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Liis Kolberg2, Reedik Mägi8, Tõnu Esko8, Myriam Alexander5¤, Dawn Waterworth9, A.

Katrina Loomis10, Jaak Vilo2

1 AstraZeneca, Global Medical Affairs, Cambridge, United Kingdom, 2 Institute of Computer Science,

University of Tartu, Tartu, Estonia, 3 STACC, Tartu, Estonia, 4 Quretec, Tartu, Estonia, 5 GlaxoSmithKline,

Research and Development, Stevenage, United Kingdom, 6 Department of Biomedical Informatics, Harvard

Medical School, Boston, United States of America, 7 Department of Medical Informatics, Erasmus University

Medical Center Rotterdam, Rotterdam, Netherlands, 8 Estonian Genome Center, Institute of Genomics,

University of Tartu, Tartu, Estonia, 9 GlaxoSmithKline, Genetics, Collegeville, PA, United States of America,

10 Pfizer Worldwide Research and Development, Groton, CT, United States of America

☯ These authors contributed equally to this work.

¤ Current address: An OPEN Health Company, Buckinghamshire, United Kingdom

* sulev.reisberg@ut.ee

Abstract

The Estonian Biobank, governed by the Institute of Genomics at the University of Tartu (Bio-

bank), has stored genetic material/DNA and continuously collected data since 2002 on a

total of 52,274 individuals representing ~5% of the Estonian adult population and is increas-

ing. To explore the utility of data available in the Biobank, we conducted a phenome-wide

association study (PheWAS) in two areas of interest to healthcare researchers; asthma and

liver disease. We used 11 asthma and 13 liver disease-associated single nucleotide poly-

morphisms (SNPs), identified from published genome-wide association studies, to test our

ability to detect established associations. We confirmed 2 asthma and 5 liver disease asso-

ciated variants at nominal significance and directionally consistent with published results.

We found 2 associations that were opposite to what was published before (rs4374383:AA

increases risk of NASH/NAFLD, rs11597086 increases ALT level). Three SNP-diagnosis

pairs passed the phenome-wide significance threshold: rs9273349 and E06 (thyroiditis, p =

5.50x10-8); rs9273349 and E10 (type-1 diabetes, p = 2.60x10-7); and rs2281135 and K76

(non-alcoholic liver diseases, including NAFLD, p = 4.10x10-7). We have validated our

approach and confirmed the quality of the data for these conditions. Importantly, we demon-

strate that the extensive amount of genetic and medical information from the Estonian Bio-

bank can be successfully utilized for scientific research.
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2. Introduction

Genetic data are an important resource for scientific research and potential drug target identi-

fication [1] and genome-wide association studies (GWAS) have identified many disease-asso-

ciated genetic variants [2]. Complementary to GWAS are phenome-wide association studies

(PheWAS) which use a genotype-to-phenotype approach, testing for associations between spe-

cific genetic variants over a wide spectrum of phenotypes [3]. Combining genetic data with

phenotypes defined and validated in electronic health records (EHRs) permits associations

between genetic variants and disease outcomes, including diagnoses and procedures not com-

monly found in GWAS studies. To date, despite a relative abundance of EHR and genetic data

becoming available, few large scale PheWAS studies have linked these data [4]. Understanding

the full range of associations along with understanding the functional mechanisms of causal

genetic variants will have important implications for the design of novel therapies across indi-

cations to reduce morbidity and mortality.

The Estonian Biobank, governed by the Institute of Genomics at the University of Tartu

(Biobank) and launched in 2007, aimed to create a biobank with biological samples and genetic

material with linkage to EHRs to investigate the genetic, environmental and behavioral back-

ground of common diseases in the Estonian population [5]. To explore the utility of data in

the Biobank, we conducted a PheWAS in two areas of interest to healthcare researchers–

asthma and liver disease–to determine whether established and novel disease associations

together with early disease indicators could be detected.

Liver disease is a heterogeneous and complex disease, being the tenth highest cause of mor-

tality worldwide [6]. Non-alcoholic fatty liver disease (NAFLD) is a type of liver disease which

is defined by the presence of liver fat accumulation exceeding 5% of hepatocytes, in the absence

of significant alcohol intake, viral infection, or any specific aetiology of liver disease. Patients

with NAFLD may develop more serious conditions, such as non-alcoholic steatohepatitis

(NASH), hepatic fibrosis, cirrhosis, and hepatocellular carcinoma, and there are currently no

therapies approved to treat NAFLD or NASH. Due to the surge in prevalence of obesity,

NAFLD is now considered more common than alcoholic liver disease. The prevalence of

NAFLD, in the general population, is estimated to range between 12–18% in Europe and 27–

38% in the US [7]. Single nucleotide polymorphisms (SNPs) associated with obesity, in partic-

ular in the Patatin-like Phospholipase 3 (PNPLA3) gene, have been associated with liver disease

and cirrhosis in GWAS [8–11]. Other SNPs reported to be associated with NAFLD, NASH,

liver fat or fibrosis are in the APOC3, GCKR, MBOAT7, MERTK, PPP1R3B, SOD2, TM6SF2
and TRIB1 genes [7,8,11–29].

