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Abstract

Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The
photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs) and differentially expressed proteins
(DEPs) of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative
chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in
sandstone soil, the higher content of calcium might play a role in keeping the chloroplast from harm and showed higher
photosynthesis rate. The transpiration and stomata conductance were decreased in calcareous soil, which might result from
the closure of stomata. The GeneFishing and proteomic results showed that the expression of DEGs and DEPs were critical
for photosynthesis and stomata closure, such as RuBisCO, photosynthetic electron transfer c and malate dehydrogenase
varied in the leaves of L. confusa that cultivated in different soils. These DEGs or DEPs were further found to be directly or
indirectly regulated by calcium sensor proteins. This study enriched our knowledge of the molecular mechanism of high net
photosynthesis rate and lower transpiration of L. confusa that cultivated in the calcareous soil in some degree.
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Introduction

The highly ordered and complex process of plant leaf

development is influenced by a variety of factors and constrained

by several abiotic stresses. The research on the mechanisms of the

adaptation to abiotic stress environment in plants is becoming a

hotspot in recent years [1–3]. Carbonate rock is the bedrock of

karst ecosystems, which occupies about 1/3 of mainland of China

[4],the high calcium content and drought are the main charac-

teristics of karst soils [5]. Accordingly, the plants in karst areas

have obtained the ability to adapt to the high level of calcium and

drought through long-term evolution [6–8]. Research on the

mechanisms of plant adaptation to karst environments is necessary

for it can provide new ways on the fragile karst ecosystem

rehabilitation. L. confusa was one of Chinese medicinal plant with a

typical ecological value and which was widely cultivated in

calcium-rich karst areas of China [9]. Previous studies had showed

that the cytosolic free Ca2+ could restrict to 1027 M or less in L.

confusa [10], because of it could excrete the excess of Ca2+ via

stomata or stored in glands and trichomes under higher Ca2+

supplied in karst areas [8].

As the key process for neogenesis of biological material,

photosynthesis plays a central role in plant performance under

abiotic stresses, and the net photosynthesis rate (Pn) and

transpiration rate (E) in most fruit crops could be reduced with a

rapid closure of stomata, with the reduction of stomata conduc-

tance (Gs) as well [11–13]. As one of essential and major plant

nutrients, Ca2+ is required to maintain cell wall structure and

membrane function [14]. Soil Ca2+ depletion could affect some

important physiological processes, such as carbohydrate storage,

photosynthesis, chlorophyll content and antioxidant enzyme

activity [15,16]. It was revealed that the decline of photosynthesis

caused by the simulated acid rain treatment could be recovered

with high concentration of Ca2+ treatment in Lonicera formosana

[17]. Ca2+ are directly involved in several aspects of photosynthesis

through modulating phosphatase enzymes activity and regulating

chloroplast activity of NAD+ kinase [18]. Tan et al (2011) revealed

the photosynthesis is improved by exogenous calcium treatment in

heat-stressed tobacco [19]. Research on photosynthesis of plants

that adapt to karst areas was performed in recent years, Huang et

al (2006) have studied the photosynthesis, transpiration and water
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use efficiency of pioneer specie Cornus controversa, Zenia insigni and

Lonicera maackii in karst area, the results showed that these 3 karst

species can process a physiecological drought and thermal

adaptation and develop a strategy to escape environmental stress

[20], but the molecular mechanisms of photosynthesis in L. confusa

has not been mentioned [20,21].

In this paper, the variation in net photosynthetic rate (Pn),

relative chlorophyll content (Chl), stomata conductance (Gs) and

transpiration rate (E) were evaluated in L. confusa that cultivated on

calcareous and sandstone soils, respectively. The differentially

expressed genes (DEGs) and differentially expressed proteins

(DEPs) were identified in the meanwhile by GeneFishing PCR and

two-dimensional gel electrophoresis (2-DE) in order to explain the

molecular mechanism of L. confusa that cultivated in different

calcium cultivation conditions.

Results

Comparative analysis of Chl content, Pn, E and CI in
leaves of L. confusa that cultivated in calcareous and
sandstone soils

The diurnal variation of environment factors was exhibited in

Fig. 1. The average photosynthetic active radiation (PAR) and air

temperature were 762.2 m mol m22 s21 and 35.4uC, respectively.

The PAR value was increased continually from 461.2 mmol m22

s21 to 1119.0 mmol m22 s21 from 08:00 to 13:00 and decreased to

111.7 mmol m22 s21 at 18:00. The air temperature was up to

highest point at 13:00 (37.12uC) and down at 15:00 (Fig. 1A).

