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Abstract

Sequence learning, prediction and replay have been proposed to constitute the universal

computations performed by the neocortex. The Hierarchical Temporal Memory (HTM) algo-

rithm realizes these forms of computation. It learns sequences in an unsupervised and con-

tinuous manner using local learning rules, permits a context specific prediction of future

sequence elements, and generates mismatch signals in case the predictions are not met.

While the HTM algorithm accounts for a number of biological features such as topographic

receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on

abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms

that can only partly be related to known biological mechanisms. Here, we devise a continu-

ous-time implementation of the temporal-memory (TM) component of the HTM algorithm,

which is based on a recurrent network of spiking neurons with biophysically interpretable

variables and parameters. The model learns high-order sequences by means of a structural

Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic con-

trol. In combination with nonlinear dendritic input integration and local inhibitory feedback,

this type of plasticity leads to the dynamic self-organization of narrow sequence-specific

subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse,

synchronous activity, and, thereby, for a robust, context specific prediction of future

sequence elements as well as for the autonomous replay of previously learned sequences.

By strengthening the link to biology, our implementation facilitates the evaluation of the TM

hypothesis based on experimentally accessible quantities. The continuous-time implemen-

tation of the TM algorithm permits, in particular, an investigation of the role of sequence tim-

ing for sequence learning, prediction and replay. We demonstrate this aspect by studying

the effect of the sequence speed on the sequence learning performance and on the speed

of autonomous sequence replay.
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Author summary

Essentially all data processed by mammals and many other living organisms is sequential.

This holds true for all types of sensory input data as well as motor output activity. Being

able to form memories of such sequential data, to predict future sequence elements, and

to replay learned sequences is a necessary prerequisite for survival. It has been hypothe-

sized that sequence learning, prediction and replay constitute the fundamental computa-

tions performed by the neocortex. The Hierarchical Temporal Memory (HTM)

constitutes an abstract powerful algorithm implementing this form of computation and

has been proposed to serve as a model of neocortical processing. In this study, we are

reformulating this algorithm in terms of known biological ingredients and mechanisms to

foster the verifiability of the HTM hypothesis based on electrophysiological and behav-

ioral data. The proposed model learns continuously in an unsupervised manner by biolog-

ically plausible, local plasticity mechanisms, and successfully predicts and replays complex

sequences. Apart from establishing contact to biology, the study sheds light on the mecha-

nisms determining at what speed we can process sequences and provides an explanation

of fast sequence replay observed in the hippocampus and in the neocortex.

Introduction

Learning and processing sequences of events, objects, or percepts are fundamental computa-

tional building blocks of cognition [1–4]. Prediction of upcoming sequence elements, mis-

match detection and sequence replay in response to a cue signal constitute central components

of this form of processing. We are constantly making predictions about what we are going to

hear, see, and feel next. We effortlessly detect surprising, non-anticipated events and adjust

our behavior accordingly. Further, we manage to replay learned sequences, for example, when

generating motor behavior, or recalling sequential memories. These forms of processing have

been studied extensively in a number of experimental works on sensory processing [5, 6],

motor production [7], and decision making [8].

The majority of existing biologically motivated models of sequence learning addresses

sequence replay [9–12]. Sequence prediction and mismatch detection are rarely discussed. The

Hierarchical Temporal Memory (HTM) [13] combines all three aspects: sequence prediction, mis-

match detection and replay. Its Temporal Memory (TM) model [14] learns complex context

dependent sequences in a continuous and unsupervised manner using local learning rules [15],

and is robust against noise and failure in system components. Furthermore, it explains the func-

tional role of dendritic action potentials (dAPs) and proposes a mechanism of how mismatch sig-

nals can be generated in cortical circuits [14]. Its capacity benefits from sparsity in the activity, and

therefore provides a highly energy efficient sequence learning and prediction mechanism [16].

The original formulation of the TM model is based on abstract models of neurons and syn-

apses with discrete-time dynamics. Moreover, the way the network forms synapses during

learning is difficult to reconcile with biology. Here, we propose a continuous-time implemen-

tation of the TM model derived from known biological principles such as spiking neurons,

dAPs, lateral inhibition, spike-timing-dependent structural plasticity, and homeostatic control

of synapse growth. This model successfully learns, predicts and replays high-order sequences,

where the prediction of the upcoming element is not only dependent on the current element,

but also on the history. Bringing the model closer to biology allows for testing its hypotheses

based on experimentally accessible quantities such as synaptic connectivity, synaptic currents,

transmembrane potentials, or spike trains. Reformulating the model in terms of continuous-
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time dynamics moreover enables us to address timing-related questions, such as the role of the

sequence speed for the prediction performance and the replay speed.

The study is organized as follows: the Methods describe the task, the network model, and

the performance measures. The Results illustrate how the interaction of the model’s compo-

nents gives rise to context dependent predictions and sequence replay, and evaluate the

sequence processing speed and prediction performance. The Discussion finally compares the

spiking TM model to other biologically motivated sequence learning models, summarizes limi-

tations, and provides suggestions for future model extensions.

Methods

In the following, we provide an overview of the task and the training protocol, the network

model, and the task performance analysis. A detailed description of the model and parameter

values can be found in Tables 1 and 2.

Task and training protocol

In this study, we develop a neuronal architecture that can learn and process an ensemble of S
sequences si ¼ fzi;1;zi;2; . . . ; zi;Cig of ordered discrete items zi,j with Ci 2 N

þ, i 2 [1, . . ., S]. The

length of sequence si is denoted by Ci. Throughout this study, the sequence elements zi,j 2 {A,

B, C, . . .} are represented by Latin characters, serving as placeholders for arbitrary discrete

objects or percepts, such as images, numbers, words, musical notes, or movement primitives

(Fig 1A). The order of the sequence elements within a given sequence represents the temporal

order of item occurrence.

The tasks to be solved by the network consist of

i). predicting subsequent sequence elements in response to the presentation of other elements,

ii). detecting unanticipated stimuli and generating a mismatch signal if the prediction is not

met, and

iii). autonomously replaying sequences in response to a cue signal after learning.

The architecture learns sequences in a continuous manner: the network is exposed to

repeated presentations of a given ensemble of sequences (e.g., {A, D, B, E} and {F, D, B, C} in

Fig 1B). In the prediction mode (task i) and ii)), there is no distinction between a “training” and

a “testing” phase. At the beginning of the learning process, all presented sequence elements are

unanticipated and do not lead to a prediction (diffuse shades in Fig 1B, left). As a consequence,

the network generates mismatch signals (flash symbols in Fig 1B, left). After successful learning,

the presentation of some sequence element leads to a prediction of the subsequent stimulus

(colored arrows in Fig 1B). In case this subsequent stimulus does not match the prediction, the

network generates a mismatch signal (red arrow and flash symbol in Fig 1B, right). The learning

process is entirely unsupervised, i.e., the prediction performance does not affect the learning. As

described in Sequence replay, the network can be configured into a replay mode where the net-

work autonomously replays learned sequences in response to a cue signal (task iii)).

In general, the sequences in this study are “high-order” sequences, similar to those generated

by a high-order Markov chain; the prediction of an upcoming sequence element requires account-

ing for not just the previous element, but for (parts of) the entire sequence history, i.e., the context.

Sequences within a given set of training data can be partially overlapping; they may share certain

elements or subsequences (such as in {A, D, B, E} and {F, D, B, C}). Similarly, the same sequence

element (but not the first one, see Limitations and outlook) may occur multiple times within the

same sequence (such as in {A, D, B, D}). Throughout this work, we use two sequence sets:
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Table 1. Description of the network model. Parameter values are given in Table 2.

Summary

Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X); E and I composed of M disjoint subpopulations Mk and I k (k = 1, . . ., M)

Connectivity • sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model • excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration (dendritic action potentials)

• inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse model exponential or alpha-shaped postsynaptic currents (PSCs)

Plasticity homeostatic spike-timing dependent structural plasticity in excitatory-to-excitatory connections

Populations

Name Elements Size

E ¼ [Mi¼kMk excitatory (E) neurons NE

I ¼ [Mi¼kI k inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k, Mk \Ml ¼ ; ð8k 6¼ l 2 ½1;M�Þ nE

I k inhibitory neurons in subpopulation k, I k \ I l ¼ ; ð8k 6¼ l 2 ½1;M�Þ nI

X ¼ fx1; . . . ; xMg external spike sources M

Connectivity

Source

population

Target

population

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, synaptic time constants τij = τEE; plastic weights Jij 2 {0, JEE,ij}

(8i 2 E; 8j 2 E; “EE connections”)

Mk I k all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights Jij = JIE (8i 2 I k; 8j 2Mk; 8k 2 ½1;M�; “IE

connections”)

I k Mk all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights Jij = JEI (8i 2Mk; 8j 2 I k; 8k 2 ½1;M�; “EI

connections”)

I k I k none (8k 2 [1, M]; “II connections”)

X k ¼ xk Mk one-to-all; fixed delays dik = dEX, synaptic time constants τij = τEX, and weights Jik = JEX (8i 2Mk; 8k 2 ½1;M�; “EX

connections”)

no self-connections (“autapses”), no multiple connections (“multapses”)

all unmentioned connections Mk ! I l , I k !Ml, I k ! I l , X k !Ml (8k 6¼ l) are absent

Neuron and synapse

Neuron

Type leaky integrate-and-fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) and spiking activity si(t) of neuron i:

• emission of the kth spike of neuron i at time tk
i if

Viðtki Þ � yi ð9Þ

with somatic spike threshold θi
• spike train: siðtÞ ¼

P
kdðt � tki Þ

• reset and refractoriness:

ViðtÞ ¼ Vr 8k; 8t 2 ðtki ; t
k
i þ tref ;i�

with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

tm;i
_V iðtÞ ¼ � ViðtÞ þ Rm;iIiðtÞ ð10Þ

with membrane resistance Rm;i ¼
tm;i

Cm;i
, membrane time constant τm,i, and total synaptic input current Ii(t) (see Synapse)

• excitatory neurons: τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (8i 2 E)

• inhibitory neurons: τm,i = τm,I, Cm,i = Cm, θi = θI, τref,i = τref,I (8i 2 I)

(Continued)
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Synapse

Type exponential or alpha-shaped postsynaptic currents (PSCs)

Description • total synaptic input currents:

excitatory neurons : IiðtÞ ¼ IED;iðtÞ þ IEX;iðtÞ þ IEI;iðtÞ; 8i 2 E

inhibitory neurons : IiðtÞ ¼ IIE;iðtÞ; 8i 2 I
ð11Þ

with dendritic, external, inhibitory and excitatory input currents IED,i(t), IEX,i(t), IEI,i(t), IIE,i(t) evolving according to

IED;iðtÞ ¼
X

j2E

ðaij � sjÞðt � dijÞ ð12Þ

with aijðtÞ ¼ Jij
e
tED

te� t=tEDYðtÞ and YðtÞ ¼
�

1 t � 0

0 else
,

tEX
_I EX;i ¼ � IEX;iðtÞ þ

X

j2X

Jijsjðt � dijÞ; ð13Þ

tEI
_I EI;i ¼ � IEI;iðtÞ þ

X

j2I

Jijsjðt � dijÞ; ð14Þ

tIE
_I IE;i ¼ � IIE;iðtÞ þ

X

j2E

Jijsjðt � dijÞ ð15Þ

with τEX, τEI, and τIE synaptic time constants of EX, EI, and IE connections, respectively, and Jij the synaptic weight

