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As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation
classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently.
In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect
information (SRCA), in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited.
The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test
sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the
coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified
into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments
are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that
the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete

observation.

1. Introduction

In the recent years, sparse representation has attracted much
attention in the fields of signal representation, compress
sensing, and classification. The sparse representation classifi-
cation (SRC) algorithm, which is proposed by Wright et al. [1],
has boosted the classification method on many subjects such
as face recognition [2], hyperspectral image classification
[3], and synthetic aperture radar (SAR) automatic target
recognition (ATR) [4-6].

In particular, with the development of SAR imaging
techniques including high resolution and multipolarization,
much effort has been devoted to SAR ATR. The moving
and stationary target acquisition and recognition (MSTAR)
dataset [7], which collects the SAR images of typical vehicles
under the conditions of various radar grazing angles and
target aspect angles, is a benchmark for the development
and evaluation of recognition algorithms. One of the most
popular methods for MSTAR classification is template match-
ing. Ross et al. [8] decomposed the train samples of each
class into 36 templates with an aspect range of 10° and then

classified the test samples based on the distance measurement
compared with the templates. Ravichandran and Casasent
[9] proposed the minimum noise and correlation energy
(MINACE) filter method to achieve an optimal classification
result. The learning vector quantization (LVQ) method [10],
which acquires the train samples with learning, is another
template matching method. Besides the previous template
matching methods that directly applied on image pixels,
the feature-based template matching methods improve the
performance. Ramamoorthy and Casasent [11] extract the
rotation invariant Fourier features and propose a feature
space trajectory (FST) classifier. Mishra and Mulgrew [12]
investigate the classification of MSTAR targets based on
principle component analysis (PCA). Yang et al. [13] sum-
marize and compare the various classifiers for MSTAR target
classification.

Through representing the test sample as the combina-
tion of training samples, sparse representation classifica-
tion, which can be considered as a generalization of the
LVQ, determines the class of the test sample based on
the resulted sparsest coeflicients. The sparse coefficients
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contain discriminatory information of the samples in low-
dimensional subspace and are robust to noise and occlusion
as well as incomplete observation [2]. However, the target
presents diverse appearance and heavy occlusion on SAR
image according to the target’s aspect angle. The sparse
coeflicients that lie on a large difference of aspect angle lead
to classification errors. In this paper, we propose a novel SAR
vehicle classification method based on SRC along with aspect
angle (SRCA). The method first estimates the aspect angle of
all the samples and solves the sparse representation vector
with a dictionary that consists of the PCA features of all
the training samples. Then, we project the sparse coefficient
vector onto a subspace that is around the test sample’s aspect
angle. Finally, the method assigns the test sample to a certain
category, which minimizes the reconstruction error with the
novel sparse representation vector. We validate our proposed
method by testing on a subset of the MSTAR dataset. It is
shown that the proposed method is superior to the methods
of linear SVM, kernel SVM, and the original SRC.

2. Sparse Representation Based Classification

In this section, we give a brief review on the sparse represen-
tation and the classification strategy, that is, how to represent
a test sample as the combination of training samples from a
dictionary [14] and determine the class based on the sparse
representation vector. Note that the test sample represents a
vehicle or other objects such as a face. In this letter, we focus
on vehicles.

2.1. Sparse Representation [1]. Suppose that there are K
distinct classes of vehicles and the labeled training samples
for the K classes are known a priori; then, our objective is
to correctly determine the class of a new test vehicle sample.
Assume that the number of training samples for the ith class
is n; and that the dimension of each sample is m1, and denote
¢ € R™! by the jth training sample for class i. Then, the
matrix for class i containing all #; training samples is given by

d)ime = [‘/51‘,1"/51‘,2’ s ’¢i»”i] : W

Accordingly, all training samples for the K classes are
concatenated into a dictionary matrix ® € R™; that is,

LDk, (2)

where N = Zfil n; denotes the total number of training
samples. With the dictionary @ at hand, we consider an
observed new test sample denoted by y € R™!. If this sample
belongs to class 7, then it can be well approximated by a linear
combination of the training samples in the ith class; that is,

1
Yy = 1P+ CoPip oot Ci,n,-‘pi,ni (3)

in which the scalar ¢;; is the weighted coefficient associated
with the jth training sample of class i to reconstruct the
sample y. Correspondingly, the linear representation of y
using all training samples in the dictionary can be denoted

by

"N = [@,,D,,..