Chlorophyll (Chl) is the molecule in photosynthesis that absorbs

sunlight and uses its energy to synthesize carbohydrates from CO2

and H2O. Present results revealed that the relative content of Chl

in L. confusa planted in calcareous soil was higher than that of

planted in sandstone soil (Fig. 1A). Further research indicated that

the relative Chl contents in two cultivated soils were both

decreased to 11.1 and 13.8 at 12:00 noon, and after that time

relative content of Chl was increased to 18.1 and 18.0,

respectively. It also revealed that the relative Chl content in

calcareous soil was relatively stable. Conversely, the relative

content of Chl in sandstone soil varied a lot in diurnal, it indicated

that the relatively higher calcium supply in calcareous soil is of

importance for maintaining the stability of the chlorophyll.

Further TEM observation revealed that more small bubble

appeared in chloroplast grana of L. confusa leaves planted in

calcareous soil when the TEM sections were treated with calcium

chelator EGTA (Fig. 2A). Conversely, very few bubble appeared

in the chloroplast of L. confusa that cultivated in sandstone soil

(Fig. 2B). These results directly suggested the content of Ca2+ in

chloroplast of leaves that cultivated in calcareous soil was much

higher than that of L. confusa leaves planted in sandstone soil,

which might keep the chloroplast unharmed under strong solar

radiation. The Pn of L. confusa in calcareous soil was significantly

higher than that cultured in sandstone soil (Fig. 1B), which

indicated that L. confusa cultivated in calcareous soil might

synthesize more carbohydrates daily. From 08:00 to 12:00, the

Pn in two cultivated condition was maintained relatively stable and

the tendency as a whole decreased after 12:00. The highest Pn of

L. confusa in calcareous soil was found at 11:00. However, the

highest Pn was observed at 9:30 in sandstone soil, and both

represent at a lowest value at 14:00. The phenomena mentioned

above suggested the relatively higher calcium supply in calcareous

soil could improve the Pn of L. confusa, which was consistent with

the higher relative Chl content in the leaves of L. confusa that

planted in calcareous soil.

The E of L. confusa represented a typical double peak curve

under the two culture conditions (Fig. 1C). When cultured in

calcareous soil, the E of L. confusa arose rapidly from 8:00 AM and

the double peak appeared at 9:30 AM and 1:00 PM with the value

of 2.1 mmol m22 s21 and 2.6 mmol m22 s21, respectively.

However, the double peak appeared at 12:00 and 14:30 with the

value of 3.5 mmol m22 s21 and 2.9 mmol m22 s21 respectively,

when cultivated in sandstone soil. Further research revealed that

the average value of E in L. confusa that cultivated in calcareous soil

was 1.73 mmol m22s21, which was lower than that in sandstone

soil (2.17 mmol m22s21). As we know, the E value were regulated

by the degree of stomatal opening state, the stomatal closure would

reduce the E value to decrease the water loss. The stomata

conductance (Gs) analysis showed that the average Gs was

93.08 mmol m22 s21 and 117.45 mmol m22s21 under calcareous

soil and sandstone soil, respectively. SEM analysis showed that

most of stomata in the leaves of L. confusa were closed in the leaves

planted in calcareous soil, otherwise, half of the stomata were in

normal status in the leaves planted in sandstone soil (Fig. 2C, 2D),

which was in accordance with E value of L. confusa planted in

sandstone soil was higher than that of L. confusa planted in

calcareous soil. The intercellular CO2 concentration (CI) revealed

that the average CI of L. confusa planted in calcareous soil was

lower than that planted in sandstone soil (Fig. 1D), which was also

consistent with the E value mentioned above.

The correlation between E, Gs, Pn were analyzed and showed

in Table S3. On the conditions of sandstone, the Pn of L. confusa

were significantly positive correlated with PAR (p,0.05) and

significantly negative correlated with CI (p,0.01), other environ-

ment factors has little effect on Pn, no obvious correlation was

found between the E, Gs and environment factors (Table S3).

Otherwise, the E and Gs of calcareous soil planted L. confusa were

significantly correlated with PAR, air temperature and leaf

temperature, the Pn was also shown positive correlation with

PAR (Table S3). All those results indicated that the L. confusa in

relative higher level of calcium could enhance its sensitivity to

environmental factors.