• suprathreshold dynamics of dendritic currents (dAP generation):

• emission of kth dAP of neuron i at time tkdAP;i if IED;iðtkdAP;iÞ � ydAP
• dAP current plateau:

IED;iðtÞ ¼ IdAP 8k; 8t 2 ðtkdAP;i; t
k
dAP;i þ tdAPÞ ð16Þ

with dAP current plateau amplitude IdAP, dAP current duration τdAP, and dAP activation threshold θdAP

• reset: IED;iðtkdAP;i þ tdAPÞ ¼ 0 (8k)

• reset and refractoriness in response to emission of lth somatic spike of neuron i at time tli : IED;iðtÞ ¼ 0 8l; 8t 2 ðtli; t
l
i þ tref ;iÞ

Plasticity

Type spike-timing dependent structural plasticity and dAP-rate homeostasis

EE synapses • dynamics of synaptic permanence Pij(t) (synapse maturity):

P� 1
max

dPij
dt

¼ lþ

X

ft�i g
0

xjðtÞdðt � ½t�i þ dEE�ÞIðt�i ;Dtmin;DtmaxÞþ

� l�

X

ft�j g

yidðt � t�j Þþ

þlh

X

ft�i g
0

ðz� � ziðtÞÞdðt � t�i ÞIðt�i ;Dtmin;DtmaxÞ

with

• list of presynaptic spike times ft�j g,

• list of postsynaptic spike times ft�i g
0
¼ ft�i j8t

�
j : t�i � t�j þ dEE � Dtming,

• indicator function

Iðt�i ;Dtmin;DtmaxÞ ¼
X

ft�j g

Rðt�i � t�j þ dEEÞ with RðtÞ ¼
1 Dtmin < t < Dtmax
0 else;

ð17Þ

�

• maximum permanence Pmax, potentiation and depression rates λ+, λ-, homeostasis rate λh, delay dEE, depression decrement yi, minimum Δtmin

and maximum Δtmax time lags between pairs of pre- and postsynaptic spikes at which synapses are potentiated,

• spike trace xj(t) of presynaptic neuron j, evolving according to

dxj
dt
¼ � t� 1

þ
xjðtÞ þ

X

t�j

dðt � t�j Þ

with presynaptic spike times t�j and potentiation time constant τ+,

• dAP trace zi(t) of postsynaptic neuron i, evolving according to

dzi
dt
¼ � t� 1

h ziðtÞ þ
X

k

dðt � tkdAP;iÞ

with onset time tkdAP;i of the kth dAP, homeostasis time constant τh, and

• target dAP activity z�

(Continued)
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Sequence set I. For an illustration of the learning process and the network dynamics in

the prediction (section Sequence learning and prediction) and in the replay mode (section

Sequence replay), as well as for the investigation of the sequence processing speed (section

Dependence of prediction performance on the sequence speed), we start with a simple set of

two partially overlapping sequences s1 = {A, D, B, E} and s2 = {F, D, B, C} (see Fig 1B).

Sequence set II. For a more rigorous evaluation of the sequence prediction performance (sec-

tion Prediction performance), we consider a set of S = 6 high-order sequences: s1 = {E, N, D, I, J},

s2 = {L, N, D, I, K}, s3 = {G, J, M, C, N}, s4 = {F, J, M, C, I}, s5 = {B, C, K, H, I}, s6 = {A, C, K, H, F},

• dynamics of synaptic weights JEE,ij:

JEE;ijðtÞ ¼

(
W if PijðtÞ � yP ðmature synapseÞ
0 if PijðtÞ < yP ðimmature synapseÞ

with weight of mature EE connections W and synapse maturity threshold θP

(for an algorithmic implementation of the plasticity dynamics, see S1 Algorithm)

all other

synapses

non-plastic

Input

• prediction mode

• repetitive stimulation with the same set S ¼ fs1; . . . ; sSg of sequences si ¼ fzi;1; zi;2; . . . ; zi;Cig of ordered discrete items zi,j with number of sequences S and length

Ci of ith sequence

• presentation of sequence element zi,j at time ti,j modeled by single spike xk(t) = δ(t − ti,j), generated by the corresponding external source xk
• inter-stimulus interval ΔT = ti,j+1 − ti,j between subsequent sequence elements zi,j and zi,j+1 within a sequence si
• inter-sequence time interval DTseq ¼ tiþ1;1 � ti;Ci between subsequent sequences si and si+1

• example sequence sets:

• sequence set I: S = {{A, D, B, E}, {F, D, B, C}}

• sequence set II: S = {{E, N, D, I, J}, {L, N, D, I, K}, {G, J, M, C, N}, {F, J, M, C, I}, {B, C, K, H, I}, {A, C, K, H, F}}

• replay mode

• presentation of a cue encoding for first sequence elements zi,1 at ti,1
• inter-cue time interval ΔTcue = ti+1,1 − ti,1 between subsequent cues zi,1 and zi+1,1

Output

• somatic spike times ftki j8i 2 E; k ¼ 1; 2; . . .g

• dendritic currents IED,i(t) (8i 2 E)

Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (8i 2 E [ I)

• dendritic currents: IED,i(0) = 0 (8i 2 E)

• external currents: IEX,i(0) = 0 (8i 2 E)

• inhibitory currents: IEI,i(0) = 0 (8i 2 E)

• excitatory currents: IIE,i(0) = 0 (8i 2 I)

• synaptic permanences: Pij(0) = Pmin,ij with Pmin;ij � UðP0;min; P0;maxÞ (8i; j 2 E)

• synaptic weights: JEE,ij(0) = 0 (8i; j 2 E)

• spike traces: xi(0) = 0 (8i 2 E)

• dAP traces: zi(0) = 0 (8i 2 E)

• potential connectivity and initial permanences randomly and independently drawn for each network realization

Simulation details

• network simulations performed in NEST [34] version 3.0 [35]

• definition of excitatory neuron model using NESTML [36, 37]

• synchronous update using exact integration of system dynamics on discrete-time grid with step size Δt [38]

• source code underlying this study: https://doi.org/10.5281/zenodo.5578212

https://doi.org/10.1371/journal.pcbi.1010233.t001
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Table 2. Model and simulation parameters. Parameters derived from other parameters are marked in gray. Bold numbers depict default values.

Name Value Description

Network

NE 2100 total number of excitatory neurons

NI 14 total number of inhibitory neurons

M A¼14 number of excitatory subpopulations (= number of external spike sources)

nE NE=M¼150 number of excitatory neurons per subpopulation

nI NI=M¼1 number of inhibitory neurons per subpopulation

ρ 20 (target) number of active neurons per subpopulation after learning = minimal number of coincident excitatory

inputs required to trigger a spike in postsynaptic inhibitory neurons

(Potential) Connectivity

KEE 420 number of excitatory inputs per excitatory neuron (EE in-degree)

p KEE=NE¼ 0:2 probability of potential (excitatory) connections

KEI nI¼ 1 number of inhibitory inputs per excitatory neuron (EI in-degree)

KIE nE number of excitatory inputs per inhibitory neuron (IE in-degree)

KII 0 number of inhibitory inputs per inhibitory neuron (II in-degree)

Excitatory neurons

τm,E 10 ms membrane time constant

τref,E 10 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0 mV reset potential

θE 20 mV (predictive mode), 5 mV (replay

mode)

somatic spike threshold

IdAP 200 pA dAP current plateau amplitude

τdAP 60 ms dAP duration

θdAP 59 pA (predictive mode), 41.3 pA (replay

mode)

dAP threshold

Inhibitory neurons

τm,I 5 ms membrane time constant

τref,I 2 ms absolute refractory period

Cm 250 pF membrane capacity

Vr 0.0 mV reset potential

θI 15 mV spike threshold

Synapse

γ 5 number co-active presynaptic neurons required to trigger a dAP in the postsynaptic neuron

W 12.98 pA weight of mature EE connections (EPSC amplitude)

J~IE 0.9 mV (predictive mode), 0.12 mV

(replay mode)

weight of IE connections (EPSP amplitude)

JIE 581.19 pA (predictive mode), 77.49 pA

(replay mode)

weight of IE connections (EPSC amplitude)

~J EI −40 mV weight of EI connections (IPSP amplitude)

JEI � 12915:49pA weight of EI connections (IPSC amplitude)

~J EX 22 mV weight of EX connections (EPSP amplitude)

JEX 4112:20pA weight of EX connections (EPSC amplitude)

τEE 5 ms synaptic time constant of EE connections

τIE 0.5 ms synaptic time constant of IE connections

τEI 1 ms synaptic time constant of EI connections

τEX 2 ms synaptic time constant of EX connection

dEE 2 ms delay of EE connections (dendritic)

dIE 0.1 ms delay of IE connections

dEI {0.1, 0.2} ms delay of EI connections (non-default value used in Figs 10 and 11)

dEX 0.1 ms delay of EX connections

(Continued)
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each consisting of C = 5 elements. The complexity of this sequence ensemble is comparable to

the one used in [14], but is more demanding in terms of the high-order context dependence.

Results for two additional sequence sets are summarized in the Supporting information.

The set used in S2 Fig is composed of sequences with recurring first elements. In S3 Fig, we

show results for longer sequences with a larger number of overlapping elements.

Network model

Algorithmic requirements. To solve the tasks outlined in Task and training protocol, the

network model needs to implement a number of algorithmic components. Here, we provide

an overview of these components and their corresponding implementations:

• Learning and storage of sequences: in both the original and our model, sequences are repre-

sented by specific subnetworks embedded into the recurrent network. During the learning

process, these subnetworks are carved out in an unsupervised manner by a form of structural

Hebbian plasticity.

Table 2. (Continued)

Name Value Description

Plasticity

λ+ 0.08 (sequence set I), 0.28 (sequence set

II)

potentiation rate

λ− 0.0015 (sequence set I), 0.0061 (sequence

set II)

depression rate

θP 20 synapse maturity threshold

Pmin;ij �UðP0;min;P0;maxÞ minimum permanence

Pmax 20 maximum permanence

P0,min 0 minimal initial permanence

P0,max 8 maximal initial permanence

τ+ 20 ms potentiation time constant

z� 1 target dAP activity

λh 0.014 (sequence set I), 0.024 (sequence set

II)

homeostasis rate

τh 440 ms (sequence set I), 1560 ms

(sequence set II)

homeostasis time constant

yi 1 depression decrement

Δtmin 4 ms minimum time lag between pairs of pre- and postsynaptic spikes at which synapses are potentiated

Δtmax 2ΔT maximum time lag between pairs of pre- and postsynaptic spikes at which synapses are potentiated

Input

L 1 number of subpopulations per sequence element = number of target subpopulations per spike source

S 2 (sequence set I), 6 (sequence set II) number of sequences per set

C 4 (sequence set I), 5 (sequence set II) number of elements per sequence

A 14 alphabet length (total number of distinct sequence elements)

ΔT {2,. . .,40,. . .,90} ms inter-stimulus interval

ΔTseq max(2.5ΔT, τdAP) inter-sequence interval

ΔTcue 80 ms inter-cue interval

Simulation

Δt 0.1 ms time resolution

K {80, 100} number of training episodes

https://doi.org/10.1371/journal.pcbi.1010233.t002
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• Context specificity: in our model, learning of high-order sequences is enabled by a sparse,

random potential connectivity, and by a homeostatic regulation of synaptic growth.

• Generation of predictions: neurons are equipped with a predictive state, implemented by a

nonlinear synaptic integration mimicking the generation of dendritic action potentials (dAPs).

