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Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins

in multiple animal models of inherited cardiomyopathy. These signaling alterations

together with the primary mutation are predicted to contribute to the overall cardiac

phenotype. As a result, identification and integration of post-translational myofilament

signaling responses are identified as priorities for gaining insights into sarcomeric

cardiomyopathies. However, significant questions remain about the nature and

contribution of post-translational phosphorylation to structural remodeling and cardiac

dysfunction in animal models and human patients. This perspective essay discusses

specific goals for filling critical gaps about post-translational signaling in response to

these inherited mutations, especially within sarcomeric proteins. The discussion focuses

primarily on pre-clinical analysis of animal models and defines challenges and future

directions in this field.
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INTRODUCTION

More than 3800 genemutations are linked to inherited cardiomyopathies (ICs) and identification of
underlying gene mutations continues to expand (https://www.ncbi.nlm.nih.gov/clinvar/). Animal
models expressing individual mutations have provided insight into the human disease and a
better understanding of myofilament force transduction mechanisms (Tardiff, 2005, 2011). In these
models, the pathophysiological response is often linked to a specific disease progression such as
hypertrophic, dilated, restrictive, left ventricular noncompaction, and/or arrhythmogenic right
ventricular phenotypes (Fatkin et al., 2014). However, understanding how a specific mutation leads
to the cardiac phenotype remains a persistent question (van der Velden et al., 2015), and the
factors contributing to disease variability in patients are only partially understood. One area which
may provide insight into these issues, and therefore deserves further consideration, is dynamic
local myofilament signaling and its impact on downstream networks and/or global signaling
within cardiac myocytes. This Perspective focuses on the possibility that IC-linked mutations alter
local myofilament signaling and contribute to downstream remodeling and disease progression.
Our current understanding of dynamic post-translational myofilament signaling also is briefly
summarized to lay the foundation for future work aimed at investigating relationships between
IC-linked mutations and myofilament modulation.

First, it is important to point out that previous work in humans and animal models indicate IC-
linked heart disease is complex. In patients, morbidity and mortality are often not easily explained
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by an identified mutation acting as a primary physiological
insult or substrate (Ho et al., 2015). Instead, a temporal and
spatial network of factors contributes to progressive cardiac
structural and functional remodeling in IC patients, and can
ultimately evolve into end stage heart failure. In addition to a
primary mutation, factors known or suspected to increase the
risk for disease include second hit and epigenetic mutations,
polymorphisms, and other genetic modifiers, which include
genes linked to cardiac remodeling, and environmental factors
such as sex, aerobic activity levels, and risk factors such
as hypertension (McNally et al., 2013; Månsson, 2014; Ho
et al., 2015; van der Velden et al., 2015). In addition, cardiac
remodeling and dysfunction is progressive on many levels
and includes alterations in cellular morphology, signaling, and
function, cell-cell architecture, plus organ-level electrical, and
pump dysfunction. Signaling modulation is predicted to be an
important focus for future work in recent reviews (Yar et al.,
2014; van der Velden et al., 2015). Figure 1 illustrates the variety
of signaling pathways known to phosphorylate myofilament
proteins, and therefore, could contribute to modulation by
targeting myofilament proteins for phosphorylation. The
emphasis on myofilament modulation in this Perspective is
based on the possibility that myofilament phosphorylation may
be an early secondary response to IC-linked mutations, and
therefore present prior to significant structural and functional
remodeling within myocytes. Myofilament signaling may
continue to contribute to adaptive functional responses and/or
initiate one or more later compensatory behaviors associated
with cardiac remodeling and disease, such as alterations in
excitation-contraction (E-C) coupling, myocyte Ca2+ handling,
and metabolism (Ashrafian et al., 2011).