The identification of DEGs and DEPs through
GeneFishing PCR and 2-DE analysis

GeneFishing PCR was performed on L. confusa that cultivated in

calcareous and sandstone soils by using dT-ACP2 and 20 pairs of

random primers, respectively. The PCR products were run on 2%

agrose gel and these differentially expressed PCR products were

cloned into a TOPO TA cloning vector and followed by sequence

analysis (Fig. 3A). Totally, 23 DEGs were observed and which

could be classified into 7 groups according to their functions,

including DEGs involved in photosynthesis electron transfer chain,

carbon fixation in photosynthesis, oxidation reduction reaction,

plant stress resistance, chlorophyll synthesis, transposable element

and some unknown genes (Fig. 3B, Table 1). Most of these DEGs

were highly expressed in leaves of L. confusa that cultivated in

calcareous soil. The main DEGs were described as fellows. DEG3

(RuBisCO activase, Rca) and DEG5 (glycerlde-3-phosphate

dehydrogenase, GAPDH) are the genes involved in carbon

fixation in photosynthesis [22]. DEG21 (Photosystem I reaction

center subunit IV) and DEG23 (photosynthetic electron transfer c,

PETC) are genes that are directly involved in the photosynthesis

electron transfer chain. Those four DEGs were all up-regulated in

the leaves of L. confusa that cultivated in calcareous soil, which

could improve Pn and promote carbon fixation in photosynthesis

or induce more production of ATP in L. confusa cultivated in

calcareous soil. DEG17 (SAM synthase), DEG18 (NADH

dehydrogenase subunit 2 homology), DEG24 (Hydroxy acid

Photosynthetic Traits of Lonicera confusa in Karst Environment
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oxidase, HAO) and DEG20 (SIUPTG1) are the DEGs involved in

oxidation-reduction reaction and abiotic resistance. DEG17 plays

an important role in the production of polyamine and the keep

mobility of the membrane. It confirms that SAM syntheses might

play a role for the adaptability of L. confusa to high calcium stresses.

DEG18 located in the upper respiratory chain and transfers

electrons to NADH ubiquinone and creates the transmembrane

proton gradient to synthesize ATP. The results suggest that

photorespiration is proportional to calcium concentration when L.

confusa is faced with higher calcium content. DEG24 and DEG20

encode HAO and SIUPTG1, which are relate with abiotic

resistance were also found.

2-DE was used to identify the DEPs in L. confusa that planted in

calcareous soil and sandstone soils, respectively (Fig. 4). In all, 25

DEPs expressed more than 2 fold higher and 22 DEPs expressed

less than 2 fold lower in calcareous soil were observed (Fig. 4A).

The most significant 15 DEPs were performed for MALDI-TOF-

MS-MS analysis and 10 DEPs were successfully identified

(Table 2). Some up-regulated DEPs and up expressed gene were

matched well base on the results that obtained by GeneFishing

analysis. For example, the DEPs that identified as RuBisCO large

subunit and RuBisCO large polypodiodes formosana subunit were

increased about by 14 times (6601) and 27 times (8704),

respectively (Fig. 4B). The expression of some DEPs that

significantly decreased in calcareous soil environment was also

observed (Fig. 4B). Among them, mRNA binding protein

precursor decreased by 50%, cell cycle regulated protein 2

(CDC2) homolog decreased by 40%, Zinc finger domain-

containing protein (ZBED) decreased by 90% and malate

dehydrogenase (MDH) and protochlorophyllide reductase A

(PORA) decreased to almost invisible. The highly expressed

MDH indicates an increase the E of L. confusa that cultivated in

sandstone soil. The cell division might be more active in the L.

confusa that cultivated in sandstone soil for CDC2 were highly

expressed.

Some DEGs or DEPs were selected out for RT-PCR analysis in

the L. confusa that treated with different content of calcium (Fig. 5).

The results revealed that the expression of DEG3 (Rca) and DEG5

(GAPDH) was improved with increasing concentration of Ca2+,

which is consistent with the Pn value of L. confusa that cultivated in

calcareous soils. The expression of most DEGs were first increased

with the increasing Ca2+ treatment no more than 75 mg/L, and

then began to decrease when Ca2+ were more than 75 mg/L (for

example, DEG17, DEG18, DEG21 and DEG23), this indicated

that the expressions of most genes were inhibited in L. confusa when

the Ca2+ content were higher than the calcareous soil. Few DEGs

expression were decreased with the increased Ca2+ treatment, such

as DEG24 that coded as thioredoxin H-type, which functions as a

disulfide oxidoreductase and involved in lots of redox dependent

cellular processes.

Figure 1. Diurnal variation of environment factors, chlorophyll content, Pn, E, CI. A. Diurnal variation of chlorophyll content, PAR, air
temperature; B, C and D represent the Diurnal variation of CI, Pn and E, respectively.
doi:10.1371/journal.pone.0100703.g001
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The interaction between DEPs or DEGs with calcium
sensor proteins and other genes

A better understanding of the calcium signaling network and the

way for the genes that calcium regulated would be very important.

Some genes have calcium binding site and could be regulated by

calcium directly, and some genes were affected through calcium

sensor proteins, such as calcium-dependent protein kinases

(CDPKs), calmodulin (CaM) and calcineurin B-like (CBL) proteins

[23,24]. Analyzing the interaction between DEGs with calcium

sensor proteins would provide valuable information. Complicated

network with 574 nodes and 983 edges was constructed using the

Cytoscape software, and some of the DEGs or DEPs (for example,

Rca, MDH, CDC2, PORA and PETC) that directly or indirectly

connected with calcium sensor proteins were observed (Fig. 6).

