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Abstract: Corynebacterium glutamicum is a Gram-positive bacterium found in soil where the condition
changes demand plasticity of the regulatory machinery. The study of such machinery at the global
scale has been challenged by the lack of data integration. Here, we report three regulatory network
models for C. glutamicum: strong (3040 interactions) constructed solely with regulations previously
supported by directed experiments; all evidence (4665 interactions) containing the strong network,
regulations previously supported by nondirected experiments, and protein–protein interactions with
a direct effect on gene transcription; sRNA (5222 interactions) containing the all evidence network
and sRNA-mediated regulations. Compared to the previous version (2018), the strong and all
evidence networks increased by 75 and 1225 interactions, respectively. We analyzed the system-level
components of the three networks to identify how they differ and compared their structures against
those for the networks of more than 40 species. The inclusion of the sRNA-mediated regulations
changed the proportions of the system-level components and increased the number of modules but
decreased their size. The C. glutamicum regulatory structure contrasted with other bacterial regulatory
networks. Finally, we used the strong networks of three model organisms to provide insights and
future directions of the C. glutamicum regulatory network characterization.

Keywords: Corynebacterium glutamicum; regulatory interactions; regulatory network; curation; net-
work inference; systems; modules; NDA; regulogs

1. Introduction

Corynebacterium glutamicum is a Gram-positive soil bacterium, industrially relevant
due to its amino acid production proficiency. It is also a model organism for the study of
regulatory networks [1], along with other bacteria such as Escherichia coli, Bacillus subtilis,
and Streptomyces coelicolor. These model organisms are usually compared, and diverse
differences have been found (e.g., while C. glutamicum grows by apical elongation, B. subtilis
and E. coli grow by lateral elongation [2]). Some aspects of the transcriptional regulatory
mechanism of C. glutamicum have also been found to be different from those in other model
organisms [3]. In contrast to E. coli, repression is the most common regulatory mechanism
in C. glutamicum [4], and unlike B. subtilis and E. coli, which have diauxic growth due to the
preferential consumption of one carbon source over others, C. glutamicum cometabolizes
glucose with several other carbon sources [3]. In terms of σ factors, E. coli and C. glutamicum
have seven, while B. subtilis has 17, and over 60 σ factors have been found in the Streptomyces
species [5].
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One of the challenges for the study of their transcriptional machinery at the global
scale is the lack of data integration and the incompleteness of their global regulatory
networks despite being model organisms [1]. The network incompleteness situation is
worst for nonmodel organisms for which little or none is known about their transcriptional
machinery. Even though high-throughput technologies speed up the reconstruction of
regulatory networks, network models reconstructed solely with high throughput experi-
ments present unusual structural properties when compared with other reconstructions
performed mainly by conventional experiments (e.g., lower clustering coefficient [6]).
Moreover, the number of sequenced genomes scales rapidly, especially for bacteria, so that
even with high throughput experiments, we cannot cope with all of them. Computational
approaches for the inference of regulatory networks based on gene expression data are still
emerging. Proof of that is their modest performance for model organisms in the DREAM5
challenge [7] and the inconsistency between gene expression data and the model used
for regulatory networks [8], although a reassessment with more complete networks and a
larger number of model organisms is required [1]. An integrative approach of expression
data and regulatory binding sites have shown to improve the prediction, but most of that
improvement is by the binding sites approach, which provides more biological information
(e.g., [8]).

When inferring regulatory interactions with transcription factor (TF) binding sites
data, the approaches can be classified into three major groups: phylogenetic footprinting,
regulon expansion, and regulatory interaction transfer. The latter two approaches require
previous regulatory information to increase the target genes (TGs) for the TFs in a network
or transfer the regulatory information between organisms, respectively. On the other
hand, phylogenetic footprinting does not require previous regulatory information but is
limited to the identification of coregulated genes by a common TF. However, when the
cognate regulator is unknown, its identification is not trivial [9,10] due to the small size
of the regulatory sequences and their overlap for some close homologous proteins. The
transfer of regulatory interactions can be directly through the orthology of both TF and
TG conservation or by filtering for TF binding sites in the promoter region of the TG (also
known as a regulog analysis [11]). The latter provides the best results, helping us to reduce
spurious interactions that are not conserved in the organism of interest [12].

Previously, we studied the functional architecture of the C. glutamicum regulatory
network with regulations by TFs binding to DNA acting at the level of transcription
initiation (transcriptional regulatory network) and compared its connectivity distribution
to those in E. coli and B. subtilis regulatory networks [13]. Since then, a plethora of studies
has continued unveiling novel transcriptional regulatory mechanisms in C. glutamicum.
However, the study of the regulatory mechanisms has not been restricted to TF–DNA
interactions. Some protein–protein interactions (PPis) are directly involved in transcription
regulation (e.g., adenylated GlnK binding to AmtR (repressor) to release it from the DNA).
Additionally, the inclusion of post-transcriptional regulations mediated by sRNAs into
global regulatory networks has been performed in other organisms (e.g., [14] in E. coli as
an undirected network). Previous versions of the C. glutamicum transcriptional regulatory
network have been used for the transfer of regulatory interactions to other corynebacterial
strains hosted in the CoryneRegNet database [15], the construction of a model for the
inference of the number of interactions once the regulatory networks are complete [6], for
an assessment of the NDA robustness to random remotion of nodes and interactions [13],
as the gold standard for the benchmarking of a network inference approach based on
sequence data (unpublished results), and as a reference for the identification of global
regulators [16].

Here, we update the two previous transcriptional regulatory network models for C.
glutamicum (Abasy IDs: 196627_v2018_s17 and 196627_v2018_s17_eStrong; hereinafter
referred to as all evidence and strong, respectively) with hundreds of curated TF–DNA inter-
actions, their effect, and their corresponding confidence level. In the all evidence network,
we also included curated PPi that have a direct effect on gene transcription, such as anti-σ–σ
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factor interactions and the formation of heteromeric regulatory complexes. We incorpo-
rated interactions mediated by regulatory small RNAs acting at the post-transcriptional
level in a third network model (hereinafter referred to as sRNA). We deposited all three
network models in the new v2.4 of Abasy Atlas. Our continuous curation of the C. glu-
tamicum regulatory network has produced a set of five historical snapshots that, together,
recount the curation process that has spanned 11 years. These historical snapshots are also
available in Abasy Atlas.