In animal models expressing IC-linked mutations, E-C
coupling and Ca2+ handling network alterations are often
detected in parallel with in vivo evidence of cardiac performance
compensation and/or dysfunction, and prior to end-stage heart
failure (Ashrafian et al., 2011). These changes in Ca2+ increase
the risk for developing arrhythmia and sudden cardiac death
(Ashrafian et al., 2011; Yar et al., 2014), and the events responsible
for initiating and/or causing remodeling of the Ca2+ signal
may be critical for understanding IC-linked disease progression.
Interventions to prevent or delay disease progression prior
to the onset of Ca2+ remodeling would be desirable in high
risk families and/or patients. However, little is known about
the process or mechanism(s) responsible for the initiation of
Ca2+ remodeling in these patients. IC-linked mutations may
initiate changes in local myofilament signaling network(s) and
the myofilament post-translational modification (PTM) pattern
helps to maintain cardiac performance prior to any changes
in Ca2+ handling. Evidence is accumulating that myofilament
residues targeted by signaling pathways can initiate additional
“secondary” or “adaptive” changes in the phosphorylation of
other myofilament residues to modulate function (Montgomery
et al., 2002; Scruggs et al., 2006; Lang et al., 2015), which appears
to maintain steady state contractile function in the short term
(Lang et al., 2015). Chronic activation of this secondary signaling
within the myofilament may become inadequate and/or serve
as a direct trigger for later structural and functional remodeling

such as the IC-associated alterations in Ca2+ handling and
E-C coupling described above. Although critical studies are still
needed to prove this idea, future support for a direct role of local
myofilament signaling in response to IC-linked mutations could
lead to early diagnostic tests and/or therapeutic strategies to
prevent or minimize IC disease progression in high risk patients.

IC-LINKED MUTATIONS AND A ROLE FOR
LOCAL MYOFILAMENT SIGNALING

There are some general observations which are consistent
with a role for local myofilament signaling responses in IC-
linked structural and functional remodeling. First, a causative
mutation is usually not identified in new probands until cardiac
dysfunction develops, which is often during adolescence or later
(Cirino and Ho, 2008). The known impact of an IC-linked
mutation on myofilament function and/or Ca2+ remodeling
also may not predict the cardiac phenotype in animal models
or patients, especially at early time points (Jacques et al.,
2008; Jensen et al., 2013). A recent developmental study also
demonstrated that inhibition of IC-linked gene expression during
the first 6 weeks of life markedly reduced cardiac remodeling at
40 weeks in an α–MHCR403Q mouse model, while more modest
improvements developed if mutant protein expression was
inhibited after 6 weeks of age (Cannon et al., 2015). Secondary
modulatory mechanisms in the myofilament are consistent
with these observations and could contribute to developmental
lags and/or unexpected phenotypes. Myofilament modulatory
networks also may undergo developmental transitions over the
same perinatal period observed for many contractile proteins
(Cummins, 1982; Lyons et al., 1990; Reiser et al., 1994, 2001;
Suurmeijer et al., 2003). Impaired or altered myofilament
signaling development could result in permanently sub-optimal
myofilament modulation in adults with IC-linked mutations.
Alternatively, this local signaling network modulation may be
hard-wired to respond to myofilament perturbations such as IC-
linked mutants, and either directly or indirectly trigger further
adverse structural and functional remodeling of myocardium.

The local myofilament signaling concept also is supported by
reported changes in the phosphorylation ofmultiplemyofilament
protein residues in response to IC-linked mutation expression,
and alterations in additional phosphorylated residues linked to
heart failure (Table 1). Altered myofilament phosphorylation
develops in at least one IC-linked mutation for each contractile
protein, and there is significant potential for myofilament
phosphorylation to modulate contractile function based on
the myofilament residues already identified as phosphorylation
targets (see Table 1 and references). However, it is not
known whether a given contractile protein or mutations
clustered into a specific cardiomyopathy produce common
spatial and/or temporal phosphorylation patterns. Thus, to test
whether myofilament modulatory phosphorylation makes an
early contribution to IC-linked phenotypes requires rigorous
experimental testing in the future. As part of these studies,
it is important to identify the dose-dependent spatial and
temporal impact of each IC-linked mutation on myofilament
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FIGURE 1 | Illustration of signaling kinases and phosphatases known to modulate phosphorylation of contractile proteins. One or more of the kinases

and/or phosphatases shown may contribute to secondary or “local” phosphorylation changes in response to IC-linked mutations. The Ser/Thr kinases shown to

target myofilament proteins include adenosine monophosphate kinase (AMPK), apoptosis signal-regulating kinase 1 (ASK1), Ca2+/calmodulin protein kinase II