[y]™ = [@]™ N x V! (4)
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with x = [0,...,0,G,..+,Gp 0,0, 0]" being a sparse
weighted coeflicient vector whose entries are all zero except
those associated with the ith class.

With a sufficiently large number of samples for each class,
the coefficient vector x is expected to be very sparse. Based on
the recent development in the theory of sparse representation
and compressive sensing, the solution of x can be recovered
via solving the following £'-norm minimization problem [I,
2]:

mxinllxll1 subject to y = @x, (5)

where |x[|; denotes the ¢'-norm of x, which sums up the
absolute values of all entries in x. Moreover, the equality
constraintin (5) can be relaxed to allow noise; that is, problem
(5) can be relaxed as

minjx|l; subject to [y - @x| <, (6)

where ¢ is the allowed error tolerance. Problems (5) and (6)
can be recast as linear programs (LP) and second-order cone
programs (SOCP), respectively. Thus, they are both convex
and can be solved by existing convex optimization software
[15]. It is worth noting that the complexity of solving the
SOCP is O(m*N?), where m and N are the dimension of the
sample and the total number of training samples, respectively

(cf. (1), (2)).

2.2. Sparse Representation Based Classification. With the
sparsest coeflicient X, at hand, the SRC method determines
the class of the test sample y in the following. Ideally, if
all the nonzero entries in the estimate X, are associated
with one single class i, then we can easily determine the
ith class that the test sample belongs to. However, due to
modeling error and noise, small nonzero entries associated
with multiple other classes may exist. To tackle this challenge,
the classification strategy in [1] is as follows to harness the
subspace structure of X, for classification.

For each class i, let §; : R" — R" be the characteristic
function that selects the coeflicients associated with the ith
class. That s, for any vector x € R", §;(x) € R" is a new vector
whose nonzero entries are only the entries in x associated
with class i. Then, we can reconstruct the test sample as y; =
®J;(%;) and recognize y as the class that has the minimum
residual between y and y;; that is,

argminr (y) = [y - ®; (%,)], ™)

In Figure 1, we present an example for sparse represen-
tation based classification method. In this illustration, we use
the first 3 classes (SN_9563 from BMP2, SN_C71 from BTR70,
and SN_132 from T72) from the MSTAR database. Detailed
description of the MSTAR database is given in Section 4. The
dictionary used in the experiment consists of the training
data from the 3 classes. The sparse representation coefficient
vector for 3 test images from each class is shown in Figure 1,
recovered by solving (6) using the algorithm described in
[15]. As shown in Figure 1, for each test image, the recovered
sparse coeflicient vector has most of its nonzero elements
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FIGURE 1: Sparse representation examples for 3 different test targets: (a) SN_9563, (b) SN_C71, and (c) SN_132. From top to bottom: input test
target, the corresponding sparse representation coefficient vector, and the reconstruction residual error. All the targets are represented by
colors and markers distinct for each class, with red circle for SN_9563, blue square for SN_C71, and green diamond for SN_132, as shown in

legend.

concentrated at the ground-truth class, and the resulting
residual error for the same class is minimum. Therefore,
the class of the test image is determined by the sparse
representation coeflicient vector.

3. SRC along with Aspect Angle

In SAR images, even the same target presents different
appearances with the variation of aspect angle. In this section,
the aspect information is evaluated for the classification
of vehicles in SAR image. Based on the analysis of the
correlation of the test image with the train images of various
aspects, the sparse representation vector is mapped onto a

local aspect range and the algorithm of SRC along with aspect
angle is proposed.

3.1. Correlation Analysis. The correlation between two
images reflects the similarity of them. A higher correlation
coefficient means the two target images are likely to come
from the same class. Based on the correlation coefficient, the
template matching method has been widely adopted in SAR
ATR [16]. By calculating the correlation of the test image
with the training images of various aspects, we here evaluate
the essentiality of introducing the aspect information for the
vehicle classification in SAR images.



Given two images, the correlation coefficient is calculated
as follows [17]:

53, [AG) Al [Bsmy - -B]

mn [Zx Zy [A(X,y) _K]2[B(x)y)_§]2:|1/2
(8)

in which A is the test image, B is the train image, m and
n are the offsets on the direction of range and azimuth
separately, and the shift aligns the target area in the image.
The numerator in (8) is a convolution procedure, which can
be achieved efficiently by multiplications in Fourier domain.

Figure 2 illustrates the correlation coefficients of 3 differ-
ent test images with the train images from distinct classes. In
general, the correlation coefficients of the test image with the
same class of train samples are larger than with the other two
classes. In particular, the test image presents high correlation
with the train samples within alocal aspect range, as indicated
by the rectangle in Figure 2. Therefore, the aspect information
is expected to be utilized in the SAR ATR.