After this update, C. glutamicum moves from the fourth to the second position among
the organisms with the most complete regulatory network in Abasy Atlas, according to
our recently published model of the total number of interactions a complete regulatory
network has [6]. We discuss the global structural properties of the three network models
in the context of the previous versions of the transcriptional regulatory models and more
than 40 other bacterial networks from Abasy Atlas, the most complete collection of experi-
mentally validated regulatory networks [1]. We analyzed the organizing principles and the
system-level components of the three networks to identify the effects of the inclusion of
interactions supported by nonstrong experiments, protein–protein interactions, and post-
transcriptional layer regulation by sRNAs. Finally, we use strongly supported regulatory
networks from S. coelicolor, B. subtilis, and E. coli to gain knowledge of the DNA-binding
TFs for which no TGs have been characterized in C. glutamicum, and we provide a list of
potential interactions retrieved through a strict and conservative computational pipeline
using the most precise tools to identify regulations.

A Primer on Analyzing Regulatory Networks

The concepts and procedures used in the field of network biology have been summa-
rized and explained in-depth and with great clarity in previous works [17–21]. Neverthe-
less, in this section, we summarize the state of the knowledge and main concepts required
to analyze the relationship between the structure and function of regulatory networks.

The abstraction of a regulatory network can be represented as a group of nodes and
directed arcs. The nodes represent the entities of the network (commonly genes or sRNAs),
and the arcs represent the direction of the interaction between two nodes. For example,
the requirement of GlxR for the transcription of ramA can be represented as glxR→ ramA,
while a negative effect (such as GlxR on acnR transcription) is usually represented as glxR
a acnR. We use the gene symbol (or locus tag in the case no name has been assigned yet) to
consistently represent the sequence of the interactions, for example, sigA→ glxR a acnR,
and so on (the housekeeping σ factor is required for the transcription of glxR, and GlxR
hinders the transcription of acnR). Nodes representing other biological entities can also be
included in the network. The C. glutamicum networks herein reported contain three types of
nodes: genes, heteromeric protein complexes, and sRNAs. Heteromeric protein complexes
are conformed by two or more regulatory proteins transcribed by different genes and are
included in the network to reduce redundancy and improve representation accuracy [1].
The effect of the sRNA regulatory interactions is carried out at the post-transcriptional level.
These interactions are included in the networks with an sRNA label in their corresponding
Abasy ID [1]. The importance of the inclusion of sRNAs in bacterial regulatory networks is
relatively recent [14], and there is little information regarding these types of interactions in
bacterial regulatory networks.

Once the interactions are merged to form a global regulatory network, we can compute
the connectivity degree of the nodes (k), which represents the number of interactions
of a node with the rest of the network, regardless of the direction. In some scenarios,
the connectivity degree can be more informative if the direction of the interactions is
considered. The out-degree (kout) of a node is the number of nodes it regulates. The
nodes with a kout greater than zero are defined as regulators. The kout is the most applied
connectivity in regulatory networks (e.g., for the identification of proteins required for the
transcription of a large fraction of the network: global regulators). The in-degree (kin) is the
number of regulators involved in the transcription of a given gene/sRNA. An exception
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is the incoming interactions in heteromeric complexes that represent the formation of the
complex instead of their regulation, despite that the relationship is causal, as the presence
of the subunits is required to produce the heteromeric complex. Hence, the heteromeric
complexes have incoming interactions only from the subunits required for its conformation,
while the subunits have outgoing interactions only to the heteromeric complexes they are
part of [1]. These types of interactions are underrepresented in the network and, therefore,
not specified in most cases. kmax is defined as the largest connectivity value of the network
and equals the kout of the global regulator with the largest set of TGs. The auto-regulations
represent a direct transcriptional effect of the regulator onto its own coding sequence.

The average clustering coefficient quantifies the modularity of a network. This struc-
tural property is an example where the direction of the interactions is disregarded, as
modularity is defined as the degree to which the components of a system are separated or
combined. The clustering coefficient of a node is defined as the fraction of its neighboring
nodes that are connected to each other, relative to the potential interactions that could exist
among them. For example, node A, having as neighbors only the nodes B and C, will
have a clustering coefficient of one if an interaction exists between B and C (regardless of
the direction of the interaction) because the potential number of interactions between the
neighbors of A is only one. The clustering coefficient of A is zero if there is no interaction
between B and C. Once the clustering coefficient is calculated for every node having at least
two neighbors in the network, the values are averaged. For an illustrated example, please
see Box 1 in reference [19]. C(k) shows a distribution of the average clustering coefficient
for the nodes with connectivity k. Similarly, the distribution of the connectivity of the
nodes is denoted as P(k), provided by the probability of a node having k interactions. It
has been previously debated whether the P(k) of real networks is truly governed by a
power-law distribution, where a few nodes have most of the interactions [22]. Recently,
using several statistic methods, we demonstrated that regulatory networks truly follow a
power-law distribution—they fit other power-law-like distributions better than a Poisson
distribution, regardless of the completeness of the network—and that the sole coefficient of
determination (R2) is a good proxy to assess the goodness-of-fit of the model [6].

A network component is a group of nodes in which every pair is connected by at least
one path. Regulatory networks do not always comprise a single component. Commonly,
small groups of nodes can be isolated from the rest of the network. This is frequently
observed in nonmodel organisms for which only some groups of nodes have been studied.
Whether regulatory networks are truly multicomponent, or this is only a consequence
of network incompleteness, is still an open question. The giant component is the largest
component of the network, and its size is determined by the number of nodes it covers. In
regulatory networks, the global TFs, such sigA, increase the fraction of nodes in the giant
component. The higher the fraction of nodes in the giant component, the more cohesive the
network is. The giant component of a network is the representative part of the network for
most structural properties such as density. Network density is the fraction of interactions
from the fully connected network (where every node would have a directed interaction to
itself and every other node in the network) that exists in the actual network. The detection
of a constrained space for density values in bacterial regulatory networks [6] allowed us to
infer the number of interactions expected once the curation of the network is completed [1]
in order to identify some differences in the curation state of the regulatory networks.

Most of the definitions mentioned before are applied to the κ-value (Kappa value),
which is defined as the point of the C(kout) distribution where the change in normalized
kout connectivity equals the change in the clustering but with the opposite sign. The κ-
value is used as a threshold for the identification of global regulators and has shown high
precision and sensitivity to different bacterial regulatory networks such as E. coli [23], B. sub-
tilis [24], and S. coelicolor (unpublished results) while being conservative (high precision,
low sensitivity) on an earlier version of the C. glutamicum regulatory network [13].