• Mismatch detection: only few neurons become active if a prediction matches the stimulus.

In our model, this sparsity is realized by a winner-take-all (WTA) dynamics implemented in

the form of inhibitory feedback. In case of non-anticipated stimuli, the WTA dynamics can-

not step in, thereby leading to a non-sparse activation of larger neuron populations.

• Sequence replay: autonomous replay of learned sequences in response to a cue signal is

enabled by increasing neuronal excitability.

In the following paragraphs, the implementations of these components and the differences

between the original and our model are explained in more detail.

Network structure. The network consists of a population E of NE excitatory (“E”) and a

population I of NI inhibitory (“I”) neurons. The neurons in E are randomly and recurrently

connected, such that each neuron in E receives KEE excitatory inputs from other randomly

chosen neurons in E. Note that these “EE” connections are potential connections in the sense

that they can be either “mature” (“effective”) or “immature”. Immature connections have no

effect on target neurons (see below). In the neocortex, the degree of potential connectivity

depends on the distance between the neurons [17]. It can reach probabilities as high as 90% for

neighboring neurons, and decays to 0% for neurons that are farther apart. In this work, the

connection probability is chosen such that the connectivity is sufficiently dense, allowing for

the formation of specific subnetworks, and sufficiently sparse for increasing the network

capacity (see paragraph “Constraints on potential connectivity” below). The excitatory popula-

tion E is subdivided into M non-overlapping subpopulations M1; . . . ;MM , each of them

Fig 1. Sketch of the task and the learning protocol. A) The neuronal network model developed in this study learns

and processes sequences of ordered discrete elements, here represented by characters “A”, “B”, “C”, . . .. Sequence

elements may constitute arbitrary discrete items, such as musical notes, numbers, or images. The order of sequence

elements represents the temporal order of item occurrence. B) After repeated, consistent presentation of sets of high-

order sequences, i.e., sequences with overlapping characters (here, {A, D, B, E} and {F, D, B, C}), the model learns to

predict subsequent elements in response to the presentation of other elements (blue arrows) and to detect

unanticipated elements by generating a mismatch signal if the prediction is not met (red arrows and flash symbols).

The learning process is continuous and unsupervised. At the beginning of the learning process, all presented elements

are unanticipated and hence trigger the generation of a mismatch signal. The learning progress is monitored and

quantified by the prediction error (see Task performance measures).

https://doi.org/10.1371/journal.pcbi.1010233.g001
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Fig 2. Sketch of the network structure. A) The architecture constitutes a recurrent network of excitatory and inhibitory neurons.

Excitatory neurons are stimulated by external sources providing sequence-element specific inputs “A”,“D”, etc. The excitatory

neuron population is composed of subpopulations containing neurons with identical stimulus preference (gray circles). Connections

between and within the excitatory subpopulations are random and sparse. Inhibitory neurons are mutually unconnected. Each

neuron in the inhibitory population is recurrently connected to a specific subpopulation of excitatory neurons. B) Initial connectivity

matrix for excitatory connections to excitatory neurons (EE connections). Target and source neurons are grouped into stimulus-

specific subpopulations (“A”,. . .,“F”). Before learning, the excitatory neurons are sparsely and randomly connected via immature

synapses (light gray dots). C) During learning, sequence specific, sparsely connected subnetworks with mature synapses are formed

(light blue arrows: {A, D, B, E}, dark blue arrows: {F, D, B, C}). D) EE connectivity matrix after learning. During the learning process,

subsets of connections between subpopulations corresponding to subsequent sequence elements become mature and effective (light

and dark blue dots). Mature connections are context specific (see distinct connectivity between subpopulations “D” and “B”

corresponding to different sequences), thereby providing the backbone for a reliable propagation of sequence-specific activity. In

panels B and D, only 5% of sequence non-specific EE connections are shown for clarity. Dark gray dots in panel D correspond to

mature connections between neurons that remain silent after learning. For details on the network structure, see Tables 1 and 2.

https://doi.org/10.1371/journal.pcbi.1010233.g002
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containing neurons with identical stimulus preference (“receptive field”; see below). Each sub-

population Mk thereby represents a specific element within a sequence (Fig 2A and 2B). In the

original TM model [14], a single sequence element is represented by multiple (L) subpopula-

tions (“minicolumns”). For simplicity, we identify the number M of subpopulations with the

number of elements required for a specific set of sequences, such that each sequence element is

encoded by just one subpopulation (L = 1). All neurons within a subpopulation Mk are recur-

rently connected to a subpopulation-specific inhibitory neuron k 2 I . The inhibitory neurons

in I are mutually unconnected. The subdivision of excitatory neurons into stimulus-specific

subpopulations defines how external inputs are fed to the network (see next paragraph), but

does not affect the potential excitatory connectivity, which is homogeneous and not subpopu-

lation specific.

External inputs. During the prediction mode, the network is driven by an ensemble X ¼
fx1; . . . ; xMg of M external inputs, representing inputs from other brain areas, such as thalamic

sources or other cortical areas. Each of these external inputs xk represents a specific sequence

element (“A”, “B”, . . .), and feeds all neurons in the subpopulation Mk with the corresponding

stimulus preference. The occurrence of a specific sequence element zi,j at time ti,j is modeled

by a single spike xk(t) = δ(t − ti,j) generated by the corresponding external source xk. Subse-

quent sequence elements zi,j and zi,j+1 within a sequence si are presented with an inter-stimulus

interval ΔT = ti,j+1 − ti,j. Subsequent sequences si and si+1 are separated in time by an inter-

sequence time interval DTseq ¼ tiþ1;1 � ti;Ci . During the replay mode, we present only a cue sig-

nal encoding for first sequence elements zi,1 at times ti,1. Subsequent cues are separated in time

with an inter-cue time interval ΔTcue = ti+1,1 − ti,1. In the absence of any other (inhibitory)

inputs, each external input spike is strong enough to evoke an immediate response spike in all

target neurons i 2Mk. Sparse activation of the subpopulations in response to the external

inputs is achieved by a winner-take-all mechanism implemented in the form of inhibitory

feedback (see Sequence learning and prediction).

Neuron and synapse model. In the original TM model [14], excitatory (pyramidal) neu-

rons are described as abstract three-state systems that can assume an active, a predictive, or a

non-active state. State updates are performed in discrete time. The current state is fully deter-

mined by the external input in the current time step and the network state in the previous step.

Each TM neuron is equipped with a number of dendrites (segments), modeled as coincidence

detectors. The dendrites are grouped into distal and proximal dendrites. Distal dendrites

receive inputs from other neurons in the local network, whereas proximal dendrites are acti-

vated by external sources. Inputs to proximal dendrites have a large effect on the soma and

trigger the generation of action potentials. Individual synaptic inputs to a distal dendrite, in

contrast, have no direct effect on the soma. If the total synaptic input to a distal dendritic

branch at a given time step is sufficiently large, the neuron becomes predictive. This dynamic

mimics the generation of dendritic action potentials (dAPs), NMDA spikes [18–20]), which

result in a long-lasting depolarization (�50–500 ms) of the somata of neocortical pyramidal

neurons.

In contrast to the original study, the model proposed here employs neurons with continu-

ous-time dynamics. For all types of neurons, the temporal evolution of the membrane poten-

tial is given by the leaky integrate-and-fire model Eq (10). The total synaptic input current of

excitatory neurons is composed of currents in distal dendritic branches, inhibitory currents,

and currents from external sources. Inhibitory neurons receive only inputs from excitatory

neurons in the same subpopulation. Individual spikes arriving at dendritic branches evoke

alpha-shaped postsynaptic currents, see Eq (12). The dendritic current includes an additional

nonlinearity describing the generation of dAPs: if the dendritic current IED exceeds a threshold
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θdAP, it is instantly set to a the dAP plateau current IdAP, and clamped to this value for a period

of duration τdAP, see Eq (16). This plateau current leads to a long lasting depolarization of the

soma (see Fig 3B). The dAP threshold θdAP is chosen such that the co-activation of γ neurons

with mature connections to the target neuron reliably triggers a dAP. In this work, we use a

single dendritic branch per neuron. However, the model could easily be extended to include

multiple dendritic branches. External and inhibitory inputs to excitatory neurons as well as

excitatory inputs to inhibitory neurons trigger exponential postsynaptic currents, see Eqs

(13)–(15). Similar to the original implementation, an external input strongly depolarizes the

neurons and causes them to fire. To this end, the external weights JEX are chosen to be supra-

threshold (see Fig 3A). Inhibitory interactions implement the WTA described in Sequence

learning and prediction. The weights JIE of excitatory synapses on inhibitory neurons are cho-

sen such that the collective firing of a subset of ρ excitatory neurons in the corresponding sub-

population causes the inhibitory neuron to fire. The weights JEI of inhibitory synapses on

excitatory neurons are strong such that each inhibitory spike prevents all excitatory neurons in

the same subpopulation that have not generated a spike yet from firing. All synaptic time con-

stants, delays and weights are connection-type specific (see Table 1).

Fig 3. Effect of dendritic action potentials (dAP) on the firing response to an external stimulus. Membrane-potential responses to

an external input (blue arrow, A), a strong dendritic input (brown arrow, B) triggering a dAP, and a combination of both (C). Black

and gray vertical bars mark times of excitatory and inhibitory spikes, respectively. The horizontal dashed line marks the spike threshold

θE. The horizontal light blue lines depict the dAP plateau. D) Magnified view of spike times from panels A and C. A dAP preceding the

external input (as in panel C) can speed up somatic, and hence, inhibitory firing, provided the time interval between the dAP and the

external input is in the right range. The excitatory neuron is connected bidirectionally to an inhibitory neuron (see sketch on the right).

https://doi.org/10.1371/journal.pcbi.1010233.g003
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Plasticity dynamics. Both in the original [14] and in our model, the lateral excitatory con-

nectivity between excitatory neurons (EE connectivity) is dynamic and shaped by a Hebbian

structural plasticity mechanism mimicking principles known from the neuroscience literature

[21–25]. All other connections are static. The dynamics of the EE connectivity is determined

by the time evolution of the permanences Pij (i; j 2 E), representing the synapse maturity, and

the synaptic weights Jij. Unless the permanence Pij exceeds a threshold θP, the synapse {j! i}
is immature, with zero synaptic weight Jij = 0. Upon threshold crossing, Pij� θP, the synapse

becomes mature, and its weight is assigned a fixed value Jij = W (8i, j). Overall, the perma-

nences evolve according to a Hebbian plasticity rule: the synapse {j! i} is potentiated, i.e., Pij
is increased, if the activation of the postsynaptic cell i is immediately preceded by an activation

of the presynaptic cell j. Otherwise, the synapse is depressed, i.e., Pij is decreased. At the begin-

ning of the learning process or during relearning, the activity in the individual subpopulations

is non-sparse. Hebbian learning alone would therefore lead to the strengthening of all existing

synapses between two subsequently activated subpopulations, irrespective of the context these

two subpopulations participate in. After learning, the subsets of neurons that are activated by a

sequence element recurring in different sequences would therefore largely overlap. As a conse-

quence, it becomes harder to distinguish between different contexts (histories) based on the

activation patterns of these subsets. The original TM model [14] avoids this loss of context sen-

sitivity by restricting synaptic potentiation to a small subset of synapses between a given pair

of source and target subpopulations: if there are no predictive target neurons, the original algo-

rithm selects a “matched” neuron from the set of active postsynaptic cells as the one being clos-

est to becoming predictive, i.e., the neuron receiving the largest number of synaptic inputs on

a given dendritic branch from the set of active presynaptic cells (provided this number is suffi-

ciently large). Synapse potentiation is then restricted to this set of matched neurons. In case

there are no immature synapses, the “least used” neuron or a randomly chosen neuron is

selected as the “matched” cell, and connected to the winner cell of the previously active sub-

population. Restricting synaptic potentiation to synapses targeting such a subset of “matched”

neurons is difficult to reconcile with biology. It is known that inhibitory inputs targeting the

dendrites of pyramidal cells can locally suppress backpropagating action potentials and, hence,

synaptic potentiation [26]. A selection mechanism based on such local inhibitory circuits

would however involve extremely fast synapses and require fine-tuning of parameters. The

model presented in this work circumvents the selection of “matched” neurons and replaces

this with a homeostatic mechanism controlled by the postsynaptic dAP rate. In the following,

the specifics of the plasticity dynamics used in this study are described in detail.