RA,B =

3.2. Mapping the Sparse Representation Vector onto a Local
Aspect Range. The vehicles in SAR images are aspect sen-
sitive and the test sample is more likely represented by
the train sample whose aspect angle is close to the test
sample’s. The conclusion is preliminarily validated by the
correlation coefficients in Figure 2. Moreover, we present a
sparse representation vector that leads to incorrect result of
classification in Figure 3. The ground truth class of the test
sample is SN_C71. When the sparse coefficients on the whole
aspect space are adopted, the reconstruction residual error
is the least for the class of SN_9563 instead of SN_C71. If
we concentrate the sparse coefficient vector on a local range
of aspect that is around the aspect of the test sample, the
resulting residual error of the class of SN_C71 is the minimum
and an improved classification result is observed.

Motivated by the above observations and analysis, we
propose the SRC method along with aspect angle. For each

class i, we redefine a characteristic function &;,, ., : R" —
ST

R" that selects the coefficients associated with the ith class
and a certain range y, of the test sample’s aspect angle v,,.
Then, similar with the original SRC, the class of the test
sample y is determined with the minimum residual:

argminr (y) = |y - @5, ,, (%)].. (9)

It should be noticed that the aspect information can also
be introduced to the SRC by other alternative ways, such as
constructing the dictionary with the train samples of certain
aspect or taking the aspect angle as one of the rows of the
dictionary. However, the first one requires a large number of
train samples of certain aspect to construct the overcomplete
dictionary, and the second one is limited by the different
dimensions of the aspect and other atoms in the dictionary.
Therefore, we intuitively map the sparse coefficient vector
onto a local range of aspect and calculate the residual error
with the tailored sparse vector. The effectiveness of the
proposed method will be further validated in Section 4.
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3.3. Sparse Representation Based Classification with Aspect
Angle. The proposed SAR vehicle classification method con-
sists of three modules: (1) preprocessing, including cropping
the image size, principle component analysis (PCA) feature
extraction, and estimating the aspect angle; (2) sparse rep-
resentation of the test sample with a constructed dictionary;
and (3) determining the class of the test sample based on
the sparse representation vector and aspect angle. The overall
procedure of the proposed sparse representation classifica-
tion along with aspect angle (SRCA) method is summarized
in Figure 4.

In the first module, the aspect angle of the vehicle in SAR
image is estimated through image processing techniques.
Firstly, the target area is separated from the background with
segmentation methods [18]. Then, the minimized enclose
rectangle (MER) is calculated and therefore the aspect angle
is estimated. In this procedure, there exists an uncertainty
of 180° of the estimated aspect angle. We eliminate the
ambiguity by assuming the tailstock section to be the border
section with the highest mean RCS value. In the following
two processing modules, the sparse representation vector is
achieved by resolving (6), and the reconstruction residual
error is calculated with (9).

4. Experiment Results

In this section, we evaluate the performance of the proposed
method using MSTAR public database, which is a standard
dataset for evaluating SAR ATR algorithms, and collected
in 1995 and 1996 by the Sandia National Laboratory X-band
(9.6 GHz) HH-polarization SAR sensor with the resolution
of 0.3m x 0.3m. One subset of the MSTAR data consists
of three classes of vehicles, that is, the BMP2, BTR70, and
T72, with several configuration variations for each class.
The vehicles are imaged in spotlight mode at 15° and 17°
depression angles over 360° of aspect angles. The capacity
of the subset is illustrated in Table 1. Since the original
image dimension is very high (128 x 128 = 16384), we
crop the data to 64 x 64 and use the PCA method [12, 19]
for feature extraction to reduce their dimensionality. Other
feature extraction methods such as downsampling, Gaussian
random projection [1], and Manifold learning [20] are also
applicable to the SRC. For comparison, we compare with
several state-of-the-art classification methods: linear SVM,
kernel SVM (KSVM) with radial basis function (RBF) kernel,
and SRC. For both linear SVM and KSVM, the LIBSVM
package [21] is adopted. The radius for the RBF of KSVM is
empirically set as 0 = 4, and the tolerance error in (6) is set
as ¢ = 0.05.