(CamKII), sterile 20-like kinase 1 (Mst1), p21-activated kinase (PAK), protein kinase A (PKA), protein kinase C (PKC), protein kinase D (PKD), protein kinase G (PKG),

and Rho-associated protein kinase (ROCK). Tyrosine kinases which target myofilament troponin I include non-receptor activated Src and the Lck/Yes novel (Lyn)

kinase (Salhi et al., 2014). Phosphatases known to target myofilament proteins include myosin light chain phosphatase (MLCP), protein phosphatase I (PPI), protein

phosphatase 2A (PP2A) (Solaro and Kobayashi, 2011). The contractile proteins shown in this illustration are slow/cardiac troponin C (s/cTnC), cardiac troponin I (cTnI),

cardiac troponin T (cTnT), alpha-tropomyosin (Tm), and actin in the thin filament plus the myosin heavy chain (MHC), myosin light chains 1 and 2 (MLC1, MLC2,

respectively), and cardiac myosin binding protein C (cMyBP-C). The proteins identified as phosphorylation targets include cTnI, cTnT, Tm, MLC1, MLC2,

and

cMyBP-C (indicated by red P in the legend). For further information see the following references: (He et al., 2003; Barefield and Sadayappan, 2010; Solaro and

Kobayashi, 2011; Streng et al., 2013; Westfall, 2014; Huang and Szczesna-Cordary, 2015).

phosphorylation and understand the modulatory impact of
each phosphorylated contractile protein residue. Although
not included here, phosphorylation of additional sarcomeric
proteins, such as titin, also may contribute to this modulation.
A few representative studies on cardiac troponin I (cTnI)
mutations and phosphorylation are briefly presented below to
illustrate our current understanding and the rationale for future
directions on myofilament phosphorylation in response to IC-
linked mutations.

IC-LINKED MUTATIONS AND β-AR
SIGNALING IN MYOFILAMENTS

Previous work on β-adrenergic receptor (β-AR) signaling
provides direct support for a role of local myofilament signaling

in IC-linked changes in cardiac function. Several IC-linked
mutations directly influence myofilament phosphorylation
and/or β-AR signal transduction, as illustrated by representative
cTnI mutations. Protein kinase A (PKA)-induced cTnI-S23/24
phosphorylation significantly contributes to the positive
β-AR-induced lusitropic response (Takimoto et al., 2004;
Yasuda et al., 2007; note that residue numbering is based
on Uniprot human protein accession numbers, see Table 1).
Uncoupling between the β-AR receptor and this response
often develops in IC-linked animal models (reviewed by
Messer and Marston, 2014). Poor outcomes are associated
with myofilament β-AR uncoupling in other types of human
heart failure, and the ability of IC-linked mutations to cause
this uncoupling is proposed to be a prognostic indicator
in patients with IC-linked mutations (Messer and Marston,
2014).
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TABLE 1 | Contractile protein phosphorylation sites associated with inherited cardiomyopathies (IC) and heart failure (HF).