Asthma is a chronic inflammatory disease affecting the airways and lung characterized by

recurring symptoms including breathlessness and wheezing caused by inhalation of environ-

mental particulates such as allergens. Asthma requires both acute and long-term manage-

ment for alleviation of symptoms which vary in severity between individuals. It is estimated

that 235 million people worldwide suffer from asthma [30]. A number of asthma associated

SNPs have been identified by GWAS and include variants near TSLP, BIRC3, IL18R1,

HLA-DQB1, IL33, GSDMB, GSDM1, IL2RB, SLC22A5, IL13, and RORA gene regions [31–

33].

3. Objectives

In an effort to assess the utility of the genetic and phenotypic data available in the Estonian

Biobank, our first two objectives were to show our ability to detect previously reported GWAS

associations of (1) asthma-associated SNPs with biomarkers (lab measures) and clinical diag-

noses of asthma, and (2) liver disease-associated SNPs and clinical diagnoses of NAFLD/
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NASH within the Estonian Biobank. Both objectives are first, to test the Biobank suitability for

validation/replication studies, and second, to confirm no systematic errors in the Biobank data

before moving on to objective three, to conduct a PheWAS to test the association of the

selected 24 SNPs with all other ICD-10 clinical diagnoses. Where significant associations

between SNPs and ICD-10 diagnostic codes are found, our fourth objective was to determine

associations of corresponding SNPs with lab/biomarker measures (quantitative traits) prior to

the date of diagnosis.

4. Materials and methods

Database

The Estonian Biobank has had continuous data collection since 2002 on a total of 52,274 vol-

untary adult individuals, of which 50,000 are currently active (alive and data continuously

updated) in the database, representing approximately 5% of the Estonian adult population.

The Biobank has the ability to access Estonian primary care and secondary/inpatient care

EHRs via linkage to a central e-health database where EHR information is sent and uploaded

by healthcare professionals. Additionally, participant information is updated through linkage

to other databases/registries including the Estonian population registry, cancer registry, and

death registry. This linkage ensures prospective and retrospective capture of patient and dis-

ease characteristics in the form of ICD-10 codes [5], demographics, lifestyle information, labo-

ratory measurements, biomarker measurements, diagnoses and drug utilization (prescriptions

and fill data). Additional information is captured by questionnaires, including lifestyle data

e.g. smoking and alcohol consumption. Questionnaire information is usually captured during

patient enrolment; however, where new questionnaires are introduced, existing Biobank par-

ticipants are invited to complete these to increase completeness of data. Number of partici-

pants in the Biobank with genetic data available is expected to increase over 150K by the end

of 2019.

Case ascertainment

To be eligible for the study, patients were required to have genetic and EHR data linkage for at

least one year (365 days) after recruitment. Patients were excluded if age, gender or genetic

information was missing or if patients had no EHR linkage. ICD-10 diagnostic codes were

used to determine clinical diagnoses.

SNP selection and array information

We conducted a thorough search of the literature to identify and select genetic variants associ-

ated with asthma or fatty liver disease (or hepatic fat) using GWAS methodology [7–21,23–

29,31–38]. For one variant (rs4240624), the published association was given with computed

tomography measured hepatic steatosis [25] and we wanted to test whether we can identify the

association with NAFLD also. We then determined the availability of these SNPs on the Illu-

mina Infinium Global Screening Array used by the Biobank to obtain genetic information.

Where primary SNPs of interest were not available on this array, the Broad Institute SNP

Annotation and Proxy Search (SNAP) tool was used to identify proxy SNPs (SNPs which can

represent the primary SNP of interest) with a minimum linkage disequilibrium r2�0.6 [39].

After these steps, 11 asthma (1 proxy) and 13 liver disease-associated (8 proxies) SNPs of inter-

est were included in our analyses (Table 1). For 4 of these SNPs, associations with one or more

lab measurements (6 in total) were reported.
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PheWAS codes

ICD-10 diagnostic codes were mapped to “PheWAS codes” using methodology from Neuraz

et al. [40]. This involved converting individual ICD-10 codes into a higher order of grouped

codes for a single disease, e.g. grouping codes A00.0, A00.9, A00.1, A00 for cholera into a

three-character code A00 (“PheWAS code”) and using broader A00-A09 range (intestinal

infectious diseases) as an exclusion criterion for the control group (S1 Table). If a significant

association was observed, we repeated the analysis using the individual ICD-10 code to define

the case group while keeping the control group criteria unchanged, e.g A00.0 as the case group

and A00-A09 as exclusion criteria.

Other covariates, laboratory measures and biomarkers

To describe the patient population, we extracted data on a range of covariates including birth

year, gender, ethnicity, smoking status and body mass index (BMI). Laboratory and biomarker

Table 1. SNPs / Proxy SNPs of the genes of interest.