Form the network, we deduced that the DEG3 (RuBisCO

activase, Rca) was directly activated by the calcium sensor protein

CDPK, in the meanwhile, the activation of CDPK were

dependent on both Ca2+ and ATP. These results indicated that

the activity of CDPK was improved by relatively higher calcium

and then enhanced the expression of RuBisCO activase in the

leaves, which would improve the carbon fixation and the Pn in L.

confusa in calcareous soil. WNK2 was a cytoplasmic serine-

threonine kinase, which would be active when its calcium-binding

C2 domains was bound with Ca2+, the CDC2 and PORA were

both regulated by WNK2. Other calcium sensor proteins that

indirectly interacted with DEGs and DEPs were shown in Fig. 6.

The network results indicated that some of DEGs and DEPs were

surely affected by calcium or calcium sensor proteins.

Discussion

The calcium content in calcareous soil was three to four times

than that in non-karst soil [5,14]. A suitable concentration of

calcium is required to maintain cell wall structure and membrane

function and for photosynthesis [17,25]. Ca2+ depletion in soil may

influence carbohydrate storage, photosynthesis, chlorophyll con-

tent and antioxidant enzyme activity [15,16]. The relative Chl

content is one of most important factor in determining the Pn [26].

It demonstrated that low concentration of Ca2+ could slightly

promote Chl accumulation [27], other research revealed that

supplementary Ca2+ could ameliorate the negative effects of

salinity on chlorophyll and dry mass production in strawberry

[28]. The present results showed that the relative Chl content and

Pn in L. confusa planted in calcareous soil were both higher than

those planted in sandstone soil. The Chl was synthesized in

chloroplast, when plant were exposed to light that higher than

those required for photosynthesis, reactive oxygen species are

generated in the chloroplasts and cause photodamage [29]. Plants

have developed several protective mechanisms when facing the

photodamage, one is chloroplast avoidance movement which

actually has a role in reducing light absorption by photosystems

under high light [29]. Exogenous Ca2+ inhibited the loss of

chlorophyll under heat stress possibly by its reducing photo-

oxidation or maintaining membrane integrity [30], Ca2+ treat-

ment also could increase the synthesis of HS proteins, such as

HSP26 and HSP70, which could protect the cells and tissues from

damage after heat stress [31]. Our present research revealed the

relative Chl content of L. confusa planted in calcareous soil changed

very little compared with those planted in sandstone soil,

Figure 2. Observation of stomata status by using SEM and Ca2+ positioning analysis chelated by EGTA by using TEM. A and B
represent the Ca2+ positioning analysis in the chloroplast of leaves that cultivated in calcareous soil and sandstone soil that chelated by EGTA, Bar in A
and B represent 1000 nm; C and D represent the SEM observation of stomata status of leaves that cultivated in calcareous soil and sandstone soil.
doi:10.1371/journal.pone.0100703.g002
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indicating that the calcium has some effect on eliminating the

reactive oxygen species and maintaining chloroplast stability [32],

which was in accord with the higher expressed DEP of HAO

(hydroxy-acid oxidase) in the L. confusa that planted in the

calcareous soil.

Ca2+ plays a critical role in responding to environmental signals,

activating or inactivating the expression of photosynthesis related

genes [33], it was also suggested that Pn could be improved by

CaCl2 in heat stressed plants [19]. CaCl2 pretreatment could

improve RuBisCO activity under lower temperature, and its

higher activity was associated with higher Pn [19,25], Previous

study also revealed that Pn was inhibited by moderate heat stress

due to the decrease of the activation of RuBisCO [34]. The

present results showed that the Pn of L. confusa planted in

calcareous soil was higher than that planted in sandstone soil at

relatively higher temperature. Some up-regulated DEGs in L.

Figure 3. The Genefishing results of leaves and classification of DEGs. A represent the genefishing analysis of leaves that cultivated in
sandstone soil (1) and calcareous soil (2), DEG6, DEG7, DEG8, DEG15, DEG16, DEG17, DEG18, DEG19 and DEG20 was the name of different primers; B
represent the classification of all the DEGs.
doi:10.1371/journal.pone.0100703.g003

Table 1. Blastn analysis of DEGs that involved in photosynthesis in different cultivated conditions.