Protein

(Uniprot #)*

IC – linked sites** Additional sites linked

to HF**

Additional putative sites References

Tropomyosin

(P09493)

S2831 1(Warren et al., 2008; Marston et al., 2013; Schulz et al.,

2013)

Troponin T

(P45379-6)

T203, T2842 T194, S1983 S2, T2753 2Sfichi-Duke et al., 2010; Michael and Chandra, 2016
3Reviewed by: Streng et al., 2013;

Wei and Jin, 2011

Troponin I

(P19429)

S23/S244, S42, S44,

T1435
S5, S6, Y26, S42, S44,

S77, T78, S166, T181,

S1996

T51, S1506,7 4Reviewed by: Messer and Marston, 2014
5Burkart et al., 2003b; Kobayashi et al., 2004
6Zhang et al., 2012
7Nixon et al., 2012; Oliveira et al., 2012

cMyBP-C

(Q14896)

S275, S284, S3048 S286, T2909 S18, S78, Y79, S86, S133,

T274, S297, S311, S424,

S427, T602, T607, S708,

S106710

8van Dijk et al., 2012
9Kooij et al., 2013
10Jia et al., 2010; Kooij et al., 2013

Reviewed by: Barefield and Sadayappan, 2010

MLC1/2

(P08590/P10916)

MLC2- S15
11 MLC1- S195

11 MLC2-S19
12 11Reviewed by:

Huang and Szczesna-Cordary, 2015
12Sanbe et al., 1999

*Uniprot number for human protein; numbering includes Met1 residue. **Bold font indicates direct evidence; Regular font indicates indirect evidence; Changes in IC-linked sites are also

detected during HF.

Several mechanisms can produce β-AR uncoupling in
response to IC-linked mutations. Some IC-linked mutations
directly disrupt post-translational cTnI-S23/24 phosphorylation.
For example, the IC-linked cTnI-R21C mutation directly blocks
PKA-induced phosphorylation of the adjacent S23/24 residues
(Gomes et al., 2005; Wang et al., 2012; Dweck et al., 2014;
Cheng et al., 2015). IC-linked mutations in more distant proteins
also modify this PKA-targeted cTnI phosphorylation (Najafi
et al., 2016). Alternatively, PKA continues to phosphorylate
myofilament targets, such as cTnI-S23/24, in the presence of
other IC-linked mutations. Representative mutations such as
cTnI-R145G and -P82S, disrupt signal transduction within cTnI
to cause β-AR uncoupling (Deng et al., 2001; Messer and
Marston, 2014; Ramirez-Correa et al., 2015; Cheng et al., 2016).
The cTnI-P82S mutation is noteworthy because the diastolic
dysfunction and late-onset of disease in humans associated
with this mutation is postulated to be a long-term consequence
of secondary alterations in PKA-related myofilament signaling
(Nimura et al., 2002; Mogensen et al., 2004; Frazier et al., 2008;
Ramirez-Correa et al., 2015). In addition, IC-linked mutations
may indirectly cause β-AR uncoupling due to changes in
the overall myofilament phosphorylation status (Kooij et al.,
2010), which could result from differences in other myofilament
associated kinase and phosphatase activities (Figure 1).

IC-LINKED MUTATIONS AND ADDITIONAL
MYOFILAMENT SIGNALING PATHWAYS

While β-AR induced PKA modulation is among the most
studied signaling pathways targeting myofilaments, a number
of additional signaling pathways also modulate myofilament
function (Figure 1). A few studies also indicate that IC-
linked mutations modify both kinase and phosphatase signaling
pathways and downstream target residues other than β-
AR/PKA-targeted sites. Mutation-related alterations associated
with the protein kinase C (PKC) second messenger serve as a

representative example. First, progressive increases in cardiac
PKC expression and increased PKC affinity for sarcomeric
proteins are associated with IC-linked mutations (Arimura
et al., 2004; Sfichi-Duke et al., 2010). Modification of end-
targets, such as PKC phosphorylation of cTnI-S42/44 provides
some initial support. Myofilament function is similarly modified
by either PKC-induced phosphorylation or phospho-mimetic
cTnI-S42/44 substitutions (Noland et al., 1996; Burkart et al.,
2003b). Interestingly, the myofilament response to phospho-
mimetic cTnI-S42/44 is significantly greater in myofilaments
expressing IC-linked tropomyosin (Tm)-E180G compared to
controls (Burkart et al., 2003a).