Gene Phenotype SNP Proxy

SNP�
R2� Effect Allele

(%)

Hardy-Weinberg Equilibrium p-

value

Asthma Phenotype

TSLP Asthma, increased eosinophil count, decreased neutrophil

count

rs1837253 NA NA C (71) 0.190

BIRC3 Asthma, reduced eosinophil and neutrophil count rs7127583 rs2846848 0.677 T (29) 0.011

IL18R1 Asthma rs3771166 NA NA A (26) 0.374

HLA-DQB1 Asthma rs9273349 NA NA C (57) 0.316

IL33 Asthma rs1342326 NA NA C (10) 0.194

GSDMB Asthma rs2305480 NA NA A (43) 0.261

GSDM1 Asthma rs3894194 NA NA A (46) 0.210

IL2RB Asthma rs2284033 NA NA A (46) 0.994

SLC22A5 Asthma rs2073643 NA NA C (48) 0.567

IL13 Asthma rs1295686 NA NA C (69) 0.751

RORA Asthma rs11071559 NA NA T (19) 0.684

Liver Phenotype

APOC3 Hepatic Fat rs2854117 rs2849176 0.714 T (42) 0.948

APOC3 Hepatic Fat rs2854116 NA NA C (44) 0.939

GCKR NAFLD rs780094 NA NA T (39) 0.306

GCKR NAFLD rs1260326 rs780094 0.933

MBOAT7 NAFLD rs641738 NA NA T (42) 0.239

MERTK HCV fibrosis progression, NAFLD fibrosisφ rs4374383 NA NA A (36) 0.347

PNPLA3 NAFLD / NASH rs738409 rs2281135 0.688 A (19) 0.362

PNPLA3 Liver density, NAFLD rs2294918 rs8418 0.890 G (60) 0.388

PPP1R3B Computed tomography measured hepatic steatosis rs4240624 rs4841132 1.000 G (91) 0.835

SOD2 Fibrosis in NAFLD rs4880 NA NA G (55) 0.021

TM6SF2 NAFLD/NASH rs58542926 NA NA T (7) 0.721

TRIB1 NAFLD, Lipids rs2954021 rs2980875 0.780 A (47) 0.959

HSD17B13 NAFLD, increased ALT level rs6834314 rs9992651 0.823 G (77) 0.338

ERLIN1 NAFLD, decreased ALT level rs2862954 rs11597086 0.669 C (41) 0.878

�Where primary SNPs of interest were not available on this array, the Broad Institute SNP Annotation and Proxy Search (SNAP) tool was used to identify appropriate

proxy SNPs (SNPs which can represent the SNP of interest) with a minimum r2 value of 0.6. r2 or linkage disequilibrium is the non-random measure of association

between alleles at different loci, providing an approximate reliability for a proxy SNP representing a primary SNP.

https://doi.org/10.1371/journal.pone.0215026.t001
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measures included sodium, potassium, blood urea, blood glucose, Creatinine, c-reactive pro-

tein, haemoglobin, platelet count, B-type natriuretic peptide / brain natriuretic protein, tropo-

nin I, troponin T, white blood cell count, neutrophil count, eosinophil count, serum uric acid,

fibrinogen, A-fetoprotein, gamma-glutamyl transferase, alanine transaminase (ALT), alkaline

phosphatase, albumin, aspartate transaminase, bilirubin, total cholesterol, high-density lipo-

protein cholesterol and low density lipoprotein cholesterol.

Data extraction and analysis

Biobank participant information, e.g. lifestyle information, was extracted directly from the

Estonian Biobank questionnaires completed during recruitment. Incident diagnoses were

extracted from local copy of central e-health database, and laboratory measures were extracted

using both e-health database and local copies of two main Estonian hospitals’ databases. In

total, there were more than 1.6 million diagnoses recorded of 12,845 different ICD-10 codes,

which were grouped into 1,888 higher level ICD-10 (PheWAS) codes used in this analysis.

There were over 640,000 lab/biomarker measurements available; however, for 42% of the par-

ticipants no measurements were recorded. Summary statistics for each laboratory measure-

ment can be found in S1 Text.

SNP data was called from the Illumina Infinium Global Screening chip array. After variant

calling, the data was filtered using PLINK software [41] sample-wise: call rate>95%, no sex

mismatches between phenotype and genotype data, heterozygosity within 3 standard devia-

tions of average heterozygosity over all samples to eliminate possible inbreeding and DNA

contamination; and marker-wise: HWE p-value>1x10-6, callrate>95%, and Illumina Geno-

meStudio GenTrain score >0.6, Cluster Separation Score >0.4. SNPs of interest were then

extracted from the data. Analysis of this study was conducted in R version 3.4.3 using the Phe-

WAS R package [42] customized to allow use of ICD-10 codes. The high-performance com-

puting center at the University of Tartu was used for analysis. Calculations for statistical power

can be found in S2 Text.

