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As a rate-limiting step in pregnancy, embryo implantation is highly dependent on
intercellular communication. Extracellular vesicles (EVs) are newly identified to be
important in the course of intercellular communication. EVs have been isolated from a
wide variety of biofluids and tissues, including plasma, liver, uterine, semen, embryo, etc.
The present and future use of EVs not only as biomarkers, but also as targeting drug
delivery system, is promisingly pave the way for advanced comprehension of implantation
failure in reproductive diseases. However, as the precise mechanisms of EVs in embryo
implantation has not been elucidated yet. Herein, we summarize the current knowledge on
the diverse effects of EVs from various sources and their cargos such as microRNA, long
non-coding RNA, protein, etc. on embryo implantation, and the potential mechanisms of
EVs in reproductive diseases such as recurrent implantation failure, polycystic ovary
syndrome and endometriosis. It is essential to note that many of the biologically plausible
functions of EVs in embryo implantation discussed in present literatures still need further
research in vivo.

Keywords: extracellular vesicles, exosomes, embryo implantation, intercellular communication, microRNA
INTRODUCTION

Implantation is a continuous dynamic process during which the blastocyst is implanted in the
receptive endometrium in the mid-luteal phase. Embryo implantation is the starting point and a
rate-limiting step of pregnancy. The success of embryo implantation mainly depends on two factors:
zygote and corresponding establishment of endometrial receptivity. The essential processes of
embryo implantation involve “location”, “adhesion” and “invasion”. Endometrial receptivity is
present only for a very short time in the mid-secretory phase of each menstrual cycle, typically
occurring in the 22th to 24th days of the cycle (1). This fleeting moment is called “windows of
implantation (WOI)”.

Contrary to the widespread belief, an article proposed that “embryo implantation” should more
properly be regarded as the “war” between embryo and endometrium (2). The embryo uses a variety
of coercive tactics to force its acceptance by endometrium. It’s not a cooperation or an
accommodation, but an aggression and a conquest. This metaphor is not exaggerated because
the natural conception rate of human is very low (only 30-40%) (3). Additionally, 75% of pregnancy
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losses are due to failed embryo implantation (4). Even with the
help of assisted reproductive technology, the pregnancy rate is
still low, the culprit remains implantation failure (5, 6). Take
polycystic ovary syndrome (PCOS) as an example, even we are
able to obtain high-quality oocytes by controlled ovarian
hyperstimulation and ideal blastocytes by in vitro fertilization,
the rate of clinical pregnancy and live birth is still lower in
women with PCOS comparing with that of women without
PCOS, which is mainly due to the impaired endometrial
receptivity (7, 8). At present, embryo implantation has
obviously become an unsolved hot issue in the field of
reproductive medicine research, and the mechanisms of
embryo implantation need further study. Embryo implantation
only occurs when the development of embryo coordinate with
the station of endometrium, which is highly dependent
on intercellular communication (9–11). Intercellular
communication in traditional sense relies on intimate
physiology contact or soluble mediators in microenvironment
such as hormones, growth factors, cytokines, chemokines and
proteases (12–16). In recent years, a series of papers have
revealed a bran-new communication mechanism that
modulates embryo implantation, which is called intercellular
communication mediated by extracellular vesicles (EVs) (13,
17, 18).

The aim of this review is to summarize the current knowledge
about the physiological roles of EVs produced by maternal
tissues, embryo, semen as intercellular messengers in embryo
implantation process. We have also reviewed how EVs affect
embryo implantation in reproductive diseases.
METHODS

The present review includes three strategies: literature search,
study selection, and results summary. A systematic review was
performed using the PubMed, Medline (Ovid), Embase (Ovid),
and Web of Science databases without additional limits (Figure
1). We used the following query: (‘extracellular vesicles’ or
‘exosomes’ or ‘microparticles’ or ‘microvesicles’) and (‘embryo
implantation’ or ‘embryo development’ or ‘endometrium’ or
‘polycystic ovary syndrome’ or ‘recurrent implantation failure’
or ‘endometriosis’). The last search was run on 25 April 2021.
Both animal and human studies were considered suitable for this
review. Research studies on EVs (“apoptotic bodies” and
“apoptotic vesicles” are not included) or their regulation in
embryo implantation, discussing either the endometrial
receptivity, embryo, or both, were eligible for inclusion.