DEG Accession Description Max score E value Max ident

3 HM773394.1 Musa AB Group RuBisCO activase (Rca) mRNA, partial cds 138 2e-29 80%

5 XM_002519612.1 Ricinus communis (S)-2-hydroxy-acid oxidase, putative 188 1e-44 82%

17 L36680.1 Pisum sativum S-adenosylmethionine synthase mRNA 322 1e-84 86%

18 AY059007.1 Maticora bivirgata NADH dehydrogenase subunit 2 gene, complete
cds; mitochondrial gene for mitochondrial product

41.0 2.8 83%

20 AY622990.1 Lycopersicon esculentum UDP-glucose: protein transglucosylase-like
protein SlUPTG1 mRNA, complete cds

66.2 1e-07 88%

21 XM_002521115.1 Ricinus communis photosystem I reaction center subunit IV A,
chloroplast precursor, mRNA

134 2e-28 88%

23 NM_178964.2 Arabidopsis thaliana PETC (Photosynthetic Electron Transfer C) 266 2e-67 79%

24 XM_002534085.1 Ricinus communis Thioredoxin H-type, mRNA 141 1e-30 75%

doi:10.1371/journal.pone.0100703.t001
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confusa planted in calcareous soil were identified as RuBisCO

activase (Rca) and glycerlde-3-phosphate dehydrogenase, which

were considered to be the key limiting factors in recycling of

mitochondrial CO2 for carbon fixation in chloroplasts, this results

indicated that relatively higher Ca2+ could improve photosynthesis

and increase carbon fixation by improve the activity of Rca and

Figure 4. 2-DE analysis of L. confusa under different cultivated conditions. A represent the 2-DE map that showed the up and down
expressed proteins in L. confusa that cultivated in calcareous soil (green and red arrow represent the protein that up-regulated and down-regulated
in calcareous soil, respectively); B represent the three-dimensional profiles of the individual spots comparing control and Ca2+ treated profiles of each
of the ten protein spots that showed significant changes.
doi:10.1371/journal.pone.0100703.g004

Table 2. The identity of DEPs of L. confusa that cultivated in different conditions.

Number Accession number The type of proteins Molecular weight PI The relative contents of protein

sandstone soil calcareous soil

6601 gi|8117180 RuBisCO large subunit 50625.5 6.37 234.4 3287.2

8603 gi|1707878 aminomethyltransferase 44248.7 8.77 0 1856.7

8704 gi|131971 RuBisCO large polypodiodes formosana
submit

50910.8 6.23 332.4 9089.2

2001 gi|38344034 peroxiredoxin 28604.6 5.17 1902.9 5726.7

6101 gi|4490714 kinesin-related protein katB 84249.8 5.48 399.2 4515.4

7401 gi|26453355 mRNA binding protein precursor 43913.3 7.1 2331.3 1295

9301 gi|1170897 Malate dehydrogenase, glyoxysomal
precursor

37714.9 8.82 4076.8 1686.3

9302 gi|15239574 Protochlorophyllide reductase A 43835.6 9.42 5517.6 0

7903 gi|42566188 Zinc finger domain-containing protein 73118.9 5.39 2769.2 25.3

4801 gi|1168812 cell cycle regulated protein 2 homolog
(p34cdc2)

10664.7 8.82 8121.5 3033.3

doi:10.1371/journal.pone.0100703.t002
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GAPDH. Some DEPs in L. confusa planted in calcareous soil were

also identified as RuBisCO large subunit and RuBisCO large

polypodiodes formosana subunit. Ca2+ addition could efficiently

protect chrysanthemum leaves from the damage in photosynthetic

apparatus under short term high temperature stress, and the Pn

and PS II electron transport were increased by 31.11% and

21.88%, respectively [35]. Tan et al (2011) revealed that CaCl2
pretreatment greatly increased PIABS under heat stress, they

deduced that CaCl2 pretreatment might play an important role in

repairing the PS II complex and maintaining higher photosyn-

thetic activity [19]. Some potential chloroplast targets of CaM

could regulate include PSAN (a subunit of PSI) as well as the

chloroplast homologue of CPN10 (Chaperonin 10), which was

involved in the assembly of ribulose-1,5- bisphosphate carboxyl-

ase/oxygenase, thereby providing a further association of calcium

regulation to CO2 fixation [36,37]. Two up-regulated DEGs

involved in photosynthesis electron transfer chain identified as

PsaE and PETC were observed in L. confusa planted in calcareous

soil, which further confirmed that higher Ca2+ in calcareous soil

could be conducive to photosynthesis in higher temperature.

Nunes-Nesi et al (2005) revealed that suppression of mitochondrial

malate dehydrogenase in tomato plants leads to an unexpected

increase in the rate of photosynthesis, which was consistent with

low expression of DEPs that coded as malate dehydrogenase in L.

confusa planted in calcareous soil [38].