The global regulators shape the highest hierarchy in the diamond-shaped structure
unveiled by the natural decomposition approach (NDA). The NDA is an in-silico technique
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that deconstructs a regulatory network to naturally identify its structure and reconstructs
it with the nodes classified into one of four classes: global regulators (GRs), modular
nodes (Mds), intermodular nodes (IMs), and basal machinery (BM). Global regulators
are the TFs with a low clustering coefficient and a kout greater than the κ-value. Once
the GRs have been identified, the BM is also unveiled as the TGs that are regulated only
by GRs. The direct GR–BM regulation is required for fast responses without previous
modulation of intermediates. GR and BM nodes and their interactions are removed from
the network as well as the rest of the nodes with kout = 0 (putative structural genes). The
remotion of these structural genes will lead to isolated groups of Mds (modules) that
work together for a common purpose. Finally, the structural genes are reinserted into the
network, preserving their original interactions, and they are included into the module of
their regulators only if all their regulators are from the same module. Otherwise, they are
included as IMs, integrating the signals from different modules. For further details about
the NDA methodology, please see Figures 1 and 2 in [13], where the NDA is described
and applied to an earlier version of the C. glutamicum transcriptional regulatory network.
Noteworthy, this diamond-shaped hierarchy has been found to be structurally conserved
even between phylogenetically distant organisms [24]. The NDA classification is robust
to random remotion of interactions and nodes [13], but the curation state of the network
can alter the class of some nodes. This applies mainly to the IM and BM nodes that can be
included in the Md class in a later (more complete) version of the network.

2. Materials and Methods
2.1. Curation and Network Definition

Four types of interactions were defined for consideration in this new version of the C.
glutamicum networks: (1) homomeric-TF–DNA comprehending interactions between DNA-
binding TFs (including σ factors) and the DNA, altering the gene expression; (2) sRNA–
RNA interactions, occurring at the post-transcriptional level, modulating the concentration
of the proteins; (3) protein–protein interactions class 1 (PPi-cI), defined as PPis with a causal
regulatory effect, such as anti-σ–σ interactions; (4) PPi class 2 (PPi-cII), a form of TF–DNA
interaction where the TF is a heteromeric protein complex its with cognate subunits—
complex interactions. Two levels of confidence are defined for the interactions: strong, if
the interaction is supported by a TF–DNA direct binding experiment (e.g., footprinting with
purified protein), and weak, otherwise. Even though other types of interactions considered
for this version might be supported by a direct experiment (e.g., yeast two-hybrid assay for
PPi-cI), we only included homomeric-TF–DNA and heteromeric-TF–DNA interactions (PPi-
cII) in the strong network. The all evidence network includes interactions supported by any
experimental evidence, keeping the label “strong” only for those interactions taken from
the strong network. For the all evidence network, all but the sRNA-mediated regulations
are considered, while the sRNA network includes every type of interaction regardless of
the experiment supporting it. The three networks reconstructed in this work have been
deposited in the new v2.4 of Abasy Atlas.

The curation of strong interactions was carried out manually by screening the PubMed
library for publications describing regulatory interactions of C. glutamicum. Interactions
are classified as strong when the respective paper contains experimental evidence of a
TF–DNA interaction. In most cases, the TF of interest is purified and its direct interaction
with DNA is demonstrated in vitro. Approaches like this also lead to the experimental
identification of the DNA binding site sequence. For the recovery of weakly supported
interactions, we reviewed the literature to identify TGs for the TFs already present in the
all evidence network. We used as keywords “glutamicum”, “regulon”, ”target genes”, and
the name symbol of the gene or its locus tag. Then, we followed a set of rules to include the
interactions for every TF–TG pair of nodes: (1) an interaction does not exist in the network
unless it is already in the previous version; (2) an interaction that is not part of the previous
version does not exist unless there is experimental evidence to support the interaction;
(3) an interaction supported solely by computational predictions is not included in any of
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the networks; (4) an interaction weakly supported by an experiment is part of the network
until contradictory evidence is found (e.g., gene overexpression supported by microarrays
data but invalidated by RT-PCR).

We included in the sRNA network the regulatory interactions by anti-sense sRNAs
from reference [25]. The authors included as anti-sense sRNA every sRNA that is tran-
scribed in the opposite strand of a gene, starting within 100 nt of the 5′-end of an opposite
CDS or within 60 nt from the 3′-end of an opposite CDS [25]. The authors identified
two other types of sRNAs, but regulatory interactions were only assigned to anti-sense
sRNAs. For the name of the sRNAs, we used the nomenclature suggested by the authors—
cgb_xxxxx—to ease the identification of the nodes representing sRNAs in the sRNA network.
The effect of the interactions was set to unknown—“?”—and most of the sRNAs regulate
the gene transcribed in the opposite DNA strand. We included the sRNAs as independent
nodes. We acknowledge that this artificially increases the genomic coverage for the sRNA
network (counting twice the genes with an asRNA). However, assigning the interaction
to the coding gene would be misleading and would inflate the number of self-loops in
the network even when the sRNAs might be transcribed through its own promoter. As
previously discussed, interaction coverage is a better proxy for network completeness
than genomic coverage [6]. Although the authors provide the σ factors required for the
transcription of the sRNAs, we did not include these σ-DNA interactions as they were
solely supported by DNA-binding motif computational predictions and we have identified
a high number of false-positives in the search for binding sites for σ factors. Moreover,
interactions supported solely by computational predictions are not considered for Abasy
Atlas networks [1]. Interactions involving a protein-coding gene not mapping to a cgl-
number or from another strain are not included in the networks but collected in a separated
file (Table S1).

2.2. Genome Annotation and Upstream Sequences

Genome annotations used in this work were retrieved from NCBI [26] for the fol-
lowing organisms (accession code and version): Corynebacterium glutamicum ATCC 13032
(NC_006958.1), Streptomyces coelicolor A3(2) (NC_003888.3), Bacillus subtilis subsp. sub-
tilis str. 168 (NC_000964.3), and Escherichia coli str. K-12 substr. MG1655 (NC_000913.3).
Upstream (up to −300 to +50) sequences with reference to the translation-start codon,
for the four genomes, were retrieved from the RSAT suite [27] with the retrieve-seq tool,
preventing overlap with neighboring genes.

2.3. Regulatory Networks for Other Organisms

All the regulatory networks used in this work were downloaded from Abasy Atlas,
a large collection of manually curated transcriptional regulatory networks [1]. The set
of nonredundant networks is defined as the most recent regulatory networks for each
organism available in Abasy Atlas, resulting in a dataset of 42 regulatory networks for
42 bacterial strains. When using the nonredundant set as a background for the herein
reported regulatory networks of C. glutamicum, the set includes the regulatory networks of
all other organisms (41) plus the three herein reported networks.