We identified 12121 articles after a primary search by the
databases (Figure 1), immediately excluded 3577 records
because they were duplicated. Then two Reviewers
independently screened articles by title and abstract, any
discrepancies were resolved by consensus. 8338 records were
excluded (including irrelevant topics, reviews, comments, replies
or letters to the Editor). The remaining 206 articles were
collected as full-texts. Finally, after full-text screening, 65
articles were used for qualitative analysis.
Frontiers in Endocrinology | www.frontiersin.org 2
EXTRACELLULAR VESICLES

EVs are cell-derived membranous vesicles without specific
targets. The cargos of EVs are heterogeneous, including nucleic
acids (DNA, mRNA, microRNAs and long non-coding RNAs),
proteins, lipids and so on. Almost all cells can produce and
release EVs. Once released into extracellular space, EVs can
produce local effects through autocrine and paracrine methods,
Or be transported to distant organs or tissues through body
fluids such as blood and lymph as important carriers for
molecular exchange between different kinds of cells in short or
long distance (19). However, there is still a lack of consensus on
the nomenclature of EVs (19). We propose to distinguish three
different types of EVs on the basis of biogenetic pathway and
physical characteristics: 1. exosomes, 2. microparticles (MPs) (or
microvesicles, MVs) and 3. apoptotic bodies (17, 20). Exosomes
are 40-120 nm size homogenous vesicles, which originated from
multivesicular bodies (21, 22) and enriched in major
histocompatibility complex class I (MHC class I), MHC class
II and tetraspanins such as CD6, CD9, CD63, CD81, as well as
protein markers like Alix, TSG101 and chaperones (23, 24).
EVS AND EMBRYO IMPLANTATION

Embryo implantation is divided into three steps (25):
(1) Establishment of endometrial receptivity (2), Endometrial
FIGURE 1 | Schematic of study selection.
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decidualization regulated by embryonic signals (3), Trophoblast
invasion. Production of EVs by various tissues/cells such as
endometrium, decidua, embryo, seminal fluid, oviduct as well
as diverse stem cells has been reported to have an impact on the
three steps of embryo implantation (summarized in Table 1).
There are 30 EVs-related references in Section 4.

Endometrium-Derived EVs
Endometrial epithelial cell-derived exosomes can fuse with
developing embryos and functionally affect the process of
adhesion and invasion of blastocysts (26, 27, 48, 49), which
partially mediated by active focal adhesion kinase (FAK)
signaling (28, 29). Endometrial epithelial cell-derived exosomes
can enhance human trophectodermal spheroid adhesion and
outgrowth capacity (30). Besides, endometrial epithelial-
exosomes-treated embryos have an increased implantation rate
in vivo (30). Exosomal microRNAs from endometrial epithelial
cells, including miR-218, ensure trophoblast cell development by
targeting sFRP2 and regulating the WNT signaling pathway
under conditions of endometritis (31). In addition, Embryo
ATP production can be modulated by maternal mitochondrial
DNA secreted from endometrial fluid-derived-EVs (50).

Proteome of uterine lavage-EVs may provide novel insights
into biological processes critical for embryo development,
implantation, and successful pregnancy (51). These EVs are
dynamically regulated for their protein composition
throughout menstrual cycle, transfer invasive properties and
antioxidant function to trophectoderm cells (51). Moreover,
these EVs carry proteins that regulate embryo implantation
and predict WOI, thus highlighting their potential as a
minimally invasive biomarker (51).

Decidual Stromal Cell (DSC)-Derived EVs
Decidualization is the epithelioid transformation of endometrial
stromal cells (eSC) during embryo implantation (23).
Frontiers in Endocrinology | www.frontiersin.org 3
Both endometrial stromal and epithelial cells can intake
embryo-derived EVs (28), while DSCs-derived EVs can also be
taken up by trophoblast cells and induce invasion through
SMAD2/3-N-cadherin signaling pathway (32).

Embryo-Derived EVs
Based on the latest research, bovine embryos secrete EVs with
microRNA content according to embryonic competence and
developmental stage. Similar to what was observed with EVs
generated by other cell types, embryonic EVs are also involved in
cellular signal transduction, and thereby regulating embryo
implantation (21, 33). Supplementation of outgrowth embryo-
derived EVs to the culture medium improved the development
(52) and implantation capacity of preimplantation embryo (21).
MVs produced by embryonic stem (ES) cells play an important
role in stimulating trophoblast migration through the activation
of FAK and c-Jun N-terminal kinase (JNK) (18). The injection of
MVs isolated from ES cells into blastocysts increases the
efficiency of embryo implantation (18). Human embryo-
derived EVs have effects on endometrium by altering the
expression of specific transcripts in endometrial epithelial cells
(33). Interestingly, only good-prognosis embryos induced the
observed effects while degenerated embryos failed to initiate any
changes (33). Recently, an encouraging study reported that the
size of EVs from culture medium of human embryos might be an
alternative for evaluating their developmental competence (53).
In the process of in vitro culture, the mean diameter of MVs/Exo
from top quality embryos was higher (112.17 nm) than that
of fair (108.02 nm) and poor quality embryos (102.78 nm)
(P < 0.05) (53).