Stomata form pores on leaf surfaces that regulate the uptake of

CO2 for photosynthesis and the loss of water vapor during

transpiration [39]. Free cytosolic Ca2+ were increased in response

to a high extracellular Ca2+ level through a CAS signalling

pathway and finally leads to stomatal closure [40]. Present

research revealed that E and Gs were decreased in L. confusa

planted in calcareous soil, which indicated that long-term Ca2+

transients and lower malate more likely enhance stoma closure in

the leaves of the L. confusa, which was also verified by SEM analysis

on stomata status and highly expressed HAO and MDH in the L.

confusa that cultivated in calcareous soil and sandstone soil,

respectively. Cell-type specific changes in cytosolic calcium levels

were observed in Arabidopsis root cells in response to drought [41],

SNAC1 play a important role in environmental stresses [32], the

strong induction of SNAC1 in plants guard cells suggested that the

increasing stomata closure is possible regulated by SNAC1, which

could also reduce the water loss with increasing stomatal closure

[42]. Increasing the expression of SAM synthase could improve

the resistance to the chilling and salt stress [43], the plant

photosynthesis is restrained when facing salt stresses, the expres-

sion of enzymes related with photorespiration is up-regulated to

meet the energy requirements [44]. In this study, the highly

expressed DEGs that coded as SNAC and SAM synthase were

significantly induced when planted in calcareous soil, which

indicated the higher abiotic resistance of L. confusa that planted in

calcareous soil. The CI in leaves of L. confusa planted in calcareous

soil was lower than that of planted in sandstone soil, it indicated

more CO2 was fixed, which was correlated with higher activity of

RuBisCO in leaves of L. confusa planted in calcareous soil [19].

The stomata and non-stomata limitation during the diurnal course

of photosynthesis was determined by the development trends of

intercellular CO2 concentration and Gs [45,46].

Calcium sensor proteins (such as, CDPK, CBL and CAM) were

discovered to play a crucial role in abiotic stress signaling in plants,

stimulus-specific Ca2+ signatures are decoded by Ca2+ binding

proteins that function as Ca2+ sensors [47–49]. Qiu et al (2007)

revealed that a higher level of CDPK activity occurred concur-

rently with the accumulation of photosynthetic enzymes [50],

further study also showed that some transcripts linked to

photosynthesis were observed when modulate the CDPK activity

in sorghum [51]. The present network revealed that Rca was

directly regulated by the downstream of Ca2+ target protein

CDPK, it indicated that when Ca2+ was bound to Ca2+ sensors,

the CDPKs would change their conformation and interact with

RCA to regulate the Pn. ATP and NADPH synthesis via linear

photosynthetic electron transfer or solely ATP production via

cyclic electron flow was important in photosynthesis [52], the

chloroplasts contribute to cellular Ca2+ signaling via the chloro-

plast-localized Ca2+ sensor protein CAS [48]. Petroutsos et al

(2011) also demonstrated that CAS and Ca2+ are critically

involved in the regulation of the high light response and

particularly in the control of LHCSR3 expression [53]. The

DEGs that confirmed as PETC and ND2 were observed in the

present study, it indicated the high level of Ca2+ could bind to

Ca2+ sensor protein and further improve the activity of PETC and

ND2 in the leaves of L. confusa. The DEPs of ZBED and PORA

were both highly expressed in L. confusa cultivated in the sandstone

soil, and their functions in L. confusa cultivated in sandstone soil

remained to be investigated in the future studies. The DEGs or

DEPs that observed in this study had close relationship with

photosynthesis regulation and calcium signaling could enrich the

knowledge of plant adaptation to karst environments.

Materials and Methods

Plant materials and growth conditions
The L. confusa cultivars were taken from Nongla Karst

Experimental Site, Institute of Karst Geology, Chinese Academy

of Geological Science (108u199 E,23u299 N). The plants were

cultivated in the greenhouse and were divided into two groups (15

plants per group): one group was transplanted into Ca2+-rich

calcareous soil that directly transported from Nongla Karst

Experimental Site (Ca2+ content 3.160.05 g per 100 g soil, the

pH value is 7.860.2), another group was transplanted into Ca2+-

poor sandstone soil (Ca2+ content 0.0260.005 g per 100 g soil, the

pH value is 6.760.3). Average cultivar height is almost 20 cm and

one plant was cultivated per pot (The pot diameter is 25 cm). Thus

leaves were becoming mature from the seventh leaf onward.

During the experimental period from 10 March to 20 July, the

average diurnal air temperatures between 19.84uC (day) and

Figure 5. The RT-PCR analysis of DEGs in the leaves of L. confusa
that treat with different concentration of Ca2+. A to H represent
the RT-PCR analysis of DEG1, DEG3, DEG5, DEG17, DEG21, DEG23,
DEG24 and 18s rRNA, respectively. (1 to 6 represent the L. confusa was
treated with 0 mg/L, 25 mg/L, 50 mg/L, 75 mg/L, 100 mg/L, 125 mg/L
calcium chloride, respectively).
doi:10.1371/journal.pone.0100703.g005
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9.5uC (night), respectively, with air humidity fluctuating between

45% and 85% average [8]. The mature leaves were used for

photosynthesis, relative chlorophyll content in vivo. The same

development stage mature leaves from each group were cut and

mixed together, and transferred to liquid nitrogen immediately for

Genefishing PCR and proteomics analysis.