Within the interval [Pmin,ij, Pmax], the dimensionless permanences Pij(t) evolve according to

a combination of an additive spike-timing-dependent plasticity (STDP) rule [27] and a

homeostatic component [28, 29]:

P� 1
max

dPij
dt

¼ lþ

X

ft�i g
0

xjðtÞdðt � ½t�i þ dEE�Þ Iðt�i ;Dtmin;DtmaxÞ

� l�

X

ft�j g

yidðt � t�j Þ

þlh

X

ft�i g
0

ðz� � ziðtÞÞdðt � t�i Þ Iðt
�
i ;Dtmin;DtmaxÞ:

ð1Þ

At the boundaries Pmin,ij and Pmax, Pij(t) is clipped. While the maximum permanences Pmax are

identical for all EE connections, the minimal permanences Pmin,ij are uniformly distributed in

the interval [P0,min, P0,max] to introduce a form of persistent heterogeneity. The first term on
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the right-hand side of Eq (1) corresponds to the spike-timing dependent synaptic potentiation

triggered by the postsynaptic spikes at times t�i 2 ft
�
i g
0
. Here, ft�i g

0
¼ ft�i j8t

�
j : t�i � t�j þ dEE �

Dtming denotes the set of all postsynaptic spike times t�i for which the time lag t�i � t�j þ dEE
exceeds Δtmin for all presynaptic spikes t�j . The indicator function Iðt�i ;Dtmin;DtmaxÞ ensures

that the potentiation (and the homeostasis; see below) is restricted to time lags t�i � t�j þ dEE in

the interval (Δtmin, Δtmax) to avoid a growth of synapses between synchronously active neurons

belonging to the same subpopulation, and between neurons encoding for the first elements in

different sequences; see Eq 17. Note that the potentiation update times lag the somatic postsyn-

aptic spike times by the delay dEE, which is here interpreted as a purely dendritic delay [27,

30]. The potentiation increment is determined by the dimensionless potentiation rate λ+, and

the spike trace xj(t) of the presynaptic neuron j, which is updated according to

dxj
dt
¼ � t� 1

þ
xjðtÞ þ

X

t�j

dðt � t�j Þ: ð2Þ

The trace xj(t) is incremented by unity at each spike time t�j , followed by an exponential

decay with time constant τ+. The potentiation increment ΔPij at time t�i therefore depends on

the temporal distance between the postsynaptic spike time t�i and all presynaptic spike times

t�j � t�i (STDP with all-to-all spike pairing; [27]). The second term in Eq (1) represents synaptic

depression, and is triggered by each presynaptic spike at times t�j 2 ft
�
j g. The depression decre-

ment yi = 1 is treated as a constant, independently of the postsynaptic spike history. The

depression magnitude is parameterized by the dimensionless depression rate λ−. The third

term in Eq (1) corresponds to a homeostatic control triggered by postsynaptic spikes at times

t�i 2 ft
�
i g
0
. Its overall impact is parameterized by the dimensionless homeostasis rate λh. The

homeostatic control enhances or reduces the synapse growth depending on the dAP trace zi(t)
of neuron i, the low-pass filtered dAP activity updated according to

dzi
dt
¼ � t� 1

h ziðtÞ þ
X

k

dðt � tkdAP;iÞ: ð3Þ

Here, τh represents the homeostasis time constant, and tkdAP;i the onset time of the kth dAP in

neuron i. According to Eq (1), synapse growth is boosted if the dAP activity zi(t) is below a tar-

get dAP activity z�. Conversely, high dAP activity exceeding z� reduces the synapse growth

Fig 4. Homeostatic regulation of the spike-timing-dependent structural plasticity by the dAP activity. Evolution of

the synaptic permanence (gray) and weight (black) during repetitive presynaptic-postsynaptic spike pairing for different

levels of the dAP activity. In the depicted example, presynaptic spikes precede the postsynaptic spikes by 40 ms for each

spike pairing. Consecutive spike pairs are separated by a 200 ms interval. In each panel, the postsynaptic dAP trace is

clamped at a different value: z = 0 (left), z = 1 (middle), z = 2 (right). The dAP target activity is fixed at z� = 1. The

horizontal dashed and dotted lines mark the maximum permanence Pmax and the maturity threshold θP, respectively.

https://doi.org/10.1371/journal.pcbi.1010233.g004
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(Fig 4). This homeostatic regulation of the synaptic maturity controlled by the postsynaptic

dAP activity constitutes a variation of previous models [28, 29] describing ‘synaptic scaling’

[31–33]. It counteracts excessive synapse formation during learning driven by Hebbian struc-

tural plasticity. In addition, the combination of Hebbian plasticity and synaptic scaling can

introduce a competition between synapses [28, 29]. Here, we exploit this effect to ensure that

synapses are generated in a context specific manner, and thereby reduce the overlap between

neuronal subpopulations activated by the same sequence element occurring in different

sequences. To this end, the homeostasis parameters z� = 1 and τh are chosen such that each

neuron tends to become predictive, i.e., generate a dAP, at most once during the presentation

of a single sequence ensemble of total duration ((C − 1)ΔT + ΔTseq)S (see Network model).

The time constant τh is hence adapted to the parameters of the task. For sequence sets I and II

and the default inter-stimulus interval ΔT = 40 ms, it is set to τh = 440 ms and τh = 1560 ms,

respectively. In section Dependence of prediction performance on the sequence speed, we

study the effect of the sequence speed (inter-stimulus interval ΔT) on the prediction perfor-

mance for a given network parameterization. For these experiments, τh = 440 ms is therefore

fixed even though the inter-stimulus interval ΔT is varied.

The prefactor P� 1
max in Eq (1) ensures that all learning rates λ+, λ− and λh are measured in

units of the maximum permanence Pmax.

Constraints on potential connectivity. The sequence processing capabilities of the pro-

posed network model rely on its ability to form sequence specific subnetworks based on the

skeleton provided by the random potential connectivity. On the one hand, the potential con-

nectivity must not be too diluted to ensure that a subset of neurons representing a given

sequence element can establish sufficiently many mature connections to a second subset of

neurons representing the subsequent element. On the other hand, a dense potential connectiv-

ity would promote overlap between subnetworks representing different sequences, and

thereby slow down the formation of context specific subnetworks during learning (see

Sequence learning and prediction). Here, we therefore identify the minimal potential connec-

tion probability p guaranteeing the existence of network motifs with a sufficient degree of

divergent-convergent connectivity.

Consider the subset Pij of ρ excitatory neurons representing the jth sequence element zij in

sequence si (see Task and training protocol and Network model). During the learning process,

the plasticity dynamics needs to establish mature connections from Pij to a second subset

Pi;jþ1 of neurons in another subpopulation representing the subsequent element zi,j+1. Each

neuron in Pi;jþ1 must receive at least c = dθdAP/We inputs from Pij to ensure that synchronous

firing of the neurons in Pij can evoke a dAP after synapse maturing. For a random, homoge-

neous potential connectivity with connection probability p, the probability of finding these c
potential connections for some arbitrary target neuron is given by

qðc; r; pÞ ¼
Xr

k¼c

r

k

� �
pkð1 � pÞr� k: ð4Þ

For a successful formation of sequence specific subnetworks during learning, the sparse subset

Pij of presynaptic neurons needs to recruit at least ρ targets in the set of nE neurons represent-

ing the subsequent sequence element (Fig 5A). The probability of observing such a divergent-

convergent connectivity motif is given by

uðr; c; p; nEÞ ¼
XnE

l¼r

nE
l

� �
qlð1 � qÞnE � l: ð5Þ
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Note that the above described motif does not require the size of the postsynaptic subset Pi;jþ1

to be exactly ρ. Eq (5) constrains the parameters p, c, nE and ρ to ensure such motifs exist in a

random network. Fig 5B illustrates the dependence of the motif probability u on the connec-

tion probability p for our choice of parameters nE, c, and ρ. For p� 0.2, the existence of the

divergent-convergent connectivity motif is almost certain (u� 1). For smaller connection

probabilities p< 0.2, the motif probability quickly vanishes. Hence, p = 0.2 constitutes a rea-

sonable choice for the potential connection probability.

Network realizations and initial conditions. For every network realization, the potential

connectivity and the initial permanences are drawn randomly and independently. All other

parameters are identical for different network realizations. The initial values of all state vari-

ables are given in Tables 1 and 2.

Simulation details. The network simulations are performed in the neural simulator

NEST [34] under version 3.0 [35]. The differential equations and state transitions defining the

excitatory neuron dynamics are expressed in the domain specific language NESTML [36, 37]

which generates the required C++ code for the dynamic loading into NEST. Network states

are synchronously updated using exact integration of the system dynamics on a discrete-time

grid with step size Δt [38]. The full source code for the implementation with a list of other soft-

ware requirements is available at Zenodo: https://doi.org/10.5281/zenodo.5578212.

Task performance measures

To assess the network performance, we monitor the dendritic currents reporting predictions

(dAPs) as well as the somatic spike times of excitatory neurons. To quantify the prediction

error, we identify for each last element zi;Ci in a sequence si all excitatory neurons that have

generated a dAP in the time interval ðti;Ci � DT; ti;CiÞ, where ti;Ci and ΔT denote the time of the

external input corresponding to the last sequence element zi;Ci and the inter-stimulus interval,

respectively (see Task and training protocol and Network model). All subpopulations Mk with

at least ρ/2 neurons generating a dAP are considered “predictive”. The prediction state of the

network is encoded in an M dimensional binary vector o, where ok = 1 if the kth subpopulation

is predictive, and ok = 0 else. The

prediction error ¼
1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

ðok � vkÞ
2

s

ð6Þ

Fig 5. Existence of divergent-convergent connectivity motifs in a random network. A) Sketch of the divergent-

convergent potential connectivity motif required for the formation of sequence specific subnetworks during learning.

See main text for details. B) Dependence of the motif probability u on the connection probability p for nE = 150, c = 5,

and ρ = 20 (see Table 2). The dotted vertical line marks the potential connection probability p = 0.2 used in this study.

https://doi.org/10.1371/journal.pcbi.1010233.g005
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is defined as the Euclidean distance between o and the binary target vector v representing the

pattern of external inputs for each last element zi;Ci , normalized by the number L of subpopula-

tions per sequence element. Furthermore, we assess the

false positive rate ¼
1

L

XM

k¼1

Yðok � vkÞ ð7Þ

and the

false negative rate ¼
1

L

XM

k¼1

Yðvk � okÞ; ð8Þ

where Θ(�) denotes the Heaviside function. In addition to these performance measures, we

monitor for each last sequence element the level of sparsity by measuring the ratio between the

number of active neurons and the total number LnE of neurons representing this element.