Seminal Exosomes (SE)
Seminal fluid is not only the carrier for sperm delivery, but also a
signaling agent that interact with female reproductive tissues to
facilitate conception (54, 55). EVs are indispensable bioactive
TABLE 1 | Summary of key characteristics of EVs and their implication in embryo implantation.

Source of
EVs

Markers Targets Functions References

Endometrium CD9, CD63, ALIX,
TGS101

Embryo and trophoblast cells Increase adhesion, invasion and regulate embryo energy (26–31)

DSC CD9, CD63, ALIX Trophoblast cells Induce trophoblast cells invasion (32)
Embryo CD9and TGS101, Embryo and endometrium Improve preimplantation embryonic development (21)

Alter the expression of specific transcripts in endometrium (33)
ES flotillin-2 (MV) Embryo and trophoblast cells Stimulate trophoblast migration (18)
Semen CD63, CD81 Endometrial stromal cells Regulate endometrial immuno-inflammatory responses (34–36)

Promote the prolactin secretion and enhance decidualization of eSCs
Oviduct CD9 Embryo Decrease apoptosis of embryonic cells (37, 38)

Improve the mitochondrial heath of embryo (39)
Enhance embryonic development by regulating ROS and 5-mC levels (40)

EndMSC CD9, CD63 Embryo and endometrium Increase the quality of the embryo (41, 42)
ROS elimination and immunoregulation in embryo (41)
Angiogenesis, differentiation and tissue remodeling of the endometrium (42, 43)

ADSC Alix, CD63 Endometrium Promote endometrial angiogenesis (44)
Regulate the expression of molecular markers related to endometrial
receptivity

BMSC CD9, HSP70 Endometrium Promote endometrial repair by the TGF-b1/Smad signaling pathway (45)
UC-MSC CD63, TSG101 Endometrium Promote endometrial regeneration and fertility recovery through

immunomodulation
(46, 47)
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signaling factors in the crosstalk between seminal fluid and
female reproductive system (34–36).

SEs of humans and pigs have been demonstrated to
participate in the immuno-inflammatory responses of
endometrium, and regulate uterine microenvironment related
to embryo implantation through the changes of chemokines and
cytokines (34, 35). In addition, a recent study has confirmed that
SEs can promote the prolactin secretion of eSCs during WOI and
enhance in vitro decidualization of human eSCs (36). This
excited finding suggests that mechanisms by which SEs
influence embryo implantation may be diverse.

Oviductal EVs (oEVs)
Early embryonic development occurs in the oviduct, where an
ideal microenvironment is provided by epithelial cells and by the
oviductal fluid produced by these cells (56). OEVs are emerging
as key players in the embryo-maternal interactions (37). During
the process of bovine embryonic development, microRNA cargos
of oEVs induce changes in embryonic gene expression which
lead to a decrease of apoptosis of the embryonic cells and
improve embryo viability which contribute to successful
pregnancy (37, 38). The passage of gametes and the presence
of embryo modulate microRNAs contents of oEVs (56), while
the oviduct epithelial cell-derived exosomes improve the
mitochondrial heath of in vitro-produced bovine embryos (39).
Exosomes-treatment significantly upregulated the pyruvate
dehydrogenase and glutamate dehydrogenase expression,
required for metabolic fine-tuning of the TCA-cycle in the
developing embryos (39). Melatonin was proved to be present
in oviduct fluids and oEVs (40). The treatment of oEVs and
melatonin enhances the in vitro development of embryo by
regulating ROS and 5-mC levels (40).

Mesenchymal Stem Cell (MSC)
-Derived EVs
As an advanced therapeutic strategy, MSC therapy have been
applied in many fields. MSCs play therapeutic and recovery roles
not only through cell differentiation but also by secreting various
paracrine signaling factors into the environment (46). However,
low survival rate, immunological rejection and inevitable risk of
tumor transformation limit its promise (44).

As a cell-free structure, MSC-derived EVs seem to be more
promising due to its advantages of higher biological stability and
easier perfusion into tissues (18, 41, 47, 57). As a new paradigm
for endometrial-embryo crosstalk, EVs light the path to the
research of embryo implantation and bring hope for the
therapy of infertility in the future.