Photosynthesis and relative chlorophyll measurement
Fully expanded mature leaves cultivated in Ca2+-rich calcareous

soil and Ca2+-poor sandstone soil were sampled for measurement,

respectively. The measurements were taken from 08:00 AM to

18:00 PM in July on plants under clear sky ambient sunlight, the

values stated are mean values from three days. The fully expanded

leaves of five different plants by using an open system photosyn-

thetic gas analyzer (PP Systems Inc. model TPS-1, Amesbury,

MA, USA) to measure the net photosynthesis rate (Pn), stomata

conductance (Gs), transpiration rate (E) and intercellular CO2

concentrations (CI) of plants in the greenhouse [54]. The

chlorophyll content was measured (10 repeats per leaf) by using

the CL-01 chlorophyll content meter, which determines relative

chlorophyll content using dual wavelength optical absorbance (620

and 940 nm) measurements from leaf samples (Hansatech

Instruments, Norfolk, UK) [55,56]. The measurement Data were

Figure 6. The network of DEGs or DEPs with calcium sensor proteins by using Cytoscape software. Yellow and green cycles represent
the DEGs or DEPs and calcium sensor proteins, respectively; the pink lines represent the directly interacted genes with DEGs or DEPs.
doi:10.1371/journal.pone.0100703.g006
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analysed using SPSS version 12.0 statistical software. Probability

(p) values of ,0.05 were considered significant. The graph data

were processed using origin 7.0 software (Microcal Software,

Inc.,Northampton, MA, USA).

Transmission electron microscope (TEM) and scanning
electron microscope (SEM) analysis of leaves

For TEM analysis, mmature leaf samples of L. confusa that

cultivated with Ca2+-rich calcareous soil and Ca2+-poor sandstone

soil were collected and washed with phosphate buffer solution, cut

into 0.5 cm60.5 cm slices and immediately immersed for fixation

in 2.5% glutaraldehyde (v/v, pH = 7.8) with 0.2 M cacodylate and

2% (w/v) buffered osmium tetroxide. The samples were

dehydrated through a graded ethanol series (30%, 50%, 70%,

85%, 95%, 100%) for 10 min each and in 100% isoamyl acetate

twice for 20 min. Tissues were then vacuumed, incubated for

4 hours at 4uC and fixed with 2% potassium pyroantimonate

(pH = 7.8) for 16 hours at 44uC. Tissues were then rinsed with

PBS solution, dehydrated with graded acetone solution, embedded

with Spurrs epoxy resin and sectioned with superfine section

machine. For the calcium positioning, the slices were incubated in

100 mM EGTA (pH 8.0) solution at 60uC for 1 hour and stained

with uranium acetate for observation followed by Tian et al [57].

For SEM analysis, mature leaves of L. confusa samples were first

treated through 10%, 20%, 30%, 50% and 70% of ethanol and

then immersed in 100% acetone twice. The dehydrated samples

were treated with CO2 critical point dryer. The dried samples

were mounted on brass disks coated with Pt under vacuum. The

ultrastructure of samples were observed by SEM [8].

Identification of differentially expressed genes (DEGs) by
using GeneFishing PCR

Mature L. confusa leaves cultivated in Ca2+-rich calcareous soil

and Ca2+-poor sandstone soil were chosen for RNA extraction

using TRIzol (Invitrogen) according to the manufacturer’s

instructions. The RNA pellets were frozen and stored at 280uC
until use. Differential display PCR was performed using the

GeneFishing kit according to the manufacturer’s instructions

(Seegene, Inc.) and which was performed for three replications.

The PCR products were separated in 1.2% agarose gel, only the

differentially expressed bands that repeated existed in three

replications were selected for further sequence analysis. The

differentially expressed bands were extracted from the gel using a

QIAquick Gel extraction kit (Qiagen) and directly cloned into a

pGEM-T Easy vector for sequencing. Semi-quantitative RT-PCR

was used for confirmation of the above Genefishing results. 18S

rRNA was used as an internal control. The sequence of primers

was showed in Table S1.

Identification of differentially expressed proteins (DEPs)
by using two-dimensional gel electrophoresis (2-DE)

Mature leaves of L. confusa were collected and immediately

freezed and stored at 280uC. For total protein extraction, samples

were ground in liquid nitrogen to fine power, and the protein

extraction method as outlined by Damerval et al [58]. Protein

concentration was determined using the RC DC Protein Assay Kit

I (Bio-Rad (500-0122), Hercules, CA, USA) with bovine serum

albumin as standard according to the manufacturer’s instructions.