During learning, we expose the network repetitively to the same set {s1, . . ., sS} of sequences for

a number of training episodes K. To obtain the total prediction performance in each episode,

we average the prediction error, the false negative and false positive rates, as well as the level of

sparsity across the set of sequences.

Results

Sequence learning and prediction

According to the Temporal Memory (TM) model, sequences are stored in the form of specific

paths through the network. Prediction and replay of sequences correspond to a sequential

sparse activation of small groups of neurons along these paths. Non-anticipated stimuli are sig-

naled in the form of non-sparse firing of these groups. This subsection describes how the

model components introduced in Network model interact and give rise to the network struc-

ture and behavior postulated by TM. For illustration, we here consider a simple set of two

partly overlapping sequences {A, D, B, E} and {F, D, B, C} corresponding to the sequence set I

(see Fig 1B).

The initial sparse, random and immature network connectivity (Fig 2A and 2B) constitutes

the skeleton on which the sequence-specific paths will be carved out during the learning pro-

cess. To guarantee a successful learning, this initial skeleton must be neither too sparse nor too

dense (see Methods). Before learning, the presentation of a particular sequence element causes

all neurons with the corresponding stimulus preference to reliably and synchronously fire a

somatic action potential due to the strong, suprathreshold external stimulus (Fig 3A). All other

subpopulations remain silent (see Fig 6A and 6B). The lateral connectivity between excitatory

neurons belonging to the different subpopulations is subject to a form of Hebbian structural

plasticity. Repetitive and consistent sequential presentation of sequence elements turns imma-

ture connections between successively activated subpopulations into mature connections, and

hence leads to the formation of sequence-specific subnetworks (see Fig 2C and 2D). Synaptic

depression prunes connections not supporting the learned pattern, thereby reducing the

chance of predicting wrong sequence items (false positives).

During the learning process, the number of mature connections grows to a point where the

activation of a certain subpopulation by an external input generates dendritic action potentials

(dAPs), a “prediction”, in a subset of neurons in the subsequent subpopulation (blue neurons

in Fig 6C). The dAPs generate a long-lasting depolarization of the soma (Fig 3B). When receiv-

ing an external input, these depolarized neurons fire slightly earlier as compared to non-depo-

larized (non-predictive) neurons (Fig 3A, 3B and 3D). If the number of predictive neurons
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Fig 6. Context specific predictions. Sketches (left column) and raster plots of network activity (right column) before (top row) and

after learning of the two sequences {A, D, B, E} and {F, D, B, C} (middle and bottom rows). In the left column, large light gray circles

depict the excitatory subpopulations (same arrangement as in Fig 2). Red, blue and gray circles mark active, predictive and silent

neurons, respectively. In the right column, red dots and blue lines mark somatic spikes and dAP plateaus, respectively. Type and

timing of presented stimuli are depicted by black arrows. A,B) Snapshots of network activity upon subsequent presentation of the

sequence elements “A” and “D” (panel A), and network activity in response to presentation of the entire sequence {A, D, B, E} (panel

B) before learning. All neurons in the stimulated subpopulations become active. C,D) Same as panels A and B, but after learning.

Presenting the first element “A” causes all neurons in the corresponding subpopulations to fire. Activation of these neurons triggers

dAPs (predictions) in a subset of neurons representing the subsequent element “D”. When the next element “D” is presented, only

these predictive neurons become active, leading to predictions in the subpopulation representing the subsequent subpopulation

(“B”), etc. E,F) Same as panels C and D, but for sequence {F, D, B, C}. The subsets of neurons representing “D” and “B” activated

during sequences {A, D, B, E} and {F, D, B, C} are distinct, i.e., context specific. For clarity, panels B, D, and F show only a fraction of

excitatory neurons (30%).

https://doi.org/10.1371/journal.pcbi.1010233.g006
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within a subpopulation is sufficiently large, their advanced spikes (Fig 3C) initiate a fast and

strong inhibitory feedback to the entire subpopulation, and thereby suppress subsequent firing

of non-predictive neurons in this population (Fig 6C and 6D). Owing to this winner-take-all

dynamics, the network generates sparse spiking in response to predicted stimuli, i.e., if the

external input coincides with a dAP-triggered somatic depolarization. In the presence of a

non-anticipated, non-predicted stimulus, the neurons in the corresponding subpopulation fire

collectively in a non-sparse manner, thereby signaling a “mismatch”.

In the model presented in this study, the initial synapse maturity levels, the permanences,

are randomly chosen within certain bounds. During learning, connections with a higher initial

permanence mature first. This heterogeneity in the initial permanences enables the generation

of sequence specific sparse connectivity patterns between subsequently activated neuronal sub-

populations (Fig 2D). For each pair of sequence elements in a given sequence ensemble, there

is a unique set of postsynaptic neurons generating dAPs (Fig 6D). These different activation

patterns capture the context specificity of predictions. When exposing a network that has

learned the two sequences {A, D, B, E} and {F, D, B, C} to the elements “A” and “F”, different

subsets of neurons are activated in “D” and “B”. By virtue of these sequence specific activation

patterns, stimulation by {A, D, B} or {F, D, B} leads to correct predictions “E” or “C”, respec-

tively (Fig 6C–6F).

Heterogeneity in the permanences alone, however, is not sufficient to guarantee context

specificity. The subsets of neurons activated in different contexts may still exhibit a consider-

able overlap. This overlap is promoted by Hebbian plasticity in the face of the initial non-

sparse activity, which leads to a strengthening of connections to neurons in the postsynaptic

population in an unspecific manner (Fig 7A and 7B). Moreover, the reoccurrence of the same

sequence elements in different co-learned sequences initially causes higher firing rates of the

neurons in the respective populations (“D” and “B” in Fig 7). As a result, the formation of

unspecific connections would even be accelerated if synapse formation was driven by Hebbian

plasticity alone. The model in this study counteracts this loss of context specificity by supple-

menting the plasticity dynamics with a homeostatic component, which regulates synapse

growth based on the rate of postsynaptic dAPs. This form of homeostasis prevents the same

neuron from becoming predictive multiple times within the same set of sequences, and thereby

reduces the overlap between subsets of neurons activated within different contexts (Fig 7C and

S4 Fig). To further aid the formation of context specific paths, the density of the initial poten-

tial connectivity skeleton is set close to the minimum value ensuring the existence of the con-

nectivity motifs required for a faithful prediction (see Methods).

Prediction performance

To quantify the sequence prediction performance, we repetitively stimulate the network with

the sequences in sequence set I (see Task and training protocol), and continuously monitor

the prediction error, the false-positive and false-negative rates, as well as the fraction of active

stimulated neurons as a measure of encoding sparsity (Fig 8; Task performance measures). To

ensure the performance results are not specific to a single network, the evaluation is repeated

for a number of randomly instantiated network realizations with different initial potential con-

nectivities. At the beginning of the learning process, all neurons of a stimulated subpopulation

collectively fire in response to the external input. Non-stimulated neurons remain silent. As

the connectivity is still immature at this point, no dAPs are triggered in postsynaptic neurons,

and, hence, no predictions are generated. As a consequence, the prediction error, the false-

negative rate and the number of active neurons (in stimulated populations) are at their maxi-

mum, and the false positive rate is zero (Fig 8). During the first training episodes, the
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consistent collective firing of subsequently activated populations leads to the formation of

mature connections as a result of the Hebbian structural plasticity. Upon reaching of a critical

number of mature synapse, first dAPs (predictions) are generated in postsynaptic cells (in Fig

8, this happens after about 10 learning episodes). As a consequence, the false negative rate

decreases, and the stimulus responses become more sparse. At this early phase of the learning,

the predictions of upcoming sequence elements are not yet context specific (for sequence set I,

non-sparse activity in “B” triggers a prediction in both “E” and “C”, irrespective of the con-

text). Hence, the false-positive rate transiently increases. As the context specific connectivity is

not consolidated at this point, more and more presynaptic subpopulations fail at triggering

dAPs in their postsynaptic targets when they switch to sparse firing. Therefore, the false-posi-

tive rate decreases again, and the false-negative rate increases. In other words, there exists a

negative feedback loop in the interim learning dynamics where the generation of predictions

Fig 7. dAP-rate homeostasis enhances context specificity. A) Sketch of subpopulations of excitatory neurons representing the elements of the

two sequences {F, D, B} and {A, D, B}, depicted by light and dark blue colors, respectively. Before learning, the connections between the

subpopulations are immature (gray lines). Hence, for each element presentation, all neurons in the respective subpopulations fire (filled circles).

B) Hebbian plasticity drives the formation of mature connections between subpopulations representing successive sequence elements (colored

lines), and leads to sparse firing. The sets of neurons contributing to the two sequences partly overlap. C) Incorporating dAP-rate homeostasis

reduces this overlap in the activation patterns.

https://doi.org/10.1371/journal.pcbi.1010233.g007

Fig 8. Sequence prediction performance for sequence set I. Dependence of the sequence prediction error (A), the false-positive and false-negative rates

(B), and the number of active neurons relative to the subpopulation size (C) on the number of training episodes during repetitive stimulation with

sequence set I (see Task and training protocol). Curves and error bands indicate the median as well as the 5% and 95% percentiles across an ensemble of 5

different network realizations, respectively. All prediction performance measures are calculated as a moving average over the last 4 training episodes. The

dashed gray horizontal line in panel C depicts the target sparsity level ρ/(LnE). Inter-stimulus interval ΔT = 40 ms. See Table 2 for remaining parameters.

https://doi.org/10.1371/journal.pcbi.1010233.g008
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leads to an increase in sparsity which, in turn, causes prediction failures (and, hence, non-

sparse firing). With an increasing number of training episodes, synaptic depression and

homeostatic regulation increase context selectivity and thereby break this loop. Eventually,

sparse firing of presynaptic populations is sufficient to reliably trigger predictions in their post-

synaptic targets. For sequence set I, the total prediction error becomes zero and the stimulus

responses maximally sparse after about 30 training episodes (Fig 8). For a time resolved visual-

ization of the learning dynamics, see S1 Video.

Up to this point, we illustrated the model’s sequence learning dynamics and performance

for a simple set of two sequences (sequence set I). In the following, we assess the network’s

sequence prediction performance for a more complex sequence set (II) composed of five high-

order sequences (see Task and training protocol), each consisting of five elements. This

sequence set is comparable to the one used in [14], but contains a larger amount of overlap

between sequences. The overall pattern of the learning dynamics resembles the one reported

for sequence set I (Fig 9). The prediction error, the false-positive and false-negative rates as

well as the sparsity measure vary more smoothly, and eventually converge at minimal levels

after about 40 training episodes. To compare the spiking TM model with the original, non-

spiking TM model, we repeat the experiment based on the simulation code provided in [14],

see S1 Table. With our parameterization, the learning rates λ+ and λ− of the spiking model are

by a factor of about 10 smaller than in the original model. As a consequence, learning sequence

set II with the original model converges faster than with the spiking model (compare black

and gray curves in Fig 9). The ratio in learning speeds, however, is not larger than about 2.