In the sequel, we carry out several experiments. Firstly,
we evaluate the performance of the proposed method
under different adopted range of aspect and feature dimen-
sionalities. We then examine the robustness of the pro-
posed method with respect to the variations of depres-
sion angle and target configurations. Finally, we evaluate
the proposed algorithm under the condition of incomplete
observation.
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FIGURE 2: Correlation coefficients of the input targets in Figure 1 with different class of train samples. (a) SN_9563, (b) SN_C71, and (c) SN_132.
The rectangle indicates a local aspect range of 17° around the aspect of the test sample.

TaBLE 1: Capacity of the subset of MSTAR.

BMP2 BTR70 T72
SN_9563 SN_9566 SN_C21 SN_C71 SN_132 SN_812 SN_S7
17° (train)! 233 [232] [233] 233 232 [231] [228]
15° (test) 195 196 196 196 196 195 191

Note: 'the samples corresponding to the numbers in brackets are not used in training or testing, unless notified.
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FIGURE 3: The sparse representation vector and residual error of a test sample from SN_C71. (a) The sparse representation vector. (b) Residual
error calculated with the complete sparse representation vector. (c) Residual error calculated with the sparse coeflicients within a certain
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of the test sample.

4.1. Performance on Different Adopted Range of Aspect and
Dimensionalities. In this experiment, we use the first serial
number targets from each class, that is, SN_9563 for BMP2,
SN_C71 for BTR70, and SN_132 for T72, for algorithm evalu-
ation and comparison. The training samples are captured at
depression angle of 17° and the testing samples are captured
at depression angle of 15°.

In our first experiment, we evaluate the recognition
accuracy of the proposed SRCA method via different range of

aspect for the different feature dimensions. The performance
curves in Figure 5(a) illustrate that the recognition accuracy
of the SRCA method varies with the adopted aspect range.
At the beginning, the accuracy increases as fast as the
adopted aspect range increases and retains a high level for
several aspect range. However, when the aspect range keeps
on increasing, the performance presents some degradation,
which validates the effectiveness of carrying the classification
on a certain range of aspect. When the feature dimension
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FIGURE 5: Recognition performance of different algorithms under (a) different adopted range of aspect angle with d = 144 and (b) different

feature dimensions with v, =17°.

is d = 60, the proposed method achieves best performance
under the condition that the aspect range is v, = 17°.

In the following experiment, we compare the per-
formance of different algorithms when feature dimension
changes. The corresponding results are summarized in
Table 2 and a graphical plot is given in Figure 5(b) for
visualization. As can be seen from Table 2 and Figure 5(b),
the SRCA and SRC methods outperform the SVM methods
by a notable margin. As the feature dimension increases,
the proposed SRCA method achieves saturation faster than
the other methods. Even when the performance of SRC
represents little degradation, the performance of SRCA is
still desirable. This once again verifies the effectiveness of
introducing the aspect information for SAR ATR.

4.2. Depression Angle Invariance. For the real-world tasks,
the invariance to depression angle is crucial to the successful

application of a recognition algorithm. In this subsection,
we evaluate the invariance to depression angle for the four
algorithms. There are two different depression angles for
the first 3 classes of MSTAR, that is, 17° and 15°. In the
previous experiment, we have taken the samples captured
on the depression angle of 17° for training and the samples
captured on the depression angle of 15° for testing. In this
experiment, we exchange the testing and training samples.
As can be seen from Table 3, all the methods perform some
degradation when the samples of 15" depression angle are
used for training, which illustrates that the depression angle
is important for the recognition task. However, the proposed
SRCA method is still superior to the other methods.

4.3. Configuration Invariance. In this subsection, we examine
the invariance of different algorithms under different config-
urations, which is a desirable property of an algorithm for
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TABLE 2: Recognition accuracy (%) on MSTAR with different feature dimensions (¢, = 177, ¢ose = 15", and v, = 17°).

Dims. (d) 20 40 60 80 100 120 Avg.