Logistic regression models were used to evaluate association of SNP/proxy SNP variation

with ICD-10 diagnoses. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated.

Linear regression models were used to evaluate associations between SNPs and laboratory mea-

surements. Most of the laboratory measurements (15 out of 26) were log-transformed due to

positive skewness assessed graphically (see Fig A in S1 Text). Prior to these log-transformations,

zero values were replaced with the minimum non-zero value in the same variable. Data for labo-

ratory measures were taken from 2008 to 2013 (Fig A in S3 Text) as the central collection of lab

measurements had only just started and not all labs recorded the lab test results until 2008, pos-

sibly causing a bias if we were to include the earlier measurements in the analysis.

For objective 1, cases for asthma were defined as ever having been diagnosed with ICD-10

codes J45-J46, and controls were defined from the remaining individuals as never (prospec-

tively and retrospectively in the patients’ medical records) having been diagnosed with ICD-10

codes J40-J47. Similarly, for objective 2, cases for NASH/NAFLD were defined as having ICD-

10 codes K75.8 or K76.0 and controls as individuals never having been diagnosed with ICD-10

codes K70-K77. Full list of J40-J47 and K70-K77 diagnoses with their counts is given in S4

Text. Altogether, 21 previously reported SNP-disease and 6 SNP-lab measurement (covering 4

SNPs out of 24) association validation tests were performed in the afore-mentioned objectives.

For objective 3 (PheWAS), each PheWAS code was tested individually, and only PheWAS

codes with at least 20 cases and 20 controls were included in the analyses. To explore what

drives the detected significant associations, an exact ICD-10 code instead of PheWAS code

was used in the subsequent analysis.
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A p-value significance threshold 0.05 was used for objectives 1 and 2 (confirmation of liver

and asthma SNP associations). For objective 3, a p-value of 2.0x10-6 (�0.05/1,000/24 where

1,000 is the effective number of ICD-10 diagnoses tested and 24 is the number of SNPs tested)

was used to reduce the likelihood of chance associations and identify the most prominent dif-

ferences. To search for evidence of systematic bias, a QQ-plot of PheWAS p-values was used to

evaluate whether the observed distribution was different from what would be expected under

the null hypothesis.

Protection of human subjects

Research at Estonian Biobank is regulated by Human Gene Research Act and all participants

have signed a broad informed consent. IRB approval for current study was granted by

Research Ethics Committee of University of Tartu, approval nr 236/T-23.

5. Results

After applying the exclusion criteria, 26,766 (51.2%) Caucasian individuals remained from the

original 52,274 (Table 2). The main reason for the drop in the number of samples is missing

genotype data (not genotyped with the given genotyping array). In this study, most partici-

pants were female (71.8%), 41.6% of individuals had a body mass index (BMI) of between

18.5–25 (normal weight), 59.2% were never smokers and 75.9% were of Estonian nationality

(Table 3).

Preselected SNPs and risk of asthma and fatty liver disease

Two asthma-associated SNPs (rs11071559 (RORA) and rs1837253 (TSLP)) passed the signifi-

cance threshold of<0.05 (Table 4) and were directionally consistent with previous studies.

While Moffat et al. showed that rs1837253 significantly reduces severe asthma in one of their

datasets, it did not replicate in the other and the association direction with asthma was the

opposite (increase) in the full dataset [31]. We also observe the increased effect of allele C of

rs1837253 in our data. From the lab measurement tests, we confirmed that each additive effect

allele T of rs2846848 (BIRC3) had a significant effect on reducing neutrophil levels (Table 4).

All other associations were non-significant.

Five fatty liver disease-associated SNPs (rs780094 (GCKR), rs2281135 (PNPLA3), rs8418

(PNPLA3), rs58542926 (TM6SF2), rs2980875 (TRIB1)) passed the significance threshold of

<0.05 (Table 5) and were directionally consistent with previous studies. Additionally, we

found that the AA genotype of rs4374383 (MERTK) significantly increases the chance of devel-

oping NASH/NAFLD, which is the opposite direction of effect to what was shown by Patin

et al. [29]. For rs9992651 (HSD17B13) and rs11597086 (ERLIN1) we also assessed the associa-

tion to ALT levels. In our analysis, both SNPs are significantly associated with increased ALT

Table 2. Biobank study attrition.

Exclusion Criteria Applied Number of Patients Remaining (%) Number of Patients Removed

Total Database Population 52,274 (100) NA

Has Genotype Data 32,831 (62.8) 19,443

Has EHR Linked Data 26,808 (51.3) 6,023

Inside Study Period 26,789 (51.2) 19

Age >18 26,766 (51.2) 23

Not Missing Gender 26,766 (51.2) 0

https://doi.org/10.1371/journal.pone.0215026.t002
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levels, but rs11597086 was in the opposite direction of what has been shown by Yuan et al.
[21].