The proteomic characteristics of EVs derived from human
endometrial mesenchymal stem cells (endMSC) are related to
embryonic development and implantation (58). It was reported
that endMSC-EVs exert an exogenous ROS scavenger activity
during embryo culture (41), increase the developmental ability of
IVF-derived embryos of elderly women, presumably by
modulating the expression of antioxidant enzymes and
promoting pluripotent activity (41). EndMSC-EVs enhance
embryo quality reflected by a significant increase in total
Frontiers in Endocrinology | www.frontiersin.org 4
cell number per blastocyst and embryo hatching, and support
angiogenesis, vascularization, immunoregulation, differentiation
and tissue remodeling of the endometrium after embryo
hatching (42, 43).

In rats with intrauterine adhesion (IUA), exosomes derived
from adipose-derived mesenchymal stem cells (ADSC-exo) has
an angiogenic effect on endometrial regeneration. Besides,
ADSC-exo upregulates the expression of integrin and leukemia
inhibitory factor (LIF) which are recognized as classic markers of
endometrial receptivity (44). Bone marrow mesenchymal stem
cell (BMSC)-derived exosomes may promote endometrial repair
by the TGF-b1/Smad signaling pathway (45). Exosomes derived
from umbilical cord-derived mesenchymal stem cell (UC-MSC)
can also promote endometrial regeneration and fertility recovery
through immunomodulation (47).

EVs from various tissues can promote implantation function
by participating in intercellular communication, which is
beneficial to embryo implantation process (shown as Table 1).
However, it’s also important to note that these results are mostly
obtained through in vitro tests and subsequent in vivo
experiments are needed for further verification.

Given their fundamental role in regulating intercellular
communication, it is not surprising that in some pathological
contexts EVs can also play a negative role in embryo
implantation. For example, endometrium-derived EVs from
women with recurrent implantation failure (RIF) attenuate the
growth and invasion of embryos (59). Therefore, EVs play a dual
role in the process of embryo implantation, which may be
attributed to the heterogeneity of EVs contents. Similar
situations will be discussed in the following sections.
RNA CARGOS OF EVS AND THEIR ROLES
IN IMPLANTATION

MicroRNAs (miRNAs)
MiRNAs are a class of small non-coding RNAs that regulate gene
expression either negatively by inhibition of translational
repression or positively through the targeting of gene
promoters (60). EV is one of the main carriers of miRNA in
vivo (60, 61). The bilayer phospholipid membrane structure of
EVs protects miRNAs from degradation and contributes to their
stability (26). Evidences suggested that heterogeneous nuclear
ribonucleoprotein C1 (hnRNPC1) may be involved in the
internalization of endometrial miR-30d into exosomes to
prepare for its subsequent incorporation into trophectoderm
cells (62, 63). However, it is still unknown whether this protein is
generally involved in miRNAs integration in EVs. Emerging
evidences suggest the considerable role of EVs-derived miRNAs
in embryo implantation events (27, 60). Among them, members
of lethal-7, miR-30, miR-21 families are especially remarkable
(64). Other miRNAs, such as miRNA-17-92 cluster, miR-29a,
etc., have been proved to be closely related to embryo
implantation process despite the temporary lack of EVs-related
evidences (64, 65). There are 18 EVs-related references in
this section.
June 2021 | Volume 12 | Article 681266
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Lethal-7 Family
The let-7 family, which has 12 members up to now, is important
for cell development and proliferation inhibition (66). The
diversity of let-7 is particularly noticeable for the establishment
of endometrial receptivity and embryonic development (66–69).

During the whole event of embryo implantation, the
expression level of let-7 family is dynamic (66, 67). In the
preparation stage of embryo implantation, up-regulated let-7a/g
in endometrial epithelial cells enhance endometrial receptivity by
inhibiting the classical Wnt signaling pathway (68). It is well
known that the acquisition of endometrial receptivity mainly
depends on the precise control of estrogen and progesterone (70,
71). The level of miR-let-7a is regulated by estrogen and
progesterone (68), which suggests that let-7 may be involved in
the regulation of steroid hormones on embryo implantation (68).
Interestingly, the expression level of let-7 family members
(including let-7a/g) was significantly decreased in the developed
blastocysts during implantation (67), which is contrary to what is
found in endometrial epithelial cells.

