. Under these variable
load conditions, the modulatory requirement would fail if
the inhibitory network was feedforward. In particular, if the
total activity of off-surround cells grew proportionally with
the number of cells inputting to it, then the excitatory inputs
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to the on-center would be overwhelmed. Self-normalization
of total inhibition by the recurrent inhibitory network, no
matter how many input sources are active, solves this
problem.

Balancing excitation and inhibition in these circuits achieves
several other useful functional roles. For starters, it helps to
avoid seizures that could result if excitation was too much
stronger than inhibition, or persistent depression if inhibition
was too much stronger than excitation. Such a balance also
maintains the cortex at a ‘‘cusp of excitability’’ wherein
enough activation occurs to maintain homeostatic plasticity
without triggering undesired behavioral consequences, while
also enabling the cortex to respond efficiently and vigorously
to external inputs when they do occur. Indeed, the laminar
cortical model of Grossberg and Williamson (2001) showed
how the desired balance of excitation and inhibition could
develop for carrying out bipole grouping circuits in layers
2/3 and contrast-normalizing attentional modulation in layers
6-to-4. These developed circuits were then used in that article
and subsequent ones (e.g., Grossberg and Raizada, 2000;
Raizada and Grossberg, 2001) to simulate a wide range of
psychophysical and neurophysiological data about adult visual
perception and attention, thereby showing how LAMINART
models can provide a unified explanation of data about
both cortical development and adult attention and visual
perception.

It is also worth noting that a recurrent inhibitory network is
probably easier to grow during development than a feedforward
network, since inhibitory connections can then grow to all
nearby cells, both excitatory and inhibitory, not just to
excitatory cells.

11.6. From Grouping and Attention to Up
and Down States during Slow Wave Sleep
These recurrent inhibitory circuits naturally lead to properties
of Up and Down states during slow wave sleep (Steriade et al.,
1993b; Timofeev and Steriade, 1996; Steriade and Timofeev,
2003; Volgushev et al., 2006), including the fast reaction of
inhibitory interneurons, and the silencing of both excitatory
and inhibitory neurons during the Down state. The simplest
version of such a recurrent inhibitory circuit between layers
6 and 4 also includes ACh-modulated inputs from layer 5 cells
(see Figure 7D) that intermittently burst during slow wave sleep
(Figure 9).

The analysis herein does not explicitly model how layer
5 cells generate intermittent bursts during slow wave sleep as
a result of ACh down-regulation, among other factors. Other
modeling articles make proposals about how this may happen;
e.g., Bazhenov et al. (2002) and Esser et al. (2009). Given such
a excitatory burst emanating from the layer 5 cell in Figure 9,
the burst inputs to both the on-center and the off-surround of
the network. If the inhibitory interneurons obey dynamics of fast
spiking cells, they may thus begin to be activated a little before
the excitatory on-center cells. Despite such a brief advantage, the
on-center cells can nonetheless begin to fire before signals from
the inhibitory interneurons can take effect at the on-center, due

to the extra stage of axonal delay in the off-surround anatomy.
This period of on-center activation is an Up state.

This Up state is transient, however, due to the transient
nature of the layer 5 excitatory input burst, combined with
the balanced total excitatory and inhibitory inputs to the on-
center. When the inhibitory interneuronal signals take effect
at the on-center cells, the on-center cells will be completely
inhibited due to this balance. As the on-center cells are
inhibited, so too will the inhibitory interneurons by the recurrent
inhibitory feedback that they deliver to each other. When both
on-center and off-surround cells are silenced, a Down state is
created.

Another relevant factor is that the layer 6-to-4 connections
in the LAMINART model are gated by activity-dependent
habituative transmitters. These habituating gates help to explain
many data, ranging from data about visual persistence (Francis
et al., 1994; Francis and Grossberg, 1996) to mismatch-mediated
reset (Grossberg, 1976; Grossberg and Versace, 2008). In the case
of slow wave sleep, such habituation may influence the duration
of the Down state (Sanchez-Vives and Mattia, 2014).