We could only replicate some previously reported associations with asthma or fatty liver

disease-associated SNPs, but this is likely due to having only a small number of cases/measure-

ments for each of these conditions (Tables 4 and 5) and limitations of EHRs and ICD-10 codes

which might not always result in clear signals for all diseases (see Discussion). However, while

many of the associations we attempted to confirm were not strong enough in our analysis to

pass the significance threshold, almost all of the effect directions were concordant between our

study and the original studies, and the QQ-plot of p-values from our confirmatory analysis

showed clear enrichment of small p-values (Fig 1). We can consequently expect the Estonian

Biobank data to be suitable for the PheWAS of these SNPs, though we might lack sufficient

power to detect modest association signals for specific diseases.

PheWAS association between pre-selected SNPs and ICD-10 codes

We conducted a PheWAS to test the association of 24 investigated asthma and liver disease

SNPs with all ICD-10 clinical diagnoses. Three SNP-diagnosis pairs passed the PheWAS signif-

icance threshold: rs9273349 (HLA-DQB1) and E06 (thyroditis); rs9273349 (HLA-DQB1) and

E10 (type-1 diabetes) (Table 6, Fig 2); and rs2281135 (PNPLA3) and K76 (non-alcoholic liver

diseases, including NAFLD) (Table 6). The QQ-plot of all the association p-values (Fig B in S2

Text) does not indicate any systematic biases in our study (e.g. due to population stratification)

as some inflation is expected due to analyzing known disease-associated SNPs.

In order to explore what exact diagnoses drive the detected associations, we repeated the

analysis with the individual ICD-10 diagnosis codes instead of PheWAS codes (Table 7). We

found that rs9273349 is associated with autoimmune thyroiditis (E06.3) and insulin-depen-

dent diabetes mellitus without complications (E10.9), with ophthalmic complications (E10.3)

and with multiple complications (E10.7). rs2281135 is associated with fatty (change of) liver,

not elsewhere classified, including NAFLD (K76.0).

Table 3. PheWAS study participant characteristics.

Characteristic N %

Gender

Female 19,224 71.8

Male 7,542 28.2

Smoking Status

Current 7,151 26.7

Former 3,721 13.9

Never 15,853 59.2

Unknown 41 0.2

Body Mass Index

<18.5 467 1.7

18.5–25 11,127 41.6

25–30 8,721 32.6

30+ 6,423 24.0

Unknown 28 0.1

Nationality

Estonian 20,320 75.9

Russian 5,307 19.8

Other 1,139 4.3

https://doi.org/10.1371/journal.pone.0215026.t003
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Associations between significant PheWAS results and laboratory

measurements

Using the rs9273349-E06, rs9273349-E10 and rs2281135-K76 pairs, the lab/biomarker mea-

sures (quantitative traits) closest in time prior to diagnosis were identified but no significant

effects were observed under a significance threshold 9.6x10-4 (�0.05/2/26 where 2 is the num-

ber of distinct SNPs and 26 is the number of lab/biomarker measures) due to very small sample

sizes after discarding all measurements on patients without the underlying diagnosis. Using all

the measurements regardless of whether a patient had been diagnosed with a disease or not,

only rs9273349 (HLA-DQB1) passed the PheWAS significance threshold for decreasing aver-

age (over all patient’s measurements) levels of cholesterol per addition of an effect allele

(p = 1.1x10-6) (Fig 2).

6. Discussion

This is the first PheWAS study using Estonian Biobank data linked to EHRs. Large scale Phe-

WAS are scarce [44] with other PheWAS utilising mostly small cohorts [42,45–52]. Recently

large scale PheWAS have become possible in the UK Biobank, but other biobanks will still be

required for further validation or replication. To assess the Estonian Biobank’s suitability for

such a study or association validation/replication purposes, we focused on asthma and liver

Table 4. Association between genetic variants and asthma (J45-J46) diagnosis/laboratory measurements in the Estonian Biobank.

Gene SNP / Proxy SNP

and effect allele

Author Study Size Study Effect: OR (95% CI), p-

value

Biobank Case/Control Size

(total size for continuous

variables)

Biobank Effect Size: OR (95%

CI), p-value

RORA rs11071559:T Moffat

[31]

10,365/16,110 OR = 0.85 (0.79–0.90), p = 7.9E-

07

3,424/21,020 OR = 0.88 (0.83–0.95),

p = 0.00036

TSLP rs1837253:C Moffat

[31]

290/974 Severe asthma OR = 0.56 in one

dataset (p = 3x10-6); Asthma

OR = 1.15 (1.08–1.22),

p = 7.5x10-8

3,424/21,020 Asthma OR = 1.08 (1.02–1.15),

p = 0.0059

Astle

[33]

Total study size

173,480 (case/

control size not

reported)

Increased Eosinophil Count

(p = 2.1x10-17); Decreased

Neutrophil Count (p = 3.5 x10-

12)