Linear SVM 80.56 90.79 90.62 90.79 90.96 91.14 89.14

KSVM 82.43 92.33 92.67 92.84 93.01 92.16 90.91

SRC 92.33 98.81 98.47 98.64 97.96 97.78 97.33

SRCA 93.01 99.66 99.83 99.66 99.66 99.83 98.61

SAR ATR applications. As shown in Table 1, the BMP2 and
T72 both have different configurations of images captured
from different variants of the same vehicle type. We compare
the results of different algorithms according to the following
settings: for training, the images from SN_9563 for BMP2,
SN_C71 for BTR70, and SN_132 for T72 at the depression
angle of 17° are used. For testing, the configuration of SN_C71
for BTR70 is used and 3 different testing sets for the other
classes are used at the depression angle of 15°: (1) invariant:
SN_9563 for BMP2 and SN_132 for T72; (2) mixed: all the
images of BMP2 and T72 from all the 3 variants; (3) variant:
carrying out a test on SN_9566 and SN_C21 for BMP2
and SN_812 and SN_S7 for T72.The classification results are
summarized in Table 4. For the invariant case, the proposed
SRCA method achieves a highest classification rate of 99.83%,
which is much better than all the other methods. When
testing the dataset with different configurations (“variant”),
the proposed method can still achieve a recognition rate of
87.37%. In particular, for the configuration variants of BMP2,
the degradation is acceptable and is better than the other
methods. The results in this subsection further validate the
effectiveness of the proposed method.

4.4. Incomplete Observation Invariance. In the real-world
tasks, the targets are not observed under all conditions,
such as every aspect angles, radar frequencies, and grazing
angles. The incomplete observation proposes challenges to
the recognition algorithms. We evaluate the robustness of
proposed SRCA method under the condition of incomplete
observation. In this experiment, the training samples cap-
tured at the depression angle of 17° are selected randomly
with a certain percentage to construct the training set, and the
samples captured at the depression angle of 15° are tested. The
performances of different methods are compared in Figure 6.
The SRC based methods perform better than the SVM
based methods by a notable margin. When the percentage is
small, the absence of majority of training samples degrades
the performance of SRCA. As the percentage increases,
the performance of SRCA outperforms the SRC method
and performs the best among the four methods. Another
worthwhile point to note is that the performance of SRCA
method improves with the increase of the adopted range of
aspect angle, as shown in Figure 6 (v, = 31° compared to y, =
17°).

5. Conclusions

In this paper, we propose a SAR vehicle recognition method
based on sparse representation classification along with

TABLE 3: Depression angle invariance results (%) for different
algorithms (d = 60 and y, = 17°).

Linear SVM
90.62
89.40

KSVM SRC
92.67 98.47
91.98 97.85

SRCA
99.83
99.14

Datasets
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Recognition accuracy
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FIGURE 6: Performance comparison of the algorithms under incom-
plete observation.

aspect angle. The method projects the sparse coefficient
vector onto a subspace that is within a certain range of
aspect angle around the estimated aspect angle of the test
sample and then determines the class label according to the
reconstruction residuals. The rationality of the idea lies in that
the vehicles on SAR image are sensitive to its aspect angle and
they are much more likely represented by the training samples
with similar aspect angles. The proposed SRCA method is
compared with the linear SVM, KSVM, and SRC methods by
carrying extensive experiments on the MSTAR database. The
results validate that the proposed SRCA method is robust to
the variation of depression angles and target configurations,
as well as the incomplete observation of training samples.
Despite the effectiveness of the proposed method, much
development needs to be further considered in the future
work, including the learning of a more compact dictionary
from the training data and the fast and effective solution of
the sparse representation vector.
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TaBLE 4: Configuration invariance results (%) for different algorithms (¢, = 17°, ¢y = 15°,d = 60, and y, = 17°).

Algorithms Datasets Invariant Mixed Variant
Input | BMP2 BTR70 T72 BMP2 BTR70 T72 BMP2 BTR70 T72
BMP2 85.13 8.21 6.66 75.13 10.05 14.82 7117 10.20 18.62
Linear SVM BTR70 2.55 92.43 1.02 2.55 94.90 2.55 1.53 96.94 1.53
T72 7.65 2.04 90.31 16.49 10.31 73.20 20.98 11.66 67.36
Avg. 90.62 77.14 74.85
BMP2 88.21 7.18 4.61 76.32 10.73 12.95 74.74 9.95 15.30
KSVM BTR70 2.55 96.94 0.51 2.04 95.92 2.04 1.53 97.45 1.02
T72 6.12 1.02 92.86 14.60 5.84 79.55 19.95 5.18 74.87
Avg. 92.67 80.51 79.36
BMP2 97.44 0 2.56 90.97 2.04 6.98 86.48 3.83 9.69
SRC BTR70 1.53 97.96 0.51 0.51 98.98 0.51 0 100 0
T72 0 0 100 6.87 4.12 89.00 10.36 4.15 85.49
Avg. 98.47 92.98 88.81
BMP2 100 0 0 93.70 2.38 3.92 91.84 4.34 3.83
SRCA BTR70 0.51 99.49 0 0 100 0 0 100 0
T72 0 0 100 10.14 5.84 84.02 15.54 8.03 76.42
Avg. 99.83 90.48 87.37
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