A recent study has shown that placental exosome-derived bta-
miR-499-5p is involved in the inhibition of NF-kB through the
Lin28B/let-7 axis (72). As a member of the let-7 family, EVs-
derived miR-98 regulates the maternal immune system of
endometrium during the period of peri-implantation by
regulating immune-related genes such as CTSC, IL6, CASP4
and IKBKE (69). The effect of let-7 on the regulation of immune
response may be related to the apoptosis of endometrial cells and
embryo implantation (69, 72), but further experiments are
needed. A recent study has expanded the understanding of the
regulatory role of let-7 family on embryo. Let-7 is a major factor
that induces diapause in embryos. Let-7-containing EVs from
uterine fluid induce mouse embryonic diapause by inhibiting c-
myc/mTORC1 and mTORC2 signaling pathways (73, 74). Over-
expression of EVs-derived let-7 potentially hamper trophoblast
differentiation and the implantation capacity of embryo (73, 74).
MicroRNA-30 Family
As mentioned above, hnRNPC1 may be involved in the
internalization of endometrial miR-30d into exosomes to
prepare for its subsequent incorporation into trophectoderm
cells (62, 63). During WOI, up-regulated miR-30 family in
human endometrial epithelium is secreted into uterine fluid as
exosome-associated molecule (75, 76). Hsa-miR-30d, secreted by
human endometrium and taken up by the pre-implantation
embryo, might modify its transcriptome, increase the adhesion
rate via indirect overexpression of genes encoding for certain
molecules involved in embryonic adhesion phenomenon, such as
Itgb3, Itga7 and Cdh5 (75).

MicroRNA-21 Family
The miR-21 family has anti-apoptotic effects on many cellular
biological processes, including regulating anti-apoptotic ability
of preimplantation embryos (77). In pregnant mice, increased
EVs and miR-21 in uterine luminal fluid regulate the growth of
fertilized eggs and embryo development via apoptosis-related
gene (Bax, Bcl-2, etc.) (78). Sus scrofa (ssc)-miR-21-5p
Frontiers in Endocrinology | www.frontiersin.org 5
regulates endometrial epithelial cell proliferation, apoptosis
and migration via programmed cell death 4 (PDCD4)/AKT
pathway (79).

Of note, the research progress of EVs-related miRNAs in
embryo implantation is not limited to the above-mentioned
families. During implantation, the expression of EVs-derived
miRNAs, such as miR-34c-5p, miR-210 are significantly up-
regulated in extracellular environment of uterine (80). Exosomal
miR-100-5p not only promotes angiogenesis during
implantation, but also activates both FAK and JNK to enhance
the implant potency of trophoblasts (81). Moreover, despite the
temporary lack of EVs-related evidences, numerous miRNAs
have also been proved to play a regulatory role in embryo
implantation (64, 65). It’s worthy to study whether EVs
participate in the interaction between these miRNAs and
embryo implantation. The specific discussion is as follows.

Other Implantation-Related MiRNAs
MiRNA-17-92 cluster is up-regulated at implantation site during
WOI (64). Similarly, miR-29a is highly expressed in uterus to
control implantation events (65), which may be achieved by
inhibiting the apoptosis of eSC via targeting the pro-apoptotic
factor genes Bak1, Bmf and the anti-apoptotic factor gene Bcl-w. As
we all know, Cox-2-derived prostaglandins are critical to
implantation, and a research have found that miR-101a and miR-
199a regulate the implantation process by regulating Cox-2 post
transcriptionally (82). MiR-31 targets immunoregulatory factors
like FOXP3, CXCL12 and so on to achieve optimal endometrial
receptivity through immunosuppression mechanisms (83).

However, miRNAs are complex and precise regulatory factor,
and some miRNAs play negative regulatory roles during the
process of embryo implantation. Higher expression of miR-200
family members is found in the serum of infertility and abortion
women compared with that of healthy women (84). In vitro
experiments have demonstrated that miR-200c inhibits
proliferation and receptive ability of uterine epithelial cells via
miR-200c/FUT4/a-1,3-fucosylation (LeY)/CD44/Wnt/b-catenin
signal pathway (84). In addition, miR-661, which is specifically
secreted by implantation-incompetent blastocysts, negatively
regulates the adhesion of trophoblasts onto epithelium via
PVRL1 in vitro, and may be involved in the breakdown of
intercellular contact and loss of epithelial cell polarity in
endometrium (85). Higher expression of miR-181b is also
found in degenerated bovine embryos compared with fine
blastocysts (86).