8,040 Eosinophil

measurements; 8,174

Neutrophil measurements

Eosinophil/neutrophil counts

increased/decreased, but non-

significant

IL33 rs1342326:C Moffat

[31]

10,365/16,110 OR = 1.22 (1.14–1.30), p = 1.4

x10-8
3,424/21,020 OR = 1.08 (0.99–1.17), p = 0.07

BIRC3 rs7127583 /

rs2846848:T

Roscioli

[32]

401 Reduced Eosinophil Count

p = 0.002; Reduced Neutrophil

Count p = 0.005

8,040 Eosinophil

measurements; 8,174

Neutrophil measurements

Reduced Neutrophil Count

(p = 0.018); Reduced Eosinophil

Count globally non-significant

IL18R1 rs3771166:A Moffat

[31]

10,365/16,110 OR = 0.87 (0.83–0.91),

p = 1.7x10-8
3,424/21,020 OR = 0.97 (0.92–1.03), p = 0.34

HLA-DQB1 rs9273349:C Moffat

[31]

10,365/16,110 OR = 1.19 (1.13–1.25),

p = 2.0x10-11
3,424/21,020 OR = 0.99 (0.94–1.04), p = 0.68

GSDMB rs2305480:A Moffat

[31]

10,365/16,110 OR = 0.82 (0.79–0.86),

p = 3.3x10-16
3,424/21,020 OR = 0.98 (0.93–1.03), p = 0.47

GSDM1 rs3894194:A Moffat

[31]

10,365/16,110 OR = 1.18 (1.13–1.23),

p = 2.0x10-13
3,424/21,020 OR = 1.03 (0.98–1.09), p = 0.25

IL2RB rs2284033:A Moffat

[31]

10,365/16,110 OR = 0.90 (0.86–0.94)

p = 4.8x10-6
3,424/21,020 OR = 0.98 (0.93–1.03), p = 0.37

SLC22A5 rs2073643:C Moffat

[31]

10,365/16,110 OR = 0.90 (0.86–0.94)

p = 6.2x10-6
3,424/21,020 OR = 0.98 (0.93–1.03), p = 0.35

IL13 rs1295686:C Moffat

[31]

10,365/16,110 OR = 0.87 (0.83–0.92),

p = 7.9x10-7
3,424/21,020 OR = 0.97 (0.92–1.03), p = 0.32

https://doi.org/10.1371/journal.pone.0215026.t004
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disease associated SNPs only and as a first task, investigated whether the effects previously

reported in the literature (GWAS) could also be detected in our data. That is also to confirm

that the data have no systematic errors and are suitable for PheWAS analysis. We replicated

previous GWAS results, reporting a significant association of TSLP and RORA gene variants

with asthma [31,33] (Table 4) and GCKR, PNPLA3, TRIB1 and TM6SF2 gene variants with the

risk of developing liver diseases, notably NAFLD/NASH [8,11–15,20,24–26,29,53] (Table 5).

We observed decreasing neutrophil levels per addition of an effect allele in the BIRC3 gene var-

iant, consistent with previously reported results. In addition, variants in HSD17B13 and

ERLIN1 influence alanine transaminase (ALT) levels. The HSD17B13 association is consistent

with a recent study reporting that a loss-of-function variant associated with decreased levels of

ALT and aspartate aminotransferase (AST) and reduced the risk of liver disease and progres-

sion from NAFLD to NASH [22]. Our observed association between rs11597086 (ERLIN1)

and ALT level is in the opposite direction of what has been previously reported [21].

Table 5. Association between genetic variants and NASH/NAFLD diagnosis (K75.8 or K76.0)/laboratory measurements in the Estonian Biobank.

Gene SNP / Proxy

SNP

Author Study Size Study Effect Biobank Case/Control Size

(total size for continuous

variables)

Biobank Effect Size:

OR (95% CI), p-

value

APOC3 rs2854117 /

rs2849176:T

Petersen

[23]

258, prevalence of

NAFLD not

reported

Increased prevalence of NAFLD (p<0.001) 625/25,097 OR = 1.00 (0.89–

1.12), p = 0.99

APOC3 rs2854116:C OR = 1.02 (0.91–

1.14), p = 0.79

GCKR rs780094:T Speliotes

[25]

592/1,405 Effect allele T: NAFLD OR = 1.45 (1.17–1.57),

p = 2.6x10-8
OR = 1.14 (1.02–

1.27),p = 0.026

Yang [26] 436/467 Effect allele T: NAFLD OR = 1.61 (1.14–2.27),

p = 0.0072

GCKR rs1260326:T /

rs780094:T

Petit [27] 201/107 Steatosis, OR = 1.99 (1.14–3.47), p = 0.01

MBOAT7 rs641738:T Mancina

[28]

2,736, case group

size not reported

NAFLD OR = 1.20 (1.05–1.37), p = 0.006 OR = 1.03 (0.92–

1.16), p = 0.55

MERTK rs4374383:A Patin [29] 57/239 Advanced fibrosis OR = 0.18 (0.09–0.36),

p = 1.1x10-9 (recessive model, AA required)