For 2-DE analysis, a volume of 300 mL rehydration buffer

containing 1 mg of protein was loaded onto linear pH gradient

(IPG) strips (ReadyStrip 170 mm, pH 3–10, Bio-Rad, Hercules,

CA, USA). Isoelectric focusing (IEF) was performed by using a

Protean IEF Cell (Bio-Rad, Hercules, CA, USA) system and

followed their operation manual. The isoelectric focusing system

were: 50 V for 1 h, 200 V for 1 h, 500 V for 1 h, 1000 V for 1 h,

a linear increase of voltage to 10,000 V for 4 h, 10000 V for 8 h

achieving approximately 80 000 Vhr. After IEF, the strips were

then equilibrated twice for 15 min each in an equilibration buffer

as described [59]. The second dimension separation of proteins

was performed on 10% SDS-PAGE gels using a Bio-Rad

PROTEIN II xi cell system. After electrophoresis, the gels were

stained with colloidal Coomassie brilliant blue (CBB) G-250

according to Candiano et al [60]. The stained gels were scanned

with a UMAX Powerlook 2100XL Imaging System with a

resolution of 300 dpi and processed using the PDQuest 8.01

software (Bio-Rad Laboratories, Hercules, CA). The spots that

changed in abundance more than two-fold and the least significant

difference performed more than 95% (p,0.05) were selected for

protein identification.

The MS/MS analysis (MALDI-TOF) for DEPs were per-

formed as described by Li et al [61]. The DEPs were dug from the

gels, placed in the 1.5 mL EP tube, washed twice with pure

water, and decolorized with the same volume of decoloring liquid

(30 mM, 100 mM potassium ferrocyanide and sodium thiosul-

fate, 100 mM ammonium bicarbonate, pH 8.0) for 20 min;

Proteins were then washed with pure water again and dehydrated

with acetonitrile, vacuum dried, and was added digested with

20 mL trypsin (20 ng/mL) at 37uC overnight; For dissolution,

50 mL serine extract (50% acetonitrile, 5% trifluoro ethyl) was

added for 15 min, repeat twice, vacuum dry and 10 mL 0.1%

trifluoro ethyl was added for dissolution. Then mix 2 ml of the

above extraction liquid with 2 ml Mass spectrum loading buffer

(Alpha-cyanogen-4-hydroxyl, 50% acetonitrile, 0.1% three fluo-

rine acetic acid) and analyzed with MALDI-TOF-MS Autoflex

II. The settings were as follows: 20 kV accelerating voltage, 60–

65% grid voltage, 160 ns delay, 200/spectrum of the laser make

protein point into peptides about 1000–4000 Da and obtain mass

spectrometry results. The protein was identified according to

peptide fingerprint spectra combined with the MASCOT search

engine (http://www.matrixscience.com). Search parameters were

set as: taxonomy, Virdiplantae; enzyme, trypsin; max missed

cleavages, 1; fixed modification, carbamidometyl (C); variable

modifications, oxidation (M); fragment mass tolerance, 60.2 Da;

and mass accuracy, 50 ppm.

RT-PCR analysis of DEGs and DEPs of L. confusa with
different concentration of CaCl2 treatment

2Hydrochemistry analysis showed that the average concentra-

tion of Ca2+ in Landiantang spring of karst area of Nongla was

75.20 mg/L in the year of 2003 and 2004 [62]. In this

experiment, the successive concentration of CaCl2 solution was

designed to treat the L. confusa plants, and use 75 mg/L as tipping

point. Twenty four pots of materials were separated into six

groups, washed with pure water for a few times. For RT-PCR

analysis of the DEGs that obtained by Genefishing in different

CaCl2 solutions (treated with 0 mg/L, 25 mg/L, 50 mg/L,

75 mg/L, 100 mg/L, 125 mg/L CaCl2 solutions), fresh mature

leaves mixed samples for treatment with 36 h were taken and

preserved in 280uC fridge immediately. The primers that used

for RT-PCR was listed in Table S2. The RT-PCR conditions was

as follows, the samples were first treated with 95uC and followed

with 30 cycles of 60 s of 94uC denaturation step, 40 s of 68uC
annealing step and 40 s of 72uC extension. 18S rRNA was used

as an internal control.
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Network analysis of DEGs or DEPs with calcium sensor
proteins

All sequences of DEGs were used to perform BLAST analysis.

According to the conservatism of the gene, we deemed that DEGs

should be the highest homology gene. The functions of DEGs or

DEPs were analyzed using Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (http://www.genome.jp/tools/blast).

The gene interaction between these Ca2+ induced DEGs or DEPs

with calcium sensor proteins was as follows. The plugin of Agilent

Literature Search in Cytoscape software (http://www.cytoscape.

org/plugins/index.php) was used.
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