2.4. System-Level Components

Nodes were classified into one of the four system-level component classes: GRs, BM,
Mds, and IMs were retrieved from Abasy Atlas. The classification of the nodes has been
previously described [13]. In the following paragraph, we briefly describe the NDA, the
approach used for the classification of the nodes and module identification: The κ-value is
computed for the identification of GRs. Every node with a number of directly regulated
TGs greater than the κ-value is classified as a GR and removed from the network, along
with their interactions. The remotion of the global regulator nodes leaves some nodes
isolated. The isolated nodes that are solely regulated by global regulators are classified
as BM, representing structural components required for elemental functions such as the
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subunits for RNA core polymerase. The nodes with no regulated genes in the remaining
network are labeled as structural nodes and removed in order to identify an isolated group
of nodes (modules) to be classified as Mds. The nodes labeled as structural are reintegrated
to the network as part of a module if all of their regulators belong to the same module;
otherwise, they are labeled as IM components, which integrate the signals from two or
more modules responding to different conditions.

2.5. Comparison of Nodes and Interactions of C. glutamicum with Other Bacterial Regulatory Networks

To quantify the fraction of strong interactions in each network, we computed the ratio
of regulatory interactions classified as strong in each of the all evidence regulatory networks
deposited in Abasy Atlas, including the all evidence C. glutamicum network herein reported,
and plotted the distribution. We reconstructed the previously reported model, developed
to predict the size of regulatory networks [1], by using an expanded dataset including
the herein reported C. glutamicum regulatory networks and robust linear regression. We
then reassessed the goodness-of-fit of the model by recomputing the adjusted coefficient of
determination. Regulatory networks of C. glutamicum were highlighted in the distributions
to ease identification and comparison with previous versions.

2.6. Global Structural Properties

All the structural properties reported in this work were retrieved from Abasy Atlas [1]
version 2.4. For comparison with other bacteria, the values reported were normalized as
follows: The number of autoregulations was normalized by the number of regulatory nodes
(those with the potential to have an autoregulation). To ease the comparison of density
values in a plot, each of them was multiplied by 10. Please note that this modification
is used only to compare the properties. The kmax was normalized by the number of
nodes in the network (potential targets). The κ-value was normalized by the kmax. The
size of the giant component was normalized by the number of nodes in the network. No
normalization was applied to compare the C. glutamicum network across versions and
evidence levels. Instead, we used a log2-fold change ratio of the properties’ value relative
to the corresponding value for the earliest network in the case of different versions and the
smallest network in the case of comparing different evidence levels.

2.7. System-Level Components

Node classification, module identification, and their annotation were retrieved from
Abasy Atlas [1] version 2.4. For the graphic representation of node classification, the
values were computed using a log10 scale. For the representation of module size, actual
values were used for the treemapping plot. For distribution of the number of modules,
the nonredundant set of regulatory networks from Abasy Atlas version 2.4 was used, and
the herein reported networks were highlighted and labeled to ease identification. For the
comparison of the nodes in each NDA class for the three networks reported here, we used
the Simpson similarity index, defined as the number of common elements between two
sets divided by the minimum of the two numbers. Hence, the similarity index can take
values from zero (no overlap at all between the two sets) to one (one set is a subset of the
other). For the interactions from GRs and Mds to the four classes, we computed the fraction
of interactions between each class, ignoring interactions from BM and IM classes (less than
1% of the network), which are attributed to missing interactions that will be included in
the future curation of the network (e.g., cgb_20925 regulating sigA). Matplotlib, Seaborn,
Numpy, and Squarify libraries from Python were used to compute and plot the results.

2.8. Regulog Analysis

For the selection of source organisms, we used the last strong version of those organ-
isms having strong regulatory networks, namely, Escherichia coli K-12 MG1655 (Abasy ID:
511145_v2020_sRDB18-13_eStrong), Bacillus subtilis strain 168 (Abasy ID: 224308_v2008_
sDBTBS08_eStrong), and a curated Streptomyces coelicolor network, with curated strong
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interactions until 2019 (unreported network). Regulog analysis is based on the premise that
regulatory sites are more conserved than the rest of the noncoding sequences because they
are required for the cell to survive. Given the basis of the approach, the best strategy is to
use phylogenetically closely related organisms [11,28]. Unfortunately, model organisms
for which a strong regulatory network is available are phylogenetically far from each other,
but we still can use them to study essential, conserved interactions [24]. The closest model
organism with a highly complete regulatory network is Mycobacterium tuberculosis (Abasy
ID: 83332_v2018_s11-12-15-16), but its regulog analysis has been previously used to transfer
interactions in the opposite direction (from C. glutamicum to M. tuberculosis) [29], and the
remaining interactions are mostly supported by weak evidence.

For the identification of orthologous genes, we used the OMA standalone [30] with
genome sequences from NCBI (see above). We used the OMA classification of orthology
relationship type and kept only the one-to-one orthology relationships. To construct the
position weight matrices, we used MEME [31], Bioprospector [32], and MDscan [33] with
the upstream sequence of TGs for each TF with at least one strong evidence supporting
the interaction. Upstream sequences were defined as up-to −300 to +50 bp, relative to the
translation-start codon. Then, we used FIMO [34] to find individual matches of the matrices
in the upstream sequences of the complete set of C. glutamicum one-to-one orthologous
genes using a p-value of 1 × 10−4 as a threshold to form TF–TG putative interactions. Gene
identifiers for the TFs and TGs were mapped to the C. glutamicum genome annotation, and
the interactions obtained with each of the three motif-finding tools were integrated by a
vote-counting approach, which has been found to improve predictions [7], prioritizing the
interactions considered as “more reliable” by the three motif-finding tools.