OR = 1.12 (1.01–

1.26), p = 0.03

PNPLA3 rs738409:G /

rs2281135:A

Kitamoto

[24]

540/1,012 NAFLD OR = 2.20 (1.78–2.72), p = 4.1x10-13 OR = 1.40 (1.23–

1.59), p = 4.9x10-7

Speliotes

[25]

592/1,405 NAFLD OR = 3.26 (2.11–7.21), p = 3.6x10-43

PNPLA3 rs2294918:G /

rs8418:G

Donati [12] 142/100 NAFLD, p = 0.0009, OR not given OR = 1.14 (1.01–

1.28), p = 0.030

PPP1R3B rs4240624:A /

rs4841132:G

Speliotes

[25]

592/1,405 Significant effect for computed tomography

measured hepatic steatosis (p = 3.6x10-18);

NAFLD OR = 0.93 (0.68–1.18), p = 0.285

OR = 0.86 (0.71–

1.03), p = 0.10

SOD2 rs4880:G Al-Serri

[16]

179/323 Advanced fibrosis OR = 1.56 (1.09–2.25),

p = 0.014

OR = 1.00 (0.90–

1.12), p = 0.96

TM6SF2 rs58542926:T Bale [17] 256/247 NAFLD OR = 2.7 (1.37–5.3), p = 0.0004 OR = 1.29 (1.06–

1.58), p = 0.013Liu [15] 437/637 Advanced fibrosis OR = 1.88 (1.41–2.5),

p = 1.6x10-5

TRIB1 rs2954021:A /

rs2980875:A

Kitamoto

[24]

540/1,012 NAFLD OR = 1.52, (1.23–1.88), p = 9.7x10-5 OR = 1.20 (1.07–

1.34), p = 0.001

HSD17B13 rs6834314/

rs9992651:G

Chambers

[43]

61,089 Increase of ALT concentration in plasma per

copy of effect allele rs6834314 A: OR = 2.6,

(1.9–3.4), p = 3.1x10-9

9,107 ALT measurements Increased ALT

Count (p = 0.012)

ERLIN1 rs2862954 /

rs11597086:C

Yuan [21] 7,715 rs11597086 C: Decreased ALT level

(p = 1.8x10-8)

9,107 ALT measurements Increased ALT level

(p = 0.0056)

https://doi.org/10.1371/journal.pone.0215026.t005
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The limited replication of our results with previously published GWAS results in asthma

and liver disease is likely due to smaller case sizes in our data than in the original studies, lead-

ing to low power, but with continuous enrolment and data collection, statistical power will

improve in time or could be enhanced by meta-analysis with other studies.

From the PheWAS, we identified the association of asthma-associated genetic variant

rs9273349 with type 1 diabetes, and autoimmune thyroiditis. rs9273349 is a variant of the

major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1) gene which has an impor-

tant role in the immune system. HLA-DQB1 is anchored to the cell surface membrane and

functions to present extracellular proteins into the cell [54]. A number of studies have identi-

fied the association of HLA-DQB1 with thyroiditis (notably autoimmune Hashimoto’s thyroid-

itis) and type 1 diabetes [55–59]. Recently, a study by Verma et al. detected an association

between acquired hypothyroidism (usually caused by thyroiditis) and rs17843604, a SNP in

the same HLA-DQA1/B1 region [44]. Thyroiditis is a complex immune disorder of unknown

aetiology where an infiltration of T and B lymphocytes occurs as a reaction to thyroid antigens.

These B and T lymphocytes then produce thyroid autoantibodies resulting in clinical hypo- or

Fig 1. QQ-plot of p-values of the associations between SNPs and asthma/liver disease and lab measures (objectives

1–2).

https://doi.org/10.1371/journal.pone.0215026.g001

Table 6. Results of the PheWAS using the PheWAS codes and passing the PheWAS significance threshold.

Phenotype SNP Single diagnosis required,

Number of cases/controls

Single diagnosis required,

OR (95% CI), p-value

E06 (Thyroiditis) rs9273349 2,458/20,382 OR = 1.182 (1.113–1.255), p = 5.52x10-8

E10 (Type 1 Diabetes) rs9273349 719/23,268 OR = 1.331 (1.194–1.484), p = 2.55x10-7

K76 (non-alcoholic liver diseases, including NAFLD) rs2281135 1,041/25,097 OR = 1.309 (1.179–1.452), p = 4.05x10-7

https://doi.org/10.1371/journal.pone.0215026.t006
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hyper-thyroidism [55]. Type 1 diabetes is also a T lymphocyte driven disease which results in

the destruction of insulin producing pancreatic islet cells. As suggested in [31,60,61], the

amino acid variation of HLA-DQB1 variants could cause differential and incorrect binding of

peptides, altering cellular sensitization resulting in cellular hypo- or hyperactivity, disrupting

homeostatic immune function. Additionally, Mosaad et al. observed microalbuminuria in type

1 diabetic patients, suggesting that alterations in HLA-DQB1 expression effect homeostatic

regulation [59].