11.7. Towards Unified Models of Circadian
Rhythms, Sleep, Memory Consolidation
and Awake Cognitive-Emotional Behaviors
A great deal more modeling needs to be done to characterize
the quantitative properties of the proposed network substrate
in Figure 9 of Up and Down states during slow wave
sleep. For the present, the most important fact is that this
proposal uses the same laminar cortical networks that have also
been used to quantitatively simulate many data about cortical
development, perception, and cognition in awake individuals.
This linkage raises new and fascinating questions. For example,

FIGURE 9 | Balanced on-center excitation and total off-surround inhibition are
due to self-normalization of total activity by the recurrent off-surround shunting
network. This model circuit in cortical layers 4, 5 and 6 is intermittently
activated by ACh-modulated bursts from cells in layer 5. The text clarifies how
its dynamics capture key properties of Up and Down states during slow wave
sleep. Open circles, excitatory cells; closed disks, inhibitory cells.
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the same modulatory on-center, off-surround network in layers
6-to-4 that is used in Figure 9 to qualitatively describe
some properties of Up and Down states has also been used
to explain and quantitatively simulate many data in awake
animals and humans about contrast normalization, attentional
modulation, decision-making, activity-dependent habituation,
and mismatch-mediated reset, among other properties. It will
be instructive in future studies to see if the same network
parameters that fit data in the awake state also succeed in
providing quantitative fits to data about the durations of Up
and Down states during slow wave sleep, and how differences in
ACh modulation in the awake and sleep states influence these
results.

More modeling also needs to be done to unify neural
mechanisms of circadian rhythms and slow wave sleep, and
the complex relationships that coordinate these processes
(e.g., Achermann et al., 1993; Deboer et al., 2003). Neural
models have proposed how the clock-like dynamics of the
suprachiasmatic nuclei (SCN) in the hypothalamus are
modulated by homeostatic factors like activity-dependent
fatigue signals and non-homeostatic factors like the timing
of light and dark episodes, to simulate the intensity,
duration, and patterning of ultradian activity-rest cycles
and the duration of circadian periods under a wide range of
light-dark conditions (Carpenter and Grossberg, 1983, 1984,
1985).

This Gated Pacemaker theory of circadian rhythms also
suggests how circadian and appetitive hypothalamic circuits
may both be constructed from similar components, albeit being
specialized to carry out their respective tasks. Indeed, the
homeostatic and non-homeostatic inputs in the SCN circuit
have homologs in satiety and sensory inputs, respectively, in
the appetitive circuits. Within this modeling framework, it
can be seen how the SCN model circuits can modulate the
sensitivity of the appetitive circuits during the control of a
wide range of cognitive-emotional interactions that have also
been modeled (e.g., Grossberg, 1972a,b, 1982, 1984b, 2000b;
Grossberg and Seidman, 2006; Dranias et al., 2008; Grossberg
et al., 2008a).

These cognitive-emotional interactions also include the
nSTART model (Figure 4) of the memory consolidation
dynamics that occur during sleep and how they are influenced by
early or late hippocampal, amygdala, orbitofrontal, or thalamic
lesions (Franklin and Grossberg, 2017). It remains to carry
out the large-scale modeling program that would be able to
unify these emerging strands of theoretical insight that each
link brain mechanisms to the psychological functions that they
support.

Yet another important linkage that remains to be fully
articulated is one between circadian rhythms, sleep, and
Alzheimer’s disease, as the next section will discuss. Of
particular interest from the present perspective is that
major structural degeneration in the brains of Alzheimer’s
patients occurs in cortical layers 3 and 5, which are also
layers where vigilance control is mediated and where
key properties of slow wave sleep seem to be generated
(Figure 9).

12. ACh, VIGILANCE, AND ALZHEIMER’s
DISEASE

12.1. Alzheimer’s as a Disease of
Structurally Impaired Vigilance Control
Alzheimer’s disease includes significant structural abnormalities
in many brain regions that may be caused by complex interacting
factors. Some of that experimental evidence is reviewed here.
In addition, data are reviewed pointing to how this structural
degeneration may cause a severe degeneration of cholinergic
function in areas of the cerebral cortex, including temporal
cortex, that are critical for learning, recognizing, and recalling
all sorts of information about the world. Much of the literature
focuses on these degenerative structural events. ART clarifies
dynamical consequences of these structural events. Indeed,
a failure of both tonic and phasic vigilance control could
cause a generalized collapse of cognitive processing, way
beyond anything that would be caused by the imbalances
in the dynamical processing of vigilance that may contribute
to behavioral symptoms of autism and medial temporal
amnesia.