Increasing the learning rates, i.e., the permanence increments, would speed up the learning

process in the spiking model, but bears the risk that a large fraction of connections mature

simultaneously. This would effectively overwrite the permanence heterogeneity which is essen-

tial to form context specific connectivity patterns (see Sequence learning and prediction). As a

result, the network performance would decrease. The original model avoids this problem by

limiting the number of potentiated synapses in each update step (see “Plasticity dynamics” in

Network model).

In sequence sets I and II, the maximum sequence order is 2 and 3, respectively. For the two

sequences {E, N, D, I, J} and {L, N, D, I, K} in sequence set II, for example, predicting element

“J” after activation of “I” requires remembering the element “E”, which occured three steps

back into the past. The TM model can cope with sequences of much higher order. Each

Fig 9. Sequence prediction performance for sequence set II and comparison with original model. Same figure arrangement, training and measurement

protocol as in Fig 8. Data obtained during repetitive stimulation of the network with sequence set II (see Task and training protocol). Gray curves depict

results obtained using the original (non-spiking) TM model from [14] with adapted parameters (see S1 Table). The dashed gray horizontal line in panel C

depicts the target sparsity level ρ/(LnE).

https://doi.org/10.1371/journal.pcbi.1010233.g009
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sequence element in a particular context activates a specific pattern, i.e., a specific subset of

neurons. The number of such patterns that can be learned is determined by the size of each

subpopulation and the sparsity [39]. In a sequence with repeating elements, such as

{ABBBBBC}, the maximum order is limited by this number. Without repeating elements, the

order could be arbitrarily high provided the number of subpopulations matches or exceeds the

number of distinct characters. In S3 Fig, we demonstrate successful learning of two sequences

{A, D, B, G, H, I, J, K, L, M, N, E}, {F, D, B, G, H, I, J, K, L, M, N, C} of order 10.

Dependence of prediction performance on the sequence speed

The reformulation of the original TM model in terms of continuous-time dynamics allows us

to ask questions related to timing aspects. Here, we investigate the sequence processing speed

by identifying the range of inter-stimulus intervals ΔT that permit a successful prediction per-

formance (Fig 10). The timing of the external inputs affects the dynamics of the network in

two respects. First, reliable predictions of sequence elements can only be made if the time

interval ΔT between two consecutive stimulus presentations is such that the second input coin-

cides with the somatic depolarization caused by the dAP triggered by the first stimulus. Sec-

ond, the formation of sequence specific connections by means of the spike-timing-dependent

structural plasticity dynamics depends on ΔT.

If the external input does not coincide with the somatic dAP depolarization, i.e., if ΔT is too

small or to large, the respective target population responds in a non-sparse, non-selective man-

ner (mismatch signal; Fig 10C), and in turn, generates false positives (Fig 10B). For small ΔT,

the external stimulus arrives before the dAP onset, i.e., before it is predicted. In consequence,

the false negative rate is high. For large ΔT, the false negative rate remains low as the network

is still generating predictions (Fig 10B). The inter-stimulus interval ΔT in addition affects the

formation of sequence specific connections due to the dependence of the plasticity dynamics

on the timing of pre- and postsynaptic spikes, see Eqs (1) and (2). Larger ΔT results in smaller

permanence increments, and thereby a slow-down of the learning process (red curve in Fig

10A).

Taken together, the model predicts a range of optimal inter-stimulus interval ΔT (Fig 10A).

For our choice of network parameters, this range spans intervals between 10 ms and 75 ms.

The lower bound depends primarily on the synaptic time constant τEE, the spike transmission

Fig 10. Effect of sequence speed on network performance. Dependence of the sequence prediction error, the learning speed (episodes-to-solution; A),

the false-positive and false-negative rates (B), and the number of active neurons relative to the subpopulation size (C) on the inter-stimulus interval ΔT
after 100 training episodes. Curves and error bands indicate the median as well as the 5% and 95% percentiles across an ensemble of 5 different network

realizations, respectively. Same task and network as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1010233.g010

PLOS COMPUTATIONAL BIOLOGY Sequence learning, prediction, and replay in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010233 June 21, 2022 22 / 36

https://doi.org/10.1371/journal.pcbi.1010233.g010
https://doi.org/10.1371/journal.pcbi.1010233


delay dEE, and the membrane time constant τm. The upper bound is mainly determined by the

dAP plateau duration τdAP.

Sequence replay

So far, we studied the network in the predictive mode, where the network is driven by external

inputs and generates predictions of upcoming sequence elements. Another essential compo-

nent of sequence processing is sequence replay, i.e., the autonomous generation of sequences

in response to a cue signal (see Task and training protocol). After successful learning, the net-

work model presented in this study is easily configured into the replay mode by increasing the

neuronal excitability, such that the somatic depolarization caused by a dAP alone makes the

neuron fire a somatic spike. Here, this is implemented by lowering the somatic spike threshold

θE of the excitatory neurons. In the biological system, this increase in excitability could, for

example, be caused by the effect of neuromodulators [40, 41], additional excitatory inputs

from other brain regions implementing a top-down control, e.g, attention [42, 43], or propa-

gating waves during sleep [44, 45].

The presentation of the first sequence element activates dAPs in the subpopulation corre-

sponding to the expected next element in a previously learned sequence. Due to the reduced

firing threshold in the replay mode, the somatic depolarization caused by these dAPs is suffi-

cient to trigger somatic spikes during the rising phase of this depolarization. These spikes, in

turn, activate the subsequent element. This process repeats, such that the network autono-

mously reactivates all sequence elements in the correct order, with the same context specificity

and sparsity level as in the predictive mode (see Fig 11A and 11B). The latency between the

activation of subsequent sequence elements is determined by the spike transmission delay dEE,

the synaptic time constant τEE, the membrane time constant τm,E, the synaptic weights JEE,ij,

the dAP current plateau amplitude IdAP, and the somatic firing threshold θE. For sequences

that can be successfully learned (see previous section), the time required for replaying the

entire sequence is independent of the inter-stimulus interval ΔT employed during learning

(Fig 11C).

As shown in the previous section, sequences cannot be learned if the inter-stimulus interval

ΔT is too small or too large. For small ΔT, connections between subpopulations corresponding

Fig 11. Sequence replay dynamics and speed. Autonomous replay of the sequences {A, D, B, E} (A) and {F, D, B, C} (B), initiated by stimulating the subpopulations “A”

and “F”, respectively. Red dots and blue lines mark somatic spikes and dAP plateaus, respectively, for a fraction of neurons (30%) within each subpopulation. During

learning, the inter-stimulus interval ΔT is set to 40 ms. C) Dependence of the sequence replay duration on the inter-stimulus interval ΔT during learning. Replay

duration is measured as the difference between the mean firing times of the populations representing the first and last elements in a given sequence. Gray areas mark

regions with low prediction performance (see Dependence of prediction performance on the sequence speed). Error bands represent the mean ± standard deviation of

the prediction error across 5 different network realizations. Same network and training set as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1010233.g011
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to subsequent elements are strongly potentiated by the Hebbian plasticity due to the consistent

firing of pre- and postsynaptic populations during the learning process. The network

responses are, however, non-sparse, as the winner-take-all mechanism cannot be invoked dur-

ing the learning (Fig 10C). In the replay mode, sequences are therefore replayed in a non-

sparse and non-context specific manner (left gray region in Fig 11C). Similarly, connections

between subsequent populations are slowly potentiated for very large ΔT. With sufficiently

long learning, sequences can still be replayed in the right order, but the activity is non-sparse

and therefore not context specific (right gray region in Fig 11C).

Discussion

Summary

In this work, we reformulate the Temporal Memory (TM) model [14] in terms of biophysical

principles and parameters. We replace the original discrete-time neuronal and synaptic

dynamics with continuous-time models with biologically interpretable parameters such as

membrane and synaptic time constants and synaptic weights. We further substitute the origi-

nal plasticity algorithm with a more biologically plausible mechanism, relying on a form of

Hebbian structural plasticity, homeostatic control, and sparse random connectivity. Moreover,

our model implements a winner-take-all dynamics based on lateral inhibition that is compati-

ble with the continuous-time neuron and synapse models. We show that the revised TM

model supports successful learning and processing of high-order sequences with a perfor-

mance similar to the one of the original model [14].

A new aspect that we investigated in the context of our work is sequence replay. After learn-

ing, the model is able to replay sequences in response to a cue signal. The duration of sequence

replay is independent of the sequence speed during training, and determined by the intrinsic

parameters of the network. In general, sequence replay is faster than the sequence presentation

during learning, consistent with sequence compression and fast replay observed in hippocam-

pus [46–48] and neocortex [6, 49].

Finally, we identified the range of possible sequence speeds that guarantee a successful

learning and prediction. Our model predicts an optimal range of processing speeds (inter-

stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic param-

eters (e.g., firing threshold, neuronal and synaptic time constants, coupling strengths, potentia-

tion time constants). Within this range, the number of required training episodes is

proportional to the inter-stimulus interval ΔT.

Relationship to other models

The model presented in this work constitutes a recurrent, randomly connected network of

neurons with predefined stimulus preferences. The model learns sequences in an unsupervised

manner using local learning rules. This is in essence similar to several other spiking neuronal

network models for sequence learning [9–12, 50]. The new components employed in this

work are dendritic action potentials (dAPs) and Hebbian structural plasticity. We use struc-

tural plasticity to be as close as possible to the original model, and Hebbian forms of this are

also known from the literature [21, 22, 25]. However, preliminary results show that classical

(non-structural) spike-timing-dependent plasticity (STDP) can yield similar performance (see

S1 Fig). Dendritic action potentials are instrumental for our model for two reasons. First, they

effectively lower the threshold for coincidence detection and thereby permit a reliable and

robust propagation of sparse activity [51, 52]. In essence, our model bears similarities to the

classical synfire chain [53], one difference being that our mature network is not a simple feed-

forward network but has an abundance of recurrent connections. As shown in [54], a stable
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propagation of synchronous activity requires a minimal number of neurons in each synfire

group. Without active dendrites, this minimal number is in the range of�100 for plausible

single-cell and synaptic parameters. In our (and in the original TM) model, coincidence detec-

tion happens in the dendrites. The number of presynaptic spikes needed to trigger a dAP is

small, of the order of 10 [55–57]. This helps to reduce redundancy (only a small number of

neurons needs to become active) and to increase the capacity of the network (the number of

different patterns that can be learned is increased with pattern sparsity; [39]). Second, dAPs

equip neurons with a third type of state (next to the quiescent and the firing state): the predic-

tive state, i.e., a long lasting (� 50–200 ms) strong depolarization of the soma. Due to the pro-

longed depolarization of the soma, the inter-stimulus interval can be much larger than the

synaptic time constants and delays. An additional benefit of dAPs, which is not exploited in

the current version of our model, is that they equip individual neurons with more possible

states if they comprise more than one dendritic branch. Each branch constitutes an indepen-

dent pattern detector. The response of the soma may depend on the collective predictions in

different dendritic branches. A single neuron could hence perform the types of computations

that are usually assigned to multilayer perceptrons, i.e., small networks [58, 59].

Similar to a large class of other models in the literature, the TM network constitutes a recur-

rent network in the sense that the connectivity before and after learning forms loops at the

subpopulation level. Recurrence in the immature connectivity permits the learning of arbitrary

sequences without prior knowledge of the input data. In particular, recurrent connections

enable the learning of sequences with repeating elements (such as in {A, B, B, C} or {A, B, C,

B}). Further, bidirectional connections between subpopulations are needed to learn sequences

where pairs of elements occur in different orders (such as in {A, B, C}, {D, C, B}). Apart from

providing the capability to learn sequences with all possible combinations of sequence ele-

ments, recurrent connections play no further functional role in the current version of the TM

model. They may, however, become more important for future versions of the model enabling

the learning of sequence timing and duration (see below).