3. Results and Discussion
3.1. The Regulatory Networks of C. glutamicum and Potential Applications

In this section, we report the new regulatory network models of C. glutamicum, their
differences, and the statistics comparing them with the previous version and discuss some
potential applications of our network models. We reconstructed three regulatory net-
work models: (1) The strong network (Abasy ID: 196627_v2020_s21_eStrong), conformed
solely by DNA-binding TFs—mediated interactions that are supported by a direct exper-
iment (e.g., footprinting with purified protein); (2) The all evidence network (Abasy ID:
196627_v2020_s21), conformed by every type of interaction at the transcriptional level that
is supported by any experimental evidence and not discarded by any other; (3) The sRNA
network (Abasy ID: 196627_v2020_s21_dsRNA), containing the all evidence network plus
545 post-transcriptional interactions mediated by regulatory sRNAs (Figure 1). The strong
network is a subset of the all evidence network, while the all evidence network is a subset of
the sRNA network (Figure S1). We deposited the three reconstructed networks in the new
v2.4 of Abasy Atlas, each of them providing a different level of completeness (Figure S2)
that is useful in different scenarios. For example, even though the strong network is the
smallest one, the confidence level of its interactions makes this network the best alternative
to be used as the gold standard for benchmarking approaches for the inference of directed
regulatory networks (such as those based on regulatory binding sites). On the other hand,
benchmarking of network inference tools based on transcriptomic data might tend to be
penalized when using only the strong network, as it only contains direct TF–DNA interac-
tions that cannot accurately be predicted based solely on transcriptomic data [8]. In that
case, the all evidence network can be used as the gold standard, as it includes a broader
scope of experimentally supported interactions that have not been reported as spurious.
The sRNA network is the most comprehensive and, therefore, the best suited to study the
biological regulatory mechanisms of C. glutamicum. Having reliable regulatory network
models has proven to be important even for synthetic biology, for example, to engineer
resource allocation by rationally modifying the transcriptional regulatory network [35].
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Figure 1. Three network models of the C. glutamicum regulatory network. The number of nodes (a) and in-
teractions (b) for the three networks. Network, P(k), and C(k) distributions for (c) 196627_v2020_s21_eStrong
(strong), (d) 196627_v2020_s21 (all evidence), and (e) 196627_v2020_s21_dsRNA (sRNA) networks. Network
plots were generated with Circos [36] using the leftmost gene/sRNA coordinates to sort the nodes
clockwise. Nodes with no coordinates in the genome annotation were disregarded.

3.2. Global Networks of C. glutamicum Are Quite Different from other Bacterial Networks in
Terms of Their Structural Properties

In this section, we analyze the global structural properties of the C. glutamicum reg-
ulatory networks in the context of the whole Abasy Atlas dataset. Previously, our group
found a constrained complexity in the regulatory networks [6] and leveraged it to create
a model for the inference of the size of regulatory interactions expected once network
curation is complete [1]. We identified a few networks falling outside of the prediction
area (see Figure 5 in reference [1]), C. glutamicum being one of those organisms, namely, for
the later versions containing the sigmulons of the housekeeping σ factor sigA. We found
that this was a result of a low number of weakly supported interactions in contrast with
other bacterial regulatory networks (Figure 2a), mainly because the C. glutamicum regula-
tory network has been highly curated in-house, giving preference to strongly supported
interactions and resulting in an overrepresentation of these interactions in contrast to other
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bacterial regulatory networks. The inclusion of weakly supported interactions better fits
the C. glutamicum network into the model (Figure 2b). Note that the strong version of the
network follows the model poorly as sigA directly regulates 85% of the network nodes.
Moreover, the fit of the all evidence network is affected by the inclusion of sRNA-mediated
interactions (RNA in Figure 2b). This is a result of many sRNAs regulating only one gene
in most cases.

Figure 2. Structural properties of the C. glutamicum networks. (a) Distribution of the fraction of the
strong interactions in the all evidence networks, including at least one strong interaction. C glutamicum
networks are highlighted and labeled. 2009 and 2011 versions of the C. glutamicum network are not
included as they do not have a cognate all evidence network. (b) Inclusion of the three networks
presented in this work into the previous model reported in [1] for the inference of the number of
interactions for the regulatory networks. C. glutamicum networks are marked with green squares, and
the three networks reported in this work are highlighted with a red outline and labeled. The rest of the
data points (yellow dots) are the rest of the Abasy Atlas database used for reference. (c) Comparison
of C. glutamicum structural properties with the nonredundant set of bacterial networks used as
background. Boxplots were drawn, including the nonredundant data set and the C. glutamicum
networks reported in this work. (d) Heatmap values are the log2-fold change of the C. glutamicum
regulatory networks for strong networks of versions 2011, 2016, 2018, and 2020, relative to the earliest
strong version (2009). The v2009 column is included for clarity. Properties are clustered to ease the
identification of those that have increased, decreased, or remained virtually unchanged. Heatmaps
(e,f) also represent the log2-fold change values relative to the leftmost column of (e) for versions
of the all evidence network and (f) for the three different network models presented in this work to
highlight the impact of the inclusion of sRNA-mediated interactions into the structural properties of
the network.
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Related to this, we expect the average clustering coefficient to decrease as the node/
interaction ratio increases. The clustering coefficient of a node in the network is determined
by the fraction of neighbors connected to each other. As expected, the average clustering
coefficient of the all evidence network is higher than the other two networks of the same
time frame (network version) (Figure 2c) as it exhibits a better equilibrium (closest to 1)
of the genomic/interaction coverage ratio (Figure S2). Interestingly, despite the C. glutam-
icum networks exhibiting a higher node/interaction ratio, they have a higher clustering
coefficient than most of the bacterial regulatory networks (Figure 2c), perhaps because of a
higher level of curation of the organism due to its biotechnological relevance. The density
of the C. glutamicum networks is slightly lower than the rest of the bacterial regulatory
networks. However, note that this difference is so small that even a 10-time magnification
of the variance of density values is very small (Figure 2c). This is expected due to the
constraint governing the complexity of regulatory networks [6].

The fraction of nodes acting as transcriptional regulators is constrained in bacteria,
beyond considering only the DNA-binding TFs (Figure 2c). The C. glutamicum regulatory
network models show a different behavior; while the network including sRNA-mediated
interactions falls on the upper boundary (~25%), the other two networks fall on the lower
boundary of the distribution (5%), even when the latter includes most of the DNA-binding
TFs of C. glutamicum. For most organisms, the kmax is below 50% of the nodes in the network.
However, the regulatory networks for C. glutamicum are outliers in the distribution (Figure 2c)
due to the sigA interactions. The size of the giant component can be represented by the
fraction of the network it comprehends. For most regulatory networks, this fraction is close
to one (Figure 2c), especially in the case of C. glutamicum, whose networks with no sRNA
regulation are practically a single component, showing the cohesiveness of these networks.

The κ-value is the threshold to identify global regulators. Every network has a
different κ-value that relies on its hubness and modularity, but larger kmax values result
in larger κ-values. To make the κ -values comparable, we normalized them by the kmax
of the cognate network, allowing κ to take values between 0 and 1. Interestingly, the
normalized κ-value seems to be also constrained to values lower than 0.25, and the values
for the three networks of C. glutamicum are overlapped. This suggests that the κ-value
is robust to the inclusion of weakly supported interactions and sRNAs. Moreover, this
agrees with previous analysis on the robustness of the inference of global regulators to
random removal of nodes and interactions [13]. However, in-depth studies with other
sampling approaches and other organisms are required. Autoregulations in a regulatory
network allow mechanisms to modulate themselves. A higher number of autoregulations
in the networks provide a faster response of the organism to the changing conditions [37].
C. glutamicum requires the adaptation to different media conditions in the soil; therefore, a
high number of autoregulations is expected (Figure 2c–f), where the strong and all evidence
networks are above most regulatory networks. However, the fraction of autoregulations in
the network containing sRNA-mediated interactions is much lower because of the large
number of regulatory sRNAs that bind to other RNA but not to themselves.