The above results (summarized in Table 2) strongly support
the important role of miRNAs in embryo implantation, and the
analysis of miRNAs describe a promising picture of the future in
assisted reproduction. But the expression profiles of miRNAs are
very variable in these studies mainly because of the complexity of
miRNA signals, different species of experimental animals and
individual heterogeneity (60). So, the emergence of new
methodologies for miRNA extraction and quantification is
urgently needed, and the role of EVs in embryo implantation
needs to be discussed in categories. In the seventh section of this
review, we will focus on the adverse effects of EVs on
pathological embryo implantation.
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Long Non-Coding RNAs (lncRNAs)
As the most heterogeneous class of non-protein-coding RNA,
with lengths ranging from 200 to 100,000 nt, lncRNAs are
involved in almost all biological processes (87). EVs may be
involved in the process of lncRNAs avoiding the degradation of
ubiquitous RNase in body fluids, so as to reach target cells and
play a regulatory role (87, 88). So far, there are few studies on
EVs-derived lncRNAs in embryo implantation, but the research
progress of EVs-derived lncRNAs in some endometrium-related
diseases has brought clues for future research. EVs from
endometriosis women are characterized by a unique miRNA-
lncRNA signature (89), which may affect endometrial receptivity
during WOI result in implantation failure (90). Decidualization
and angiogenesis are typical changes in the endometrium during
implantation, and antisense hypoxia-inducible factor (aHIF) is a
well-known angiogenesis-related lncRNA (87). Endometriotic
cyst stromal cells-derived exosomal aHIF induces angiogenesis
by regulating angiogenesis-related genes in human umbilical
vein endothelial cells (87). Some other specific lncRNAs are
associated with endometrial physiopathology and embryo
implantation (91, 92). LIF is a kind of cytokine secreted by
endometrial glands and plays an amazingly important role in
embryo implantation during WOI (93, 94). As a competing
endogenous RNA for miR‐15b, lncRNA882 regulates LIF by
sponging miR‐15b in endometrial epithelium cells of dairy goat
(95). (There are 3 EVs-related references in this section.)
PROTEIN CARGOS OF EVS AND THEIR
ROLES IN IMPLANTATION

Proteomic profiling of endometrium has revealed that
endometrial exosomes contain a number of unique exosomal
proteins not previously identified in exosomes from any other
Frontiers in Endocrinology | www.frontiersin.org 6
tissues (29). These endometrium-derived exosomal proteins are
primarily regulated by estrogen and progesterone during
menstrual cycle (29), which is consistent with the
establishment of endometrial receptivity (70, 71). Importantly,
proteomic changes in human trophectoderm function are
demonstrated after endometrial EVs are internalized by human
trophectoderm cells, which probably due to the transfer of EV
protein cargos (26). Therefore, the expression differences of
exosomal protein during the various stages of menstrual cycle
may be closely related to embryo implantation. There are 5 EVs-
related references in Section 6.

Among the numerous exosomal proteins, matrix
metalloproteinase (MMP), which may have potential roles in
embryo-maternal crosstalk during implantation has attracted
much attention (22, 29). MMPs are widely expressed on
maternal-fetal interface, responsible for extracellular matrix
degradation and regulated by tissue inhibitors of MMPs
(TIMPs) (96, 97). Different expression of MMP2, MMP14, and
TIMP2 is observed in endometrium during various phases of the
estrous cycle (98). MMPs contribute to the spatial and temporal
matrix remodeling in bovine endometrium and may be related to
the invasive ability of trophoblast cell (96). Some MMPs are
relevant to endometrial angiogenesis (99), which is essential for
vascularized receptive endometrium.

HLA-G is a key molecule in the process of embryo
implantation, avoids the maternal immune rejection of the
embryo by regulating the maternal-fetal immune response, and
mediates communication with target cells in a variety of ways
(100). The expression of HLA-G protein at the maternal-fetal
interface is critical to the success of pregnancy, and HLA-G can
be secreted with EVs (100).

So far, researches on the role of EVs-derived proteins in
embryo implantation process are still not in-depth. In vitro
experiments have discovered that 254 and 126 proteins are
June 2021 | Volume 12 | Article 68126
TABLE 2 | The reported miRNA cargos and their implication in embryo implantation.

MiRNA Species Site of action Potential target genes/pathways in embryo-
endometrial microenvironment

Possible effect on embryo
implantation

Ref.

Let-7
family

Let-7a/g Mice and human Endometrium
and embryo

Wnt/b-catenin-let-7 axis
C-myc/mTORC1 and mTORC2 pathway

Promote implantation/
Induce embryonic diapause

(68, 73, 74)

Let-7g Mice Blastocyst Wnt/b-catenin-let-7 axis Decrease embryo implantation (66, 67)
MiR-98 Cattle Endometrium Gene CTSC, IL6, CASP4 and IKBKE Regulate the maternal immune

system of endometrium
(69)

MiR-30d Human Embryo Gene Itgb3, Itga7 and Cdh5 Promote embryo adhesion (75)
MiR-21 Mice Embryo Gene Bax, Bcl-2, etc. Promote embryonic development (77, 78)

Sus scrofa Endometrial
epithelium

PDCD4/AKT pathway Regulates the function of
endometrial epithelium

(79)

MiR-29a Rat Endometrium Gene Bak1, Bmf and Bcl-w Inhibit the apoptosis of
endometrial stromal cells