Most of the existing models have been developed to replay learned sequences in response to

a cue signal. The TM model can perform this type of pattern completion, too. In addition, it

can act as a quiet, sparsely active observer of the world that becomes highly active only in the

case of unforeseen, non-anticipated events. In this work, we didn’t directly analyze the net-

work’s mismatch detection performance. However, this could be easily achieved by equipping

each population with a “mismatch” neuron that fires if a certain fraction of neurons in the

population fires (threshold detectors). In our model, predicted stimuli result in sparse firing

due to inhibitory feedback (WTA). For unpredicted stimuli, this feedback is not effective,

resulting in non-sparse firing indicating a mismatch. In [60], a similar mechanism is employed

to generate mismatch signals for novel stimuli. In this study, the strength of the inhibitory

feedback needs to be learned by means of inhibitory synaptic plasticity. In our model, the

WTA mechanism is controlled by the predictions (dAPs) and implemented by static inhibitory

connections. Furthermore, the model in [60] can learn a set of elements, but not the order of

these elements in the sequence.

In contrast to other sequence learning models [9, 11], our model is not able to learn an ele-

ment specific timing and duration of sequence elements. The model in [9] relies on a clock

network, which activates sequence elements in the correct order and with the correct timing.

With this architecture, different sequences with different timings would require separate clock

networks. Our model learns both sequence contents and order for a number of sequences

without any auxiliary network. In an extension of our model, the timing of sequence element

could be learned by additional plastic recurrent connections within each subpopulation. The

model in [11] can learn and recall higher-order sequences with limited history by means of an
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additional reservoir network with sparse readout. The TM model presents a more efficient

way of learning and encoding the context in high-order sequences, without prior assignment

of context specificity to individual neuron populations [9], and without additional network

components (such as reservoir networks in [11]).

An important sequence processing component that is not addressed in our work is the

capability of identifying recurring sequences within a long stream of inputs. In the literature,

this process is referred to as chunking, and constitutes a form of feature segmentation [3].

Sequence chunking has been illustrated, for example, in [61, 62]. Similar to our model, the net-

work model in [61, 62] is composed of neurons with dendritic and somatic compartments,

with the dendritic activity signaling a prediction of somatic spiking. Recurrent connections in

their model improve the context specificity of neuronal responses, and thereby permit a con-

text dependent feature segmentation. The model can learn high order sequences, but the his-

tory is limited. Although not explicitly tested here, our model is likely to be able to perform

chunking if sequences are presented randomly across trials and without breaks. If the order of

sequences is not systematic across trials, connections between neurons representing different

sequences are not strengthened by spike-timing-dependent potentiation. Consecutive

sequences are therefore not merged and remain distinct.

An earlier spiking neural network version of the HTM model has already been devised in

[63]. It constitutes a proof-of-concept study demonstrating that the HTM model can be ported

to an analog-digital neuromorphic hardware system. It is restricted to small simplistic

sequences and does not address the biological plausibility of the TM model. In particular, it

does not offer a solution to the question of how the model can perform online learning by

known biological ingredients. Our study delivers a solution for this based on local plasticity

rules and permits a direct implementation on a neuromorphic hardware system.

Limitations and outlook

The model developed in this study serves as a proof of concept demonstrating that the TM

algorithm proposed in [14] can be implemented using biological ingredients. While it is still

fairly simplistic, it may provide the basis for a number of future extensions.

Our results on the sequence processing speed revealed that the model presented here can

process fast sequences with inter-stimulus intervals ΔT up to�75 ms. This range of processing

speeds is relevant in many behavioral contexts such as motor generation, vision (saccades),

music perception and generation, language, and many others [64]. However, slow sequences

with inter-stimulus intervals beyond several hundreds of milliseconds cannot be learned by

this model with biologically plausible parameters. This is problematic as behavioral time scales

are often larger [64, 65]. By increasing the duration τdAP of the dAP plateau, the upper bound

for ΔT could be extended to 500 ms, and maybe beyond [66]. However, for such long intervals,

the synaptic potentiation would be very slow, unless the time constant τ+ of the structural

STDP is increased and the depression rate λ− is adapted accordingly. Furthermore, while our

model explains the fast replay observed in the hippocampus and cortex, it is not able to learn

an element specific timing and duration of sequence elements [5, 67, 68]. This could be over-

come by equipping the model with a working memory mechanism, which maintains the activ-

ity of the subpopulations for behaviorally relevant time scales [9, 69].

In the current version of the model, the number of subpopulations, the number of neurons

within each subpopulation, the number of dendritic branches per neuron, as well as the num-

ber of synapses per neuron are far from realistic [14]. The number of sequences that can be

successfully learned in this network is hence rather small. In addition, the current work is

focusing on sequence processing at a single abstraction level, not accounting for a hierarchical
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network and task structure with both bottom-up and top-down projections. A further simplifi-

cation in this work is that the lateral inhibition within a subpopulation is mediated by a single

interneuron with unrealistically strong and fast connections to and from the pool of excitatory

neurons. In future versions of this model, this interneuron could be replaced by a recurrently

connected network of inhibitory neurons, thereby permitting more realistic weights, and

simultaneously speeding up the interaction between inhibitory and excitatory cells by virtue of

the fast-tracking property of such networks [70]. Similarly, the external inputs in our model

are represented by single spikes, which are passed to the corresponding target population by a

strong connection, and thereby lead to an immediate synchronous spike response. Replacing

each external input by a population of synchronously firing neurons would be a more realistic

scenario without affecting the model dynamics. The external neurons could even fire in a non-

synchronous, rate modulated fashion, provided the spike responses of the target populations

remain nearly synchronous and can coincide with the dAP-triggered somatic depolarization

(see S6 Fig). The current version of the model relies on a nearly synchronous immediate

response to ensure that a small set of (� 20) active neurons can reliably trigger postsynaptic

dAPs, and that the predictive neurons (those depolarized by the dAPs) consistently fire earlier

as compared to the non-predictive neurons, such that they can be selected by the WTA

dynamics. Non-synchronous responses could possibly lead to a reliable generation of dAPs in

postsynaptic neurons, but would require large active neuron populations (loss of sparsity) or

unrealistically strong synaptic weights. The temporal separation between predictive and non-

predictive neurons becomes harder for non-synchronous spiking. In future versions of the

model, it could potentially be achieved by increasing the dAP plateau potential, and simulta-

neously equipping the excitatory neurons with a larger membrane time constant, such that

non-depolarized neurons need substantially longer to reach the spike threshold. Increasing the

dAP plateau potential, however, makes the model more sensitive to background noise (see

below). Note that, in our model, only the immediate initial spike response needs to be synchro-

nous. After successfully triggering the WTA circuit, the winning neurons could –in principle–

continue firing in an asynchronous manner (for example, due the working-memory dynamics

mentioned above). Similarly, long lasting or tonic external inputs could lead to repetitive firing

of the neurons in the TM network. As long as these repetitive responses remain nearly syn-

chronous, the network performance is likely to be preserved.

In the predictive mode, the statistics of the spiking activity generated by our model is pri-

marily determined by the temporal structure of the external inputs. Upon presentation of a

sequence element, a specific subset of excitatory neurons fires a single volley of synchronous

spikes. If the stimulus is predicted, this subset is small. The spike response is therefore highly

sparse both in time and space, in line with experimental findings [71]. For simplicity and illus-

tration, the sequences in this study are presented in a serial manner with fixed order, and fixed

inter-sequence and inter-element (inter-stimulus) intervals. As a consequence, the single-neu-

ron spike responses are highly regular. The in-vivo spiking activity in cortical networks, in

contrast, exhibits a high degree of irregularity [72]. A more natural presentation of sequences

with irregular order and timing trivially leads to more irregular spike responses in our model.

As long as the inter-stimulus intervals fall into the range depicted in Fig 10, the model can

learn and predict irregular sequences. Spiking activity in the cortex is not only irregular, but

also fairly asynchronous in the sense that the average level of synchrony for randomly chosen

pairs of neurons is low [73, 74]. This, however, is not necessarily the case for any subset of neu-

rons and at any point in time. It is well known that cortical neurons can systematically syn-

chronize their firing with millisecond precision in relation to behaviorally relevant events (see,

e.g., [75]). As demonstrated in [76], synchronous firing of small subsets of neurons may easily

go unnoticed in the presence of subsampling. The model proposed in this study relies on
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(near) synchronous firing of small subsets of neurons. In cases where the model processes

large sets of sequences in parallel, this synchrony will hardly be observable if only a small frac-

tion of neurons is monitored (see S5 Fig). After learning, different sequences are represented

by distinct subnetworks with little overlap. Hence, the network can process multiple sequences

at the same time with little interference between subnetworks. The model could even learn

multiple sequences in parallel, provided there is no systematic across-trial dependency

between the sequences presented simultaneously. We dedicate the task of testing these ideas to

future studies. While the synchrony predicted by the TM model may hardly be observable in

experimental data suffering from strong subsampling, the predicted patterns of spikes could be

identifiable using methods accounting for both spatial and temporal dependencies in the spike

data [76–78]. There are other factors that may contribute to a more natural spiking activity in

extended versions of the model. First, equipping the model with a working memory mecha-

nism enabling the learning of slow sequences and sequence timing (see above) would likely

lead to sustained asynchronous irregular firing. Second, replacing the inhibitory neurons by

recurrent networks of inhibitory neurons (see above) would generate asynchronous irregular

activity in the populations of inhibitory neurons and thereby contribute variability in the spike

responses of the excitatory neurons. Third, the model proposed here may constitute a module

embedded into a larger architecture and receive irregular inputs from other components. As

shown in the supplementary S6 and S7 Figs, the spiking activity and the prediction perfor-

mance of the TM model are robust with respect to low levels of synaptic background activity,

and, hence, membrane potential fluctuations reminiscent of those observed in vivo [79]. For

an increasing level of noise, the learning speed decreases. For high noise levels leading to addi-

tional, non-task related background spikes, the dAP triggered plateau depolarization is over-

written, such that the WTA dynamics fails at selecting predictive neurons, ultimately leading

to a loss of context specificity in the responses. Hence, the prediction performance degrades

for large noise amplitudes. A potential application of introducing background noise is to allow

the network to perform probabilistic computations [80], such as replaying sequences in the

presence of ambiguous cues.

Similar to the original TM model, the response of the population representing the first ele-

ment in a sequence is non-sparse, indicating that the first sequence element is not anticipated

and can therefore not be predicted. If a given first sequence element reoccurs within the same

sequence (say, “A” in {A, B, A, C}) or in other sequences (e.g., in {D, E, A, F}), the non-sparse

response of the respective population to a first sequence element leads to a simultaneous pre-

diction of all possible subsequent elements, i.e., the generation of false positives. These false

predictions would lead to a pruning of functional synapses as a response of the homeostatic

regulation to the increased dAP activity. This could be overcome by three possible mecha-

nisms: a) synaptic normalization avoiding excessive synapse growth [81, 82], b) removing

breaks between sequences, or c) sparse, sequence specific firing of subpopulations representing

first elements. Results of applying the last mechanism are shown in S2 Fig, where dAPs are

externally activated in random subsets of neurons in the populations representing first ele-

ments. In a more realistic hierarchical network, a similar effect could be achieved by top-down

projections from a higher level predicting sequences of sequences.