Multiple neurohormones activate receptor-induced PKC
signaling in myocytes, such as angiotensin II (AgII), endothelin,
and catecholamine activation of α-adrenergic receptors (Dorn
and Force, 2005). Accelerated and/or exaggerated cardiac
remodeling and dysfunction develop in response to one
or more of these neurohormones in mice with IC-linked
mutations (Maass et al., 2004; Gramlich et al., 2009). This
severe response has been interpreted as a stress response, but
myofilament-associated PKC activity may already be modified in
myofilaments expressing IC-linked mutations independent from
receptor activation. Thus, further neurohormone stimulation
of PKC may accelerate additional remodeling and produce
progressive deterioration in cardiac function. This interpretation
is supported by evidence of more severe remodeling in
endothelin-treated, cardiac-derived stem cells from patients with
IC-linked mutations (Tanaka et al., 2014). Pro-left ventricular
polymorphisms present in the renin-angiotensin-aldosterone
(RAA) axis also are associated with higher morbidity and
mortality in patients with IC-linked mutations (Ortlepp et al.,
2002; Kaufman et al., 2007). In addition, environmental stressors
known to activate the RAA axis, such as pressure overload,
further exacerbate IC-associated contractile dysfunction (Chen
et al., 2013). While angiotensin receptor inhibitors failed to
reverse fibrosis (Axelsson et al., 2015), some tangential evidence
in Duchenne’s muscular dystrophy (DMD) patients indicates
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earlier treatment with these types of inhibitors may be beneficial
in treating DMD patients with cardiomyopathy (Duboc et al.,
2007; Kamdar and Garry, 2016). DMD is caused by mutations in
dystrophin, a crucial component of the costamere, which anchors
sarcomeres to the sarcolemma.

Many of the potential signaling networks associated with
myofilaments have the ability to produce a range of outputs via
multi-layer signaling cascades capable of targeting both kinases
and phosphatases, multiple sarcomeric protein targets, and
multiple residues targeted within a single myofilament protein
(Figure 1). The complexity of local myofilament signaling
contributes to difficulties in defining the modulatory role for a
given signal in myofilament function (Angeli et al., 2004). As a
result, these signaling networks may not be easily recognized as
contributors to IC-linked remodeling and/or disease. However,
these types of pathways also are noteworthy because they are
either predicted or known to act as oscillators capable of flexible
outputs. Oscillatory signals have the potential to provide highly
dynamic modulation to maintain steady state structure/function
(Angeli et al., 2004). An IC-linked mutation could disrupt or
alter one or more signals in an oscillatory pathway to produce
subtle shifts in phosphorylation turnover at multiple target
residues. These types of pathways may have little initial impact,
but lead to bi- or multi-phasic temporal alterations in one or
more target PTMs (Angeli et al., 2004). An IC-linked mutation
which chronically induces secondary myofilament signaling to
modulate function may either become inadequate to maintain
myofilament structure and function, or directly trigger further
adaptations beyond the myofilament, such as the myocyte Ca2+

handling modifications described earlier.
While a secondary reduction in myofilament phosphorylation

can coincide with cardiac dysfunction (Bayliss et al., 2013;
Alves et al., 2014), no published reports prove bifurcative/
oscillatory signaling and/or altered PTM levels develop in
multiple myofilament proteins prior to detectable morphological
and/or functional remodeling in animal models with IC-linked
mutations. Short-term expression of cardiac troponin T (cTnT)-
R92Q in bigenic mice provides some indirect evidence. These
mice develop early alterations in a range of signaling pathways
associated with structural remodeling, which returned to baseline
after turning off mutant expression (Lutucuta et al., 2004). There
is also some indirect support for IC-induced oscillatory changes
based on changes in Ca2+ wave frequencies in cardiomyocytes
expressing gain-of-function SHP-2/PTPN11 mutations, which
are linked to Noonan’s syndrome (Uhlén et al., 2006). In
addition, myofilament PTMs and functional responses observed
in adult myocytes after PKC gene transfer are consistent with
bifurcative myofilament signaling (Hwang et al., 2013). These
data alone do not provide adequate proof that local myofilament

modulation contributes to IC-linked remodeling, but suggest

that local myofilament signaling in IC-linked mice is worthy of

analysis. Specifically, studies are needed to determine whether

local myofilament modulation precedes and/or works in parallel
with other adaptive responses associated with structural and
functional remodeling observed in IC animal models.