(65)

MiR-101a and miR-
199a

Mice Uterus Cox-2 The exact mechanism remains
unknown

(82)

MiR-31 Human Endometrium FOXP3, CXCL12, etc. Promote endometrial receptivity (83)
MiR-100-5p Ishikawa cell lines Trophoblast FAK or JNK signaling Promote migration and invasion (81)
MiR-200 Human Endometrial cell MiR-200c/FUT4/LeY/CD44/Wnt/b-catenin pathway Inhibit proliferation and receptive

ability
(84)

MiR-661 Human Endometrial
epithelium

Gene PVRL1 Decrease the adhesion of
trophoblasts onto epithelium

(85)
6
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uniquely enriched in endometrial-derived exosomes during the
proliferation and receiving phases, respectively (29). Whether
these numerous and diverse proteins can provide appropriate
conditions for embryo needs further explosion.
EVS AND EMBRYO IMPLANTATION:
A NEW VIEWPOINT OF
REPRODUCTIVE DISEASES

It is widely accepted that women with a history of reproductive
diseases such as recurrent implantation failure (RIF), polycystic
ovary syndrome (PCOS), and endometriosis, are associated with
future impaired embryo implantation (101–105). EVs-based
intercellular communication plays an important role in female
reproductive microenvironments and is involved in the
pathogenesis of these disorders (59, 89, 106–109). The
regulatory disorders caused by abnormal EVs may provide a
new viewpoint of implantation failure in women with
reproductive diseases (summarized in Table 3). There are 9
EVs-related references in Section 7 (3 for endometriosis; 4 for
PCOS; 2 for RIF).

EVs in Endometriosis
Endometriosis is defined by the presence of viable endometrial
tissue outside the uterine cavity (103). A number of
implantation markers such as avb3 integrin, LIF, homeobox
A10 (HOXA10) and HOXA11 are aberrantly expressed in
patients with endometriosis and may contribute to infertility
in some women with endometriosis (103). Endometrial defects
and defective endometrial-embryo cross-talk are both proposed
mechanisms of implantation failure in endometriosis (103,
111). In recent years, the role of EVs in the process of
implantation failure in endometriosis women is attracting
increasing attention, and changes in the expression of certain
Frontiers in Endocrinology | www.frontiersin.org 7
proteins, lncRNAs and mRNAs may affect endometrial
receptivity in rats with endometriosis during WOI, probably
resulting in implantation failure of the embryo (89, 90,
108, 110).

EVs, including exosomes obtained from tissues (including
endometrium, eutopic and ectopic endometriotic lesions,
peritoneal fluid) and plasma samples of endometriosis women
have unique miRNA-lncRNA characteristics (89). Forty-nine
differentially expressed miRNAs are identified in eutopic
endometrial stromal cells exosomes compared with that of
normal endometrial stromal cells exosomes, and 12 miRNAs
are predicted to target HOXA10, which is also a hopeful
predictor of endometrial receptivity (112, 113), and/or the LIF
3’ untranslated region (110). In addition, higher levels of
angiogenic and inflammatory cytokines are present in the
human umbilical vein endothelial cells cocultured with
the endometriotic epithelial exosomes (89, 108). The
proinflammatory microenvironment stimulated by eutopic
endometriotic lesions-derived EVs may also responsible for the
disorders of embryo implantation in endometriosis (89, 108).

EVs in PCOS
PCOS, one of the most common endocrine disorders in women,
affects 8-13% of women of reproductive age (114). Nowadays,
sufficient evidences have proved that hormonal disturbances as
well as metabolic changes in PCOS women can both affect
endometrial receptivity and embryo implantation (101, 102).

At gene level, there is a differential gene expression in
endometrium of PCOS detected by microarray evaluation (115,
116). It is noteworthy that most of these genes are involved in
steroid hormone synthesis, inflammation and oxidative stress,
which are indispensable for the establishment of endometrial
receptivity (116). The proteome pattern of endometrium during
WOI in PCOS women is significantly different with that of
normal female (117, 118). These differences in transcription,
post-transcriptional modification and translation are often
related to metabolism, cell cycle, DNA repair, apoptosis and
signal transduction (116), and may consequently cause impaired
endometrial receptivity in PCOS women. But the specific
mechanisms are still unknown. Researches on EVs may
provide new insights into the further understanding of
implantation failure in PCOS.