This study has a number of strengths which include; a large sample size of ICD-10 diagno-

ses and quantitative measures linked to 26,766 genotyped individuals, relatively long follow-up

time, integration of questionnaire data and linkage of EHR data with laboratory and other

databases. However, there are a number of limitations to consider. The large proportion of

females may introduce bias and reduce generalizability to the general population. However,

this is a general problem of all voluntary biobank cohorts as women tend to enroll more

actively than men [5]. Furthermore, EHR-linked data are not collected for research purposes,

and without strict standards for data collection and format, the quality of the data may vary

broadly (missing data, non-coherent format, errors on data insertion etc.). Even when an asso-

ciation between a SNP and an ICD-10 diagnostic code or biomarker/lab value is clearly identi-

fied, this does not imply a causal variant. ICD-10 coding may be a limitation itself as in some

Fig 2. PheWAS Plot for rs9273349. Pink line corresponds to the significance threshold. Groups were defined by the

ICD-10.

https://doi.org/10.1371/journal.pone.0215026.g002

Table 7. Results of the PheWAS using exact ICD-10 diagnosis codes and passing the PheWAS significance threshold.

Phenotype SNP Single diagnosis required,

Number of cases/controls

Single diagnosis required,

OR (95% CI), p-value

E10.7 (Insulin-dependent diabetes mellitus with multiple complications) rs9273349 215/23,268 OR = 2.021 (1.634–2.500), p = 8.6x10-11

E06.3 (Autoimmune thyroiditis) rs9273349 1,986/20,382 OR = 1.203 (1.126–1.286), p = 4.7x10-8

E10.9 (Insulin-dependent diabetes mellitus without complications) rs9273349 288/23,268 OR = 1.630 (1.367–1.943), p = 5.3x10-8

E10.3 (Insulin-dependent diabetes mellitus with ophthalmic complications) rs9273349 106/23,268 OR = 2.352 (1.720–3.216), p = 8.6x10-8

K76.0 (Fatty (change of) liver, not elsewhere classified, including NAFLD) rs2281135 605/25,097 OR = 1.251 (1.251–1.630), p = 1.2x10-7

https://doi.org/10.1371/journal.pone.0215026.t007
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cases it can be difficult to ascertain the exact condition. The limitation of using a biomarker/lab

measure closest to diagnosis is that it may not be the most sensitive or specific predictor of dis-

ease. Additionally, these measures do not take into account potential confounders e.g. response

to medication, age and time-period effects. Furthermore, small sample sizes for specific condi-

tions limit statistical power. For example, many diseases are rare and due to the fine granularity

of ICD-10 codes, using the exact codes results in very small sample sizes for case groups. With

the small number of cases, the power to detect an association is limited. Therefore, it is helpful

to conduct a two-step PheWAS by first using higher level diagnosis codes to screen for any asso-

ciation signals, and subsequently evaluating the more detailed codes to understand where spe-

cifically the association is coming from. In our study, after detecting the association between

rs9273349 and E06 (thyroiditis), an exact diagnosis analysis revealed that the association was

driven by E06.3 (autoimmune thyroiditis). Similarly, the association between rs2281135 and

K76 “Other diseases of liver, non-alcoholic fatty liver disease (NAFLD)” is actually driven by

more specific code K76.0 “Fatty (change of) liver, not elsewhere classified”.

In conclusion, this is the first PheWAS conducted using the Estonian Biobank demonstrat-

ing the extensive amount of genetic and medical information which can be successfully utilized

for scientific research. The Estonian Biobank has 50K participants, all have signed informed

consent, allowing regular data update from all health databases throughout their lives. Notably,

its value is increasing over time—not only because of the continuous EHR data addition and

vast amount of genetic data available, but also the participation count of Estonian Biobank (with

genetic data available) is expected to rise to 150K by the end of 2019. We showed that Biobank

data can be effectively used as a validation/replication database. We replicated 9 GWAS associa-

tions for asthma and liver disease-associated SNPs and found the opposite effect directions for 2

associations (rs4374383 increases the risk of NAFLD, rs11597086 increases ALT level). Further-

more, this PheWAS exploring the association of 11 asthma-associated and 13 liver disease-asso-

ciated SNPs with other diseases and biomarkers is one of few studies to use ICD-10 diagnostic

codes to link genetic data with EHRs. Although we did not detect any novel associations in our

study, we were able to confirm 3 phenome-wide significant associations based on our data–

rs9273349 and thyroiditis, rs9273349 and type-1 diabetes, rs2281135 and non-alcoholic liver dis-

eases, including NAFLD. Considering also the continuous addition of the new data, this high-

lights the usability of Estonian Biobank for using it effectively as a validation database and

conducting extended PheWAS studies with much larger sets of SNPs in the future.
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