In the original model, synapses targeting silent postsynaptic cells are depressed, even if the

presynaptic neuron is inactive. This pruning process, the freeing of unused synaptic resources,

increases the network capacity while ensuring context sensitivity. According to the structural

plasticity dynamics employed in our study, synapse depression is bound to presynaptic spik-

ing, similar to other implementations of (non-structural) STDP [30]. As a consequence, strong

connections originating from silent presynaptic neurons are not depressed (dark gray dots in
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Fig 2D). This may complicate or slow down the learning of new sequences, and could be over-

come by synaptic normalization.

For the dAP-rate homeostasis used in this study, the target dAP rate is set to one to make

sure that each neuron contributes at most one dAP during each training episode. As a conse-

quence, the time constant of the dAP-rate homeostasis is adapted to the duration of a training

episode, which is in the range of few seconds in this work. We are not aware of any biological

mechanism that could account for such an adaptation. dAP-rate homeostasis is mediated by

the intracellular calcium concentration, which, in turn, controls the synthesis of synaptic

receptors, and hence, the synaptic strength. It is therefore known to be rather slow, acting on

timescales of many minutes, hours or days [32, 33]. It is unclear to what extent the use of long

homeostatic time constants and increased dAP target rates would alter the model perfor-

mance. Alternatively, the dAP-rate homeostasis could be replaced by other mechanisms such

as synaptic normalization.

Conclusion

Our work demonstrates that the principle mechanisms underlying sequence learning, predic-

tion, and replay in the TM model can be implemented using biologically plausible ingredients.

By strengthening the link to biology, our implementation permits a more direct evaluation of

the TM model predictions based on electrophysiological and behavioral data. Furthermore,

this implementation allows for a direct mapping of the TM model on neuromorphic hardware

systems.

Supporting information

S1 Table. Adapted parameters of the original TM model used for Fig 9. Parameter names

match those used in the original simulation code (https://github.com/numenta/htmpapers/

tree/master/frontiers/why_neurons_have_thousands_of_synapses). Gray parameter names

are those used in the spiking TM model.

(EPS)

S1 Fig. Sequence prediction performance in the presence of conventional (non-structural)

spike-timing dependent plasticity (STDP). Dependence of the sequence prediction error

(A), the false-positive and false-negative rates (B), and the number of active neurons relative to

the subpopulation size (C) on the number of training episodes for sequence set II. Curves and

error bands indicate the median as well as the 5% and 95% percentiles across an ensemble of 5

different network realizations, respectively. All prediction performance measures are calcu-

lated as a moving average over the last 4 training episodes. In this experiment, structural STDP

is replaced by conventional STDP, i.e., the permanences Pij(t) and Pmax in Eq (1) are replaced

by the synaptic weights JEE,ij(t) and Jmax. The weights JEE,ij are restricted to the interval [Jmin,ij,

Jmax], and clipped at the boundaries. The minimal weights Jmin,ij are randomly and indepen-

dently drawn from a uniform distribution between J0,min and J0,max. The performance charac-

teristics shown here are comparable to those obtained with structural STDP (see Fig 9 in

Prediction performance). Parameters: ΔT = 40 ms, λ+ = 0.43, λ− = 0.0058, λh = 0.03, J0,min =

0pA, J0,max = 2pA, Jmax = 12.98pA. See Table 2 for remaining parameters.

(EPS)

S2 Fig. Prediction performance for a sequence set with recurring first items. Dependence

of the sequence prediction error (A), the false positive frequency, the false negative frequency

(B), and the number of active neurons relative to the subpopulation size (C) on the number of

training episodes for a set of sequences s1 = {B, D, I, C, H}, s2 = {E, D, I, C, F}, s3 = {F, B, C, A,
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H}, s4 = {G, B, C, A, D}, s5 = {E, C, I, H, A}, s6 = {D, C, I, H, G} with recurring first items.

Curves and error bands indicate the median as well as the 5% and 95% percentiles across 5 dif-

ferent network realizations, respectively. As a solution to the issue discussed in Limitations

and outlook concerning the recurring of first sequence elements in other sequences or within

the same sequence, the dAPs are externally activated in a random subset of neurons in the

populations representing first elements. Inter-stimulus interval ΔT = 40 ms. All prediction per-

formance measures are calculated as a moving average over the last 4 training episodes. Param-

eters: ΔT = 40 ms, λ+ = 0.39, λ− = 0.0057, λh = 0.034. See Table 2 for remaining parameters.

(EPS)

S3 Fig. Prediction performance for a sequence set with 10 overlapping elements. Depen-

dence of the sequence prediction error (A), the false positive frequency, the false negative fre-

quency (B), and the number of active neurons relative to the subpopulation size (C) on the

number of training episodes for a set of two sequences s1 = {A, D, B, G, H, I, J, K, L, M, N, E}

and s2 = {F, D, B, G, H, I, J, K, L, M, N, C}. Curves and error bands indicate the median as well

as the 5% and 95% percentiles across 5 different network realizations, respectively. Inter-stim-

ulus interval ΔT = 40 ms. All prediction performance measures are calculated as a moving

average over the last 4 training episodes. The parameters of the plasticity are identical to those

reported in Table 2 for sequence set I.

(EPS)

S4 Fig. Effect of the dAP-rate homeostasis on the prediction performance. Dependence

of the prediction error (A) and the overlap in the activation pattern between the neurons

representing the sequence element “G” in the context of sequences {A, D, B, G, H, E} and

{F, D, B, G, H, C} (B) on the number of training episodes explored for two values of the

homeostasis rate (λh). Curves and error bands indicate the median as well as the 5% and

95% percentiles across 5 different network realizations, respectively. Disabling the homeo-

stasis control (λh = 0.0) increases the overlap in the “G” activation pattern, which leads to a

lost of context specificity and hence an increase in the prediction error (see Sequence learn-

ing and prediction). The parameters of the plasticity are identical to those reported in Table

2 for sequence set I.

(EPS)

S5 Fig. Asynchronous irregular firing in a (hypothetical) network processing multiple

sequences in parallel. A: Artificial spike data mimicking activity of a TM network processing

S = 10 sequences in parallel. Each sequence (right y-axis) is processed by a distinct subnetwork

of 200 neurons, each composed of C = 10 subpopulations. The horizontal gray lines separate

the different subnetworks. Upon activation of a sequence element, ρ = 20 neurons in the corre-

sponding subpopulation synchronously fire a spike. Individual sequences are activated inde-

pendently with rate 1 s−1 at random times (Poisson point process with 200 ms deadtime).

Inter-element intervals DT � Uð10ms; 80msÞ are randomly drawn from a uniform distribu-

tion (cf. Fig 10). The inset depicts a magnified view of a single activation of sequence 2. B:

Same data as in A after random permutation of neuron identities.C: Spiking activity of a ran-

dom subset of 100 neurons depicted in panel B. D–F: Distributions of single-neuron firing

rates (D), inter-spike-interval variation coefficients (E; ISI CV), and spike-count correlation

coefficients (F; binsize 10 ms) obtained from subsampled data shown in panel C for a total

simulation time of 100 s (mean rate = 1 spikes/s, mean ISI CV = 0.8, mean correlation = 0.01).

The data and analysis results shown here demonstrate that i) irregular sequence activation

translates into irregular spiking, and ii) subsampling and the absence of prior knowledge of

the network structure hide synchrony (but note the tiny peak at 1.0 in the distribution of
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correlation coefficients). The combination of both effects hence leads to asynchronous irregu-

lar firing, reminiscent of in-vivo cortical activity.

(EPS)

S6 Fig. Effects of background noise and non-synchronous stimulation on network activity.

A–F) Spiking activity before (panels A–C; 1st learning episode) and after learning sequence set

I (panels D–F; 600th learning episode) in response to a presentation of sequence {A, D, B, E}

without background noise (left) and in the presence of moderate (middle) or high synaptic

background noise (right). External inputs are presented in the form of dispersed volleys of 50

spikes (black vertical bars at the top). Each of these spikes triggers an exponential synaptic

input current in the target neurons with amplitude 134 pA and time constant 1 ms. Spike

times in each spike volley are randomly drawn from a Gaussian distribution (width 4 ms), cen-

tered on the stimulus time. In each trial, all stimulated neurons receive the same realization of

the Gaussian spike packet. Red dots and blue horizontal lines mark somatic spikes and dAPs,

respectively. For clarity, only a fraction of 50% of excitatory neurons and external spikes are

shown. Background noise to each excitatory neuron is provided in the form of balanced excit-

atory and inhibitory synaptic inputs, generated by distinct uncorrelated Poissonian spike

sources (total rate per source ν = 10000 s−1). Background synapses are modeled as exponential

postsynaptic currents (time constant τB = 1 ms) with amplitudes J = 0 pA (left), 60 pA (mid-

dle), and 170 pA (right) for excitatory inputs, and −J for inhibitory inputs, respectively. The

mean background input μ = τBν(J − J) = 0 to each neuron vanishes due to the asymmetry in

excitatory and inhibitory synaptic weights. The variance σ2 = τBνJ2 of the synaptic background

current is modulated by adjusting the synaptic weight J (left: σ = 0 pA, middle: σ = 189 pA,

right: σ = 537 pA). G,H,I) Membrane potential traces of two neurons in the excitatory subpop-

ulation “B” during the same time interval depicted in panels D–E for three noise levels σ = 0

pA (G), 189 pA (H), and 537 pA (I). One of the selected neurons (blue) is participating in the

sequence, i.e, it generates a dAP and a somatic spike in response to sequence elements “D” and

“B”. The other neuron (orange) is not part of the sequence. The horizontal dashed lines and

blue stars mark the threshold θE and the times of somatic spikes, respectively. Parameters:

ΔT = 40 ms, λ+ = 0.05, λ− = 0.001, λh = 0.01, W = 23.6 pA, Δtmin = 20 ms, τdAP = 40 ms, τref,I =

20 ms, JEI = −9686.62pA. See Table 2 for remaining parameters.

(EPS)

S7 Fig. Effects of background noise and non-synchronous stimulation on prediction per-

formance and sparsity for sequence set I. Dependence of the sequence prediction error (A),

the false positive and false negative rate (B), and the sparsity (number of active neurons relative

to the subpopulation size, C) on the number of training episodes for three different noise

amplitudes σ = 0 pA (black), 189 pA (blue), and 537 pA (gray). See caption of S6 Fig for details

on the implementation of external inputs and background noise. Curves and error bands indi-

cate the median as well as the 5% and 95% percentiles across 5 different network realizations,

respectively. All prediction performance measures are calculated as a moving average over the

last 4 training episodes. Same parameters as in S6 Fig.

(EPS)

S1 Algorithm. Algorithmic description of the plasticity model, based on the algorithm pro-

posed in [30].

(EPS)

S1 Video. Time resolved visualization of the learning dynamics. Network activity (top) and

connectivity (bottom) of the network during one learning episode. Each frame corresponds to

a new training episode. In each learning episode, each of the two sequences {A, D, B, E} and
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{F, D, B, C} is presented once (black arrows in the top panel). Top panel: Red dots and blue

bars mark spike and dAP times for each neuron. Neurons are sorted according to stimulus

preference (vertical axis). Bottom panel: Network connectivity before learning (left) and dur-

ing the current training episode (right). Light gray and black dots represent immature and

mature connections, respectively, for each pair of source and target neurons (sorted according

to stimulus preference; see Sequence learning and prediction).

(MP4)
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