RNA sequencing microarray and proteomic analysis have
shown differentially expressed small RNAs, circRNAs, and 86
proteins in follicular fluid exosomes of PCOS women (106, 107,
119, 120). The alterations of the proteomic profile of PCOS
women are related to the inflammation, reactive oxygen species
metabolic process, cell migration and proliferation (106), which
are closely related to embryo implantation. S100‐A9 protein in
exosomes derived from follicular fluid promotes inflammation
and causes disorders of ovarian steroidogenesis via activation of
NF‐kB pathway (106). The down-regulated exosomal circLDLR
in follicle fluid of PCOS women is proposed to involve in
abnormal estrogen secretion as well (107).

Chronic inflammation is an acknowledged cause of
endometrial physiological dysfunction (121, 122). Excessive
TABLE 3 | EVs in reproductive diseases and their potential roles in embryo
implantation disorders.

Reproductive
diseases

The potential role of EVs in
embryo implantation disorders

Ref.

Endometriosis

Affect the expression of endometrial receptivity marker
molecules, such as LIF, HOXA10 (110)
Angiogenesis (89,

108)
Immuno-inflammatory responses (89)

PCOS

Disturbances of ovarian steroidogenesis
(106)

Abnormal estrogen secretion (107)
Affect inflammation, ROS metabolic process, cell
migration and proliferation

(106)

RIF

Inhibit blastocyst formation (59)
Inhibit the proliferation, migration, and invasion of
trophoblast cells

(59,
109)
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inflammation results in the adverse pregnancy outcomes in
PCOS and endometriosis. The articles above (106, 107)
specialize in local inflammation and steroidogenesis of the
ovary, and the disorders of ovarian steroidogenesis and
abnormal inflammatory state caused by follicle fluid exosomal
cargos may also be the potential mechanisms of the disorders of
embryo implantation in PCOS.

EVs in RIF
RIF refers to the repeated transfer of morphologically good
embryos to a normal uterus without achieving successful
implantation and a clinical pregnancy (123). Traditionally, the
failure to achieve a clinical pregnancy after transfer of at least
four good-quality embryos in a minimum of three fresh or frozen
cycles in a woman under the age of 40 years is defined as RIF
(105). The etiologies and pathogenesis of RIF is unknown, and
clarifying the mechanisms of EVs in RIF may provide benefits to
the treatments of embryo implantation disorders.
Frontiers in Endocrinology | www.frontiersin.org 8
Altered miRNA profiles in RIF-EVs might be involved in the
pathogenesis of RIF. The up-regulated miR-1246 and miR-1290
in the RIF-EVs may indicate the inadequate endometrial
receptivity of RIF women (124). In vitro experimental studies
have demonstrated that endometrial EVs from RIF women
attenuate embryonic development and implantation capacity
by inhibiting blastocyst formation, decreasing the total cell
number of embryos as well as inhibiting the proliferation,
migration, and invasion of trophoblast cells (59, 109).
PROSPECTS AND CONCLUSIONS

In conclusion, asoneof the important communicationmechanisms
that modulate blastocyst and endometrial functions, EVs play an
important role in promoting embryo implantation, which mainly
owes to EVs’s unique ability in transferring heterogeneous cargos
FIGURE 2 | Summary of EVs and their implication in embryo implantation. Purple vesicles, endometrium-derived EV; Red vesicles, embryo-derived EVs; Green
vesicles, EVs from other sources.
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(summarized in Figure 2) (125). Abnormal EVs play a negative
role in some pathological conditions.

EVs have shown great potential as molecular biomarkers in
diagnosis, prognosis and also as possible therapeutic targets.
Currently, endometrial dysfunction is the biggest obstacle to the
treatment of embryo implantation disorders. EVs derived from
serum and uterine fluid may be used, as a noninvasive and
accurate marker of endometrial station, to identify women with
implantation defects, demonstrate the optimal timing for
embryo transfer, and replace the traditional endometrial biopsy
(83, 126, 127). EVs-based preparation may be a promising
approach to endometrial regeneration and improving pregnancy
outcomes (128).

But the precise mechanisms of EVs regulating embryo
implantation have not been elucidated enough. The following
points deserve attention and improvement particularly: 1. the
data of EVs cargos are mainly derived from immortalized or
long-term passaged cell lines. 2. there is still no golden standard
of EVs separation, concentration and purification, and no
acknowledged nomenclature of subclassing EVs with various
biophysical properties. 3. the experimental data of effects of EVs
in embryo implantation is largely based on in vitro trophoblast
adhesion/invasion assays, but the corresponding in vivo evidence
has not been rigorously established. 4. current understanding of
EVs has been limited to protein and RNA cargos, but the role of
Frontiers in Endocrinology | www.frontiersin.org 9
EVs-derived DNA and lipid molecules in embryo implantation
remains unknown. So further exploration of the effects of EVs
and their cargos on embryo implantation is still needed.
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