3.3. System-Level Components of the C. glutamicum Regulatory Networks

The regulation of gene transcription is organized into different hierarchical layers.
Previously, we have described a large-scale modeling approach to characterize the nodes
of a regulatory network: the NDA (natural decomposition approach). The NDA classifies
each node of the network into one of four system-level components: GRs, BM, Mds, and
IMs. Regulatory networks having a diamond-shaped hierarchy have been found in different
bacteria such as E. coli [23,24], B. subtilis [24], and a previous version of the C. glutamicum
transcriptional regulatory network [13]. The hierarchy is divided into three layers (Figure 3a):
the top layer, composed solely of global regulators (coordination layer), is the smallest one
and can directly regulate the four NDA classes; the middle layer (processing) is composed
of Mds and BM, the two largest NDA components, both regulated by the coordination
layer, but with only the Md class providing feedback to the top layer (i.e., some Md TFs
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regulate GRs); the last layer (integration) assimilates the combinatorial disparate signals
provided by GRs and Md TFs belonging to different modules into a single coordinated
response, essential to adapting to environmental changes.

Figure 3. System-level classification of the networks. (a) The diamond represents the complete set of nodes in the network,
which are classified in one of the four classes: global regulators (red), modular (dark blue), intermodular (light blue),
and basal machinery (gray, 1624 nodes). The size of the classes is proportional to the size of the all evidence network on a
logarithmic scale. Black lines represent the interactions between the two classes. We listed the global regulators and some
examples of intermodular genes. The modular class is further divided into 64 locally independent modules in the all evidence
network (b). Modules enriched with a biological function are colored in blue. The size of the sections is proportional to the
size of the modules. Similar to the all evidence network in panel (a), panel (c) shows the proportion of the NDA classes for
the strong and sRNA networks. (d) Heatmaps of similarity index between the three C. glutamicum networks for each one of
the four NDA classes. The color bar shows that more than half of the nodes in the class are conserved for each class among
the three networks, showing the precision of network node classification. (e) Distribution of the number of modules and
their size. Light gray distribution of the number of modules was drawn using the nonredundant set of networks, including
the three C. glutamicum networks. (f) The fraction of network interactions between the four classes for each one of the
C. glutamicum networks.

Using the all evidence network as an example, the coordination layer is composed
of nine GRs (Figure 3a). As expected, the first GR, when sorted by their Kout, is the
housekeeping σ factor (sigA), required for the transcription of 85% of the nodes in the
network. It is followed by the dual regulator hrrA, involved in the transcription of 21% of
the network. The rest of the global regulators (and their corresponding rounded regulated
network percentage) are ramA (11%), glxR (8%), sigH (6%), ramB (5%), atlR (4%), mcbR (4%),
and dtxR (3%). The difference in regulated genes by the first and second global regulators
is enormous, and this gap becomes smaller for the rest of the TFs. This is what provides
the hierarchical structure to the network fitting a power-law distribution (a small fraction
of nodes has most of the interactions). More than 66% of the all evidence network nodes are
classified as BM. Examples of BM are the rpoA, rpoB, rpoC, and rpoZ, genes coding for RNA
polymerase subunits.

Please note that the BM class is composed of nonregulators and is inferred based on
their regulation solely by GRs. Therefore, some of its members can be transferred to the
Md or IM class if they are found to be regulated by a TF from the Md class. However,
it is very unlikely for a structural gene belonging to the Md class to become part of the
BM (because it requires losing regulations mediated by an Md TF) and even less likely
for IMs because it would require the loss of at least two Md-mediated interactions. For
these reasons, a regulatory network with high genomic coverage tends only to reduce the
BM as more interactions are included. On the other hand, regulatory networks with low
genomic coverage are highly likely to be lacking interactions by GRs and their BM will
increase with genomic coverage. It was the case for the large increase in genomic coverage
in a previous update of the C. glutamicum transcriptional regulatory network from 2011
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(genomic coverage: ~24%) to 2016 (genomic coverage: ~71%), which was mainly due to
the inclusion of the sigA sigmulon, causing an increment of BM from 60% to 77% of the
network. The Md class is composed of ~28% (691/2441) of the network, divided into locally
independent modules (see below). Finally, the IM class is composed of ~5% (117/2441) of
the genes in the network, all of them being structural genes (nonregulators with kout = 0).

The Md class is further divided into locally independent modules, groups of genes that
are combinatorially expressed in response to specific media conditions. In the case of the all
evidence network, the Md class is divided into 64 modules, 18 of them (28%) enriched with
one or more biological functions (Figure 3b). We used a “guild-by-association” approach
to assign a biological function to nodes that have no previous annotation due to poorly
annotated orthologs but belong to enriched functional modules (e.g., a module where
all but one node has a GO annotation for DNA repair) [38]. The proportions for each
NDA class are conserved in the network containing only strongly supported interactions,
BM being the largest class, followed by Mds, IMs, and lastly, GRs. On the other hand,
when regulations mediated by sRNAs are integrated (sRNA network) to the all evidence
network, the proportions change for the BM and Md classes, the Md class being the largest
one (Figure 3c). The number of modules is largely increased with the inclusion of sRNA
regulations (Figure 3e), being an outlier in the distribution of the number of modules
of bacterial regulatory networks, while the strong and all evidence networks have similar
values. Even though the sRNA regulatory network is larger (Figure 1) and every sRNA
but cgb_20925 is included in the Md class, this does not compensate for the number of
modules in the network. This is observed when we compare the distribution of the size
of the modules in the networks (Figure 3e). This is also a result of the sRNAs regulating
many of the nodes that are solely regulated by sigA in the all evidence network, transferring
them from the BM class to the Md class and decreasing the BM class from 66.5% to 44.2%
of the network.