An early article of Coyle et al. (1983) noted that Alzheimer’s
disease was then already one of the most common causes
of mental deterioration in the elderly. This article cited
compelling evidence that ACh-releasing neurons, whose cell
bodies lie in the basal forebrain, selectively degenerate and
thereby influence widespread areas of the cerebral cortex and
related structures that play an important role in cognitive
functions, notably learning and memory. Whitehouse et al.
(1982) additionally noted that postmortem studies demonstrated
profound reduction in the presynaptic markers for cholinergic
neurons in the cortex of patients with Alzheimer’s disease. In
particular, neurons of the nucleus basalis of Meynert undergo a
greater than 75 percent selective degeneration in these patients.
Experimental studies using Alzheimer’s disease animal models
have provided supportive data showing that both anticholinergic
drugs and lesions of the nucleus basalis of Meynert disrupt
learning or memory in a number of paradigms, including
passive avoidance learning and Morris water maze tests (Lo
Conte et al., 1982; Friedman et al., 1983). Francis et al.
(1999), Iqbal and Grundke-Iqbal (2008), and Pimplikar (2009)
review these and additional factors that contribute to the
disease.

AChE is the main enzyme that can break down ACh in
the brain. Inhibition of AChE is thus considered one of the
treatment strategies to ameliorate symptoms of Alzheimer’s
disease (e.g., Orhan et al., 2004; Mukherjee et al., 2007). Indeed,
Janeczek et al. (2017) described an extensive network of cortical
pyramidal neurons in the human brain with abundant AChE
activity. They quantified the density and staining intensity of
these neurons using histochemical procedures. Their methods
enabled them to show that brains of adults above age 80 with
unusually preserved memory performance (SuperAgers) showed
significantly lower staining intensity and density of AChE
neurons when compared with same-age peers, leading them to
speculate that low levels of AChE activity could enhance the
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impact of ACh on pyramidal neurons to counterbalance factors
that mediate the decline of memory capacity during normal
aging.

Rabiei et al. (2014, p. 353) have reported studies that suggest
a different approach to enhancing ACh function. They note
that Zizyphus jujube (ZJ) activates choline acetyltransferase
(ChAT), a transferase enzyme that is responsible for the
synthesis of ACh. Their study investigates the effect of ZJ
extract in intact rats and in a rat model of Alzheimer’s disease
with lesions of the nucleus basalis of Meynert. Learning and
memory performance were assessed using a passive avoidance
paradigm, and spatial learning and memory were evaluated
by the Morris water maze. The results suggested that ZJ has
repairing effects on memory and behavioral disorders produced
by the nucleus basalis of Meynert lesions, and therefore suggest
that ZJ may also have beneficial effects treating Alzheimer’s
patients.

Many studies (e.g., Wang et al., 2000a,b) have described
the structural degeneration that accompanies and may cause
ACh deficits in Alzheimer’s patients, including the role of the
42-amino acid β-amyloid peptide (Aβ1–42) in the formation
of neuritic plaques and neurodegeneration. Wang et al.
(2000a,b) also noted that the α7 nicotinic acetylcholine receptor
(α7nAChR) is highly expressed in the basal forebrain cholinergic
neurons that project to the hippocampus and cortex of normal
and Alzheimer brains (e.g., Perry et al., 1992), correlates well
with brain areas that exhibit neuritic plaques in Alzeheimer’s
disease, and modulates both calcium homeostasis and release of
the neurotransmitter ACh, two important parameters involved
in cognition and memory. Nagele et al. (2002) further studied
how amyloid β1–42 binds with exceptionally high affinity
to α7nAChR and accumulates intracellularly in neurons of
Alzheimer’s disease brains. Related studies have shown that
amyloid peptides can inhibit the release of ACh (Kar et al.,
1996).