DYNAMIC SIGNALING MODULATION IN
CARDIAC MYOFILAMENTS

IC-linked mutations also may trigger a secondary signaling
response, which may arise from structural changes imposed
by a mutation. This secondary response could involve one or
more signaling pathways known to target myofilament proteins
(Figure 1). However, in contrast to the typical receptor-based
signaling activation discussed earlier, only signaling networks
localized to the myofilament undergo changes in activity. This
localized signaling also may undergo dynamic changes in
response to structural alterations produced during contraction
and relaxation. Signaling studies utilizing phospho-mimetic
and -null substitutions at myofilament target residues provide
some initial support for the presence and role of dynamic,
local myofilament signaling modulation (Lang et al., 2013,
2015). Specifically, alterations in the phosphorylation of
other myofilament residues develops in myocytes expressing
phospho-mimetic or non-phosphorylatable substitutions at one
or more kinase-targeted myofilament residues (Montgomery
et al., 2002; Scruggs et al., 2006, 2009; Lang et al., 2013; Nixon
et al., 2014; Lang et al., 2015). This secondary phosphorylation
also is associated with altered functional responses (Lang
et al., 2013, 2015). Secondary adaptations in myofilament
phosphorylation are reported in both thick and thin filaments
using a variety of approaches. For example, a cTnI-S150
phospho-mimetic blunts the β-AR/PKA myofilament response
(Nixon et al., 2014) and elevated myofilament phosphorylation
develops in mice expressing non-phosphorylatable ventricular
myosin light chain (MLC; Scruggs et al., 2009). Other post-
translational modifications also trigger local myofilament
phospho-modulation, as indicated by alterations in cardiac
myosin binding protein C (cMyBP-C) phosphorylation after
S-glutathiolation increases during heart failure (Stathopoulou
et al., 2016). Taken together, these results are consistent with
local myofilament modulatory signaling changes during
sustained structural or functional perturbations in the
sarcomere.

Other approaches, such as proteomic analysis of myofilament
proteins during heart failure, also hint at dynamic PTM
modulation within myofilaments. Heart failure is associated
with altered phosphorylation residues in several contractile
proteins (see Table 1; Dubois et al., 2011; Zhang et al., 2012;
Kooij et al., 2013; Walker et al., 2013). Secondary signaling
also is reported in some, but not all myofilament phospho-
mimetic and -null animal models. These local signaling changes
may contribute to phenotypic differences among these models,
such as the significant differences reported in cTnI models
with phosho-substitutions at PKC-targeted sites (Pi et al.,
2002; Sakthivel et al., 2005; Bilchick et al., 2007; Kirk et al.,
2009). While differences in genetic approach, mouse strain,
age, and mutant expressivity may factor into these differences,
highly organized signaling network(s) which locally modulate
myofilament structure and function also may contribute to
divergent phenotypes.
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FUTURE DIRECTIONS

Future work needs to establish the circuitry, physiological
functions, and temporal response of local myofilament
modulatory signaling, and test whether this local modulation
is an early or longer-term contributor to IC-linked remodeling
and/or dysfunction. A parallel, translational goal for this
work is the development of diagnostic tools, improved
clinical management, and therapies to prevent and/or
delay disease progression in IC patients. The integration of

computational modeling, myofilament, cellular, and in vivo
genetic model work is critical for achieving these goals. As a
result, significant advancements are likely to depend on an
unusually high level of cooperativity and resource sharing among
investigators.
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