Comparison of the size of the classes provides insights into their differences and
similarities; contrasting the elements of each class contributes more to the comparative
purpose. We used the Simpson similarity index to identify the overlap of two classes, taking
as reference the smallest one in each comparison. Thus, the Simpson similarity index for
two sets, one being a subset of the other, is 1. On the other hand, two sets having no overlap
at all have an index of 0, and two sets where half of the smallest one is a subset of the largest
one will have 0.5 as an index. For each NDA class, we computed the Simpson similarity
index for every pair of networks and found that the all evidence and sRNA networks are
more similar to each other than to the strong network (Figure 3d). This is expected since
the all evidence network is a subset of the sRNA network (Figure S1). Please note that even
though one network is a subset of the other, NDA classification is performed independently
for each network; therefore, the class of a node can change from one network to another.
Previous analysis of the robustness of the NDA classifications to random remotion of nodes
and interactions showed the IM class is the least conserved class [13]. Surprisingly, this
was not the case in the class conservation across network models, where the Md class
was the least conserved (Figure 3d). This was caused by the inclusion of sRNAs in the
Md class. On the other hand, the similarity index of the IM class between the all evidence
and sRNA networks was not affected because even though the number of intermodular
nodes increased (from 117 to 194), one is a subset of the other. Consistent with the previous
robustness analysis of the C. glutamicum network to random interactions remotion [13], the
basal machinery is well conserved, while the GR class is the most conserved class, with a
similarity index of 1 for the three comparisons between the networks. This is because the
all evidence and sRNA networks have the same global regulators (listed in Figure 3a), and
the strong network has four of these nine global regulators (sigA, sigH, dtxR, and glxR).

When analyzing the communication between classes (Figure 3f), most of the inter-
actions in the network occur from GR → BM, followed by GR → Md and Md → Md
(regulations between modular TFs). For the sRNA network, GR→ BM is decreased, while
the Md→Md interactions are increased due to the inclusion of sRNAs in the Md class,
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regulating nodes that used to be part of the BM but are now included in the Md class.
The GR and IM classes have virtually the same fraction of regulations coming from GRs
and Md TFs in the C. glutamicum network, but further investigation in other organisms is
required to assess the conservation of the proportions.

3.4. Recovering Conserved Interactions from Other Model Organisms

Regulog analysis is based on the premise that a TF–TG interaction from organism
A is conserved in organism B if B has an ortholog of the TF, an ortholog of the TG, and
a binding site for the TF in the promoter region of TGs [11]. As regulatory networks are
highly plastic, a caveat of the regulog analysis is the functional divergence of one of the
components involved in the interaction, especially for the TF [39]. Therefore, this analysis
is usually applied between phylogenetically closely related organisms and is useful to
transfer interactions from one model organism to others, for example, from C. glutamicum
to other Corynebacteriales [15]. However, model organisms for the study of regulatory
networks are phylogenetically far from each other, which allows the transfer of interactions
from model organisms across several bacterial genera [10,15,40]. We restricted our source
organisms to purely strong networks as they only contain directed TF–DNA interactions
supported by at least strong evidence, namely, E. coli, B. subtilis, and S. coelicolor. Please note
that despite the high completeness of the network for M. tuberculosis [1] and the closeness to
C. glutamicum in the phylogeny, we did not use this network as a source since it was mainly
constructed using only high-throughput technologies without further confirmation with
directed experiments. This causes an unusually lower clustering coefficient for the network
(see Figure 5 in reference [6]). Moreover, C. glutamicum has been used as a source organism
for the inference of regulatory interactions in M. tuberculosis [41]. We acknowledge the
caveats of using distant organisms for regulog analysis; for this reason, we applied strict
conditions during the entire workflow, prioritizing precision at the expense of losing many
potential interactions.

Using S. coelicolor, B. subtilis, and E. coli as source organisms (Figure 4a), we aimed to
identify conserved interactions despite their phylogenetic distance (especially for B. subtilis
and E. coli). To do so, first, we identified the pair-wise genome-wide orthologs between
the source organisms and E. coli with the OMA standalone package [30], and we kept only
the one-to-one orthology relationships as they have a higher probability of being bona fide
orthologs, more likely to conserve their functions [42]. We kept 1117 one-to-one orthology
relationships for S. coelicolor out of the total 2480 (45%), 661 out of 1480 (45%) for B. subtilis,
and 641 out of 1488 (43%) for E. coli (Figure 4b). As expected, there was a greater number of
one-to-one orthologous genes with S. coelicolor due to its phylogenetic closeness compared
with the other two source organisms. Just by filtering orthologs, we restrained more than
50% of nodes to be included in the transferred interactions. The next filter is due to the
completeness of the source networks since we can only transfer interactions between nodes
already present in the source networks (Figure 4c). From there, we were primarily interested
in TFs (white inner circles in Figure 4c), but we only considered those with at least one TG
with a one-to-one ortholog in C. glutamicum, resulting in a total of 8, 7, and 13 potential
TFs/regulons to be transferred from S. coelicolor, B. subtilis, and E. coli, respectively (colored
inner circles in Figure 4c). However, the number of potential interactions to be transferred
was reduced when we searched for a TF binding site in the promoter sequences of the
orthologous TG in C. glutamicum; 24 out of the 479 interactions from the S. coelicolor network
were conserved, along with the TF binding site, 17 out of 2576 from the B. subtilis network,
and 70 out of 4653 from the E. coli network. We recovered more regulogs from E. coli due to
the completeness of the source network. We lost many interactions through the stringent
filters we applied, but we expect these conserved interactions to be true-positives. As
mentioned above, the main goal of this interactions transfer is to detect interactions for the
C. glutamicum TFs that are still missing in the network (Figure S3) despite the exhaustive
work of the community to model the network. We retrieved interactions for a total of five
DNA-binding TFs not considered in the current curation state of the network (Figure 4e).
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Given that the C. glutamicum regulatory mechanism is already one of the most studied
and curated (Figure S2), most of the TFs that were retrieved from regulogs were already
present in the all evidence network (Figure 4e). However, in terms of interactions, 82 out
of the 111 interactions were not present in any of the C. glutamicum curated networks
(Figure 4f). There was poor overlap between the regulogs obtained from each organism. There
was one common TF between E. coli and S. coelicolor (Zur) and another one between E. coli and
B. subtilis (LexA) (Figure 4g,h).