The above results are consistent with results in Tomlinson
et al. (1968, 1970) showing that plaques are more frequent in
cortical layers 3 and 5, and in Arnold et al. (1991) summarizing
that the laminar distribution of neurofibrillary tangles tended
to be selective, involving primarily layers 3 and 5 of association
areas; see also Rogers and Morrison (1985). These authors also
report far more tangles in both limbic and temporal lobes than
in frontal, parietal, and occipital lobes, but also suggested that
plaques were more evenly distributed throughout the cortex.

In summary, all of these studies describe the kinds of
structural degeneration in layers 3 and 5 that could lead to the
massive collapse of ACh function and support of learning and
memory that other studies have reported.

12.2. Relating Sleep and Alzheimer
Disease Pathology
Ju et al. (2014, p. 115) have reviewed evidence that ‘‘the
sleep-wake cycle directly influences levels of Aβ [amyloid-β
peptide] in the brain. In experimental models, sleep deprivation
increases the concentration of soluble Aβ and results in chronic
accumulation of Aβ, whereas sleep extension has the opposite

effect’’. The authors go on to note that changes in sleep precede
the onset of cognitive symptoms in Alzheimer’s patients, and
that disrupted sleep patterns occur in patients with Alzheimer’s
disease. Moreover, there is a diurnal variation in the level of
soluble Aβ in the interstitial fluid. During the Down state of
slow wave sleep, less Aβ is released than during wakefulness or
REM sleep. A disruption of slow wave sleep can hereby lead to
higher sustained extracellular concentrations of Aβ. These higher
sustained Aβ concentrations are, in turn, associated with early
amyloid plaque formation.

As noted above, plaques are found more frequently in cortical
layers 3 and 5, where they can disrupt the ACh-mediated Up
and Down oscillations in slow wave sleep that are diagrammed in
Figure 9. By disrupting slow wave sleep in this way, and thereby
indirectly causing higher Aβ extracellular concentrations, a
vicious cycle can be perpetuated.

12.3. Can Novelty-Seeking Behaviors
Lower the Chance of Developing
Alzheimer’s?
The article’s focus on vigilance control and its review of
how normal ACh dynamics are devastated in Alzheimer’s
patients raises a question about whether non-invasive behavioral
activities that promote normal ACh dynamics, in addition to all
appropriate drug and other medical interventions, may help to
delay, or lower, the chances of developing Alzheimer’s disease?
In other words, can some types of behavior better support
the brain’s design to solve the stability-plasticity dilemma
(Section 2.1), and thereby allow learning to continue throughout
life without a loss of memory stability?

Since unexpected events phasically raise vigilance by releasing
ACh (Figure 7), it is natural to ask whether novelty-seeking
activities can help to delay, or lower, the chances of developing
Alzheimer’s disease? Some data suggest that this may be the case
(e.g., Fritsch et al., 2005), while other studies report diminished
novelty-seeking behavior in patients with probable Alzheimer’s
disease, that is distinct from general cognitive decline (Daffner
et al., 1999). It may thus be of use to consider whether and how
novelty-rich experiences can be designed to help slow the onset
of Alzheimer’s.

13. CONCLUDING REMARKS

This article discusses the dynamics of tonic and phasic vigilance
control within Adaptive Resonance Theory, or ART, laminar
cortical circuits. Specializations of these laminar cortical ART
models provide a unified explanation, and testable predictions,
of many interdisciplinary data about normal and abnormal
learning, memory, and behavior. Vigilance in ART is modulated
by ACh, often at layer 5 cortical cells that respond to inputs
from the nucleus basalis of Meynert. The data that are discussed
and explained in this article range from the normal learning
and memory of abstract or concrete recognition categories
under conditions of low or high vigilance, respectively, and the
properties of normal Up andDown states during slowwave sleep,
to neural mechanisms and symptoms of mental disorders such
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as autism, medial temporal amnesia, and Alzheimer’s disease.
By mechanistically linking all of these disparate kinds of normal
and abnormal data to shared ART network properties, and how
they may be modified by different characteristics of tonic or
phasic ACh modulation, the article opens the way to designing
many new types of experiments that can mechanistically link
normal and abnormal behaviors in ways that would be hard

to quantify and test without them, and to possible new clinical
treatments.
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