Figure 4. Putative regulons from other model organisms. (a) Networks with strong interactions
of S. coelicolor, B. subtilis, and E. coli. used as a source of information. Rounded rectangles color
is used to relate the organism to the rest of the figure. (b) Orthology relationship type between
source organisms and C. glutamicum. Only one-to-one relationships were used for downstream
analysis. (c) Size comparison between the one-to-one orthology genes (green circles), the orthologs
with at least one interaction in the source network (inner gray circle), transcription factor (TF)
orthologs (inner white circle), and TF orthologs with at least one target gene (TG) with one-to-one
orthology relationship (inner colored circles and numbers). (d) Size comparison between the source
networks (gray circles with large gray numbers), TF–TG pairs conserved as orthologs one-to-one
in C. glutamicum (inner white circles), and the interactions conserved with a TF binding site in the
promoter region of the TG (colored inner circles and numbers of regulogs). (e) Venn diagrams
showing the overlap of TFs between three sets: the strong network (green circle), the all evidence
network (light green circle), and the interactions from the source organisms with the unique TFs
listed. (f) Venn diagrams showing the overlap of interactions between the strong network, the all
evidence network, and the regulogs network from source organisms. (g,h) Euler diagrams showing
poor overlap between the regulogs (g), and their TFs (h).
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In the following section, we describe some of the conserved regulations in C. glutam-
icum. From S. coelicolor, 24 interactions were conserved. The interaction of Zur (cg2502)
regulating cg0042 is already part of the strong network (Figure S4). Another interaction is
by RegX3 (cg0484), an essential response regulator of the SenX3–RegX3 two-component
system [43]. RegX3 has a one-to-one orthology relationship with PhoP (SCO4230) from
S. coelicolor, as does the gene amtB (cg2261) with SCO5583, for which a regulatory site for
the PhoP ortholog in their upstream region is conserved. However, the interaction could
not be transferred from E. coli or B. subtilis because a many-to-many orthology relation-
ship was found for RegX3 in both organisms and, therefore, discarded. RegX3 has been
characterized as a gene coding a regulator of phosphate-dependent gene expression in
Mycobacterium smegmatis [44], required for virulence in M. tuberculosis [45], but its regulon
has not been characterized in C. glutamicum. PhoP represses amtB and other nitrogen genes
in S. coelicolor [46]. Previous work showed that amtB is required for ammonium uptake in
C. glutamicum [47]. A binding site for PhoP was found 87–69 bp upstream of the cg2261
translation start codon. This agrees with the mechanism of amtB regulation in S. coelicolor,
binding upstream of the CDS and repressing its transcription by regulating a promoter in
the upstream sequence from the binding site [46]. From B. subtilis, 17 interactions were
fully conserved. For example, an autoregulation for LexA that was already part of the
strong network (Figure S5). Cg1098 is an ortholog of SCO3129, a TetR family regulator
involved in S. coelicolor osmotic stress [48]. In S. coelicolor, it regulates the transcription of
two (SCO3128 and SCO3130) genes and its own. However, only the autoregulation was
fully conserved in C. glutamicum. Most of the characterized TetR family regulators regulate
their own transcription [49].

From E. coli, we recovered a total of 70 interactions, for example, ArgR regulating
argC (Figure S6), LexA (cg2114) regulating recA (Figure S7), and NrdR regulating nrdI
(Figure S8). While the first two interactions are already included in the strong network,
the latter is only included in the all evidence network. The gene cg1327 has b1334 as an
ortholog, coding for the FNR global regulator in E. coli. For this protein, the regulation
of hmp (cg3141) and the autoregulation were fully conserved. However, the cg1327 gene
is currently part of the basal machinery in the C. glutamicum network due to unreported
characterization of its regulon. The gene cg2899 codes for a regulator of the LysR family
and is an ortholog of b2537 (HcaR) in E. coli, regulating hcaE, which is an ortholog of cg2637
(benA) in C. glutamicum, only regulated by GlxR and BenR in the all evidence network. In
contrast with C. glutamicum, in E. coli, hcaR and hcaE are divergently transcribed, sharing
the same promoter recognized by HcaR. The gene cg0350 encodes for the GlxR ortholog to
CRP in E. coli, both being global regulators in their corresponding networks. The regulation
of CRP to dadA (b1189) is fully conserved in C. glutamicum for their orthologs (GlxR and its
target cg3340, repectively). The gene cg3340 is currently regulated only by SigA. The other
TG conserved is cg2175 (with b3167 as its ortholog in E. coli), which codes for a ribosome
binding protein. However, none of the two targets were identified in a previous in silico
analysis of the GlxR regulon in C. glutamicum [50]. The gene cg1425, coding for LysG (ArgP
encoded by b2916 in E. coli), regulates dnaA that is not part of the current C. glutamicum
network. However, none of the three interactions were conserved in C. glutamicum. DnaA,
besides being the protein for DNA replication initiation, is a transcriptional regulator
that controls the transcription of its own coding gene and at least 10 others in E. coli.
The autoregulation and the regulation of the other four genes (cg0004, cg0005, cg1525,
and cg1550) were fully conserved in C. glutamicum (Table S2). Zur is encoded by cg2502,
ortholog to b0683 in E. coli. A regulation from Zur to cg2183 was recovered from the oppC
gene in E. coli. The interactions are not part of the current networks for C. glutamicum. LldR
is encoded by cg3224, ortholog to b2980 (glcC in E. coli), which regulates glcB. The interaction
was conserved in C. glutamicum but not present in the current networks, although the LldR
regulon has 12 TGs already.

These results show that even though some interactions that are already known in
C. glutamicum are recovered, the rate of recovered interactions is low. Therefore, for long
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phylogenetic distances, it might be better to discriminate false-positives after a mildly
lax prediction. We noticed that most of the interactions are lost due to the conservative
approach of using only one-to-one orthologs. A potential solution for this is the use of
other orthology relationships, with subsequent discrimination of false-positives through
the conservation of regulogs not only in C. glutamicum but also in other closely related
organisms, conferring greater confidence values to those interactions highly conserved.

4. Conclusions

In this work, we update the C. glutamicum regulatory network by manual curation of
the literature. We also went beyond the regulation of transcription initiation to incorporate
regulations mediated by protein–protein interactions and small RNAs. Three network
models with different confidence levels were reconstructed and deposited in the new v2.4
of Abasy Atlas (https://abasy.ccg.unam.mx (accessed on 1 January 2021)). Poor efforts
have been carried out to provide consolidated, disambiguated, homogenized high-quality
regulatory networks on a global scale, with their structural properties, system-level com-
ponents, and historical snapshots to trace their curation process. We originally conceived
Abasy Atlas to fill this gap by making a cartography of the functional architectures of
regulatory networks for a wide range of bacteria.

This work provides the most complete and reliable set of C. glutamicum regulatory
networks, which can be used as the gold standard for benchmarking purposes and training
data for modeling. The C. glutamicum regulatory networks have been metacurated to
avoid heterogeneity such as inconsistencies in gene symbols and heteromeric regulatory
complexes representation. This enables large-scale comparative systems biology studies
to understand the common principles and particular lifestyle adaptations of regulatory
systems across bacteria and to implement those principles into future work such as the
reverse engineering of regulatory networks. The historical snapshots deposited in Abasy
Atlas allow us to carry out network analyses at different incompleteness levels, making
it possible to identify how a methodology is affected, to pinpoint potential bias and
improvements, and to predict future results. Regulatory network models, gene information,
and module annotations can be downloaded from the “Downloads” section in Abasy Atlas
(https://abasy.ccg.unam.mx/downloads (accessed on 1 January 2021)). The same web
page provides useful information about the downloadable files.
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