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Abstract: A variety of organic chemicals were likely available on prebiotic Earth. These derived from
diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and
were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry
generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as
many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and
the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically
available organic compounds may not have been those used in modern biochemistry. Chemical
evolution was unlikely to have been able to discriminate which molecules would eventually be used
in biology, and instead, interactions among compounds were governed simply by abundance and
chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can
combinatorially polymerize into polyesters that self-assemble to create new phases which are able to
compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry
and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution
could have been heavily influenced by molecules not used in contemporary biochemistry, and that
there is a considerable amount of prebiotic chemistry which remains unexplored.
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1. Introduction

How life emerged from inanimate chemistry is an unresolved scientific question and an area of
active research [1–3]. Contemporary biochemistry uses a relatively small set of building blocks, e.g.,
only 20 coded amino acids, four ribonucleotides, four deoxyribonucleotides, etc., out of a large number
of possibilities [4]. We here term the molecules used in contemporary biochemistry “biomolecules” to
distinguish them from “non-biomolecules,” which are molecules not used for major macromolecular
functions in contemporary biochemistry (or even not used at all in contemporary biochemistry),
but could have played much more important roles in previous biological or proto-biological states.
How, why, and at what stage of chemical and/or biological evolution the selection and canonicalization
of the biomolecules occurred remains unclear. Much of origins of life (OoL) research is oriented towards
synthesizing or reproducing biomolecules or processes under presumed primitive Earth conditions [2].
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While such approaches are logical given the evidence available from contemporary biology, and appear
to be a sound application of “Occam’s razor,” they are also often based on a number of assumptions.
One such assumption is the direct continuity between biochemistry and prebiotic chemistry, which
has given rise to OoL models variously focused on the primary roles of lipids [5], nucleic acids [6],
metabolism [7], or proteins [8]. However, contemporary biomolecule-based hypotheses overlook the
long-recognized challenges of robust prebiotic syntheses of biomolecules [9], and the fact that many
abiotic syntheses produce a tremendous diversity of organic compounds.

For example, researchers often consider carbonaceous chondrite meteorites to be proxies that
validate laboratory prebiotic chemistry simulations [10,11]. Carbonaceous meteorites contain a myriad
of organic compounds divided between a soluble fraction and an insoluble organic matter (IOM)
phase consisting of intractable complex macromolecular organic material. The soluble fraction is often
incredibly diverse, for example 14,000–50,000 unique molecular formula compounds were identified in
a methanolic extract of the Murchison meteorite, which it was estimated may represent millions of
unique structural isomers [12] (Figure 1).
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Figure 1. Progressively zoomed in mass spectra (A–D) of Murchison meteorite soluble organic extracts,
each focusing on a more narrow region within the previous spectrum, showing the diversity of meteoritic
organics (and analyses). In (D), 11 molecular assignments were made in a narrow range of 0.012 Da,
which suggests that even in such a narrow range, a large diversity of isomers may have existed in
primitive chemical milieu. Reprinted with permission from Schmitt-Kopplin, Gabelica, Gougeon, Fekete,
Kanawati, Harir, Gebefuegi, Eckel, and Hertkorn, 2010. “High molecular diversity of extraterrestrial
organic matter in Murchison meteorite revealed 40 years after its fall.” Proc. Nat. Acad. Sci. USA.
107(7):12763-2768. [12] Copyright Schmitt-Kopplin, et al., with an exclusive License to Publish to NAS.
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In fact, the number and diversity of compounds in the Murchison meteorite can only be crudely
estimated due to analytical challenges [13], suggesting that the actual organic complexity may be far
greater. The classes of molecules identified to date in the Murchison meteorite include amino acids [14],
hydroxy acids [15], carboxylic acids [16], and nitrogen heterocycles [17]. Most of these classes are
dominated by compounds not used in present-day biology [18]. In light of this, it seems plausible that
a similarly complex compound suite was provided to primitive Earth (or existed on another planet [19])
from one or more sources (e.g., [20–22]), and indeed various prebiotic chemistry simulations similarly
produce a complex array of organic products (Figure 2) [23].

Life 2020, 10, x FOR PEER REVIEW 3 of 16 

 

existed in primitive chemical milieu. Reprinted with permission from Schmitt-Kopplin, Gabelica, 
Gougeon, Fekete, Kanawati, Harir, Gebefuegi, Eckel, and Hertkorn, 2010. “High molecular diversity 
of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall.” Proc. Nat. 
Acad. Sci. USA. 107(7):12763-2768. [12] Copyright Schmitt-Kopplin, et al., with an exclusive License 
to Publish to NAS. 

In fact, the number and diversity of compounds in the Murchison meteorite can only be crudely 
estimated due to analytical challenges [13], suggesting that the actual organic complexity may be far 
greater. The classes of molecules identified to date in the Murchison meteorite include amino acids 
[14], hydroxy acids [15], carboxylic acids [16], and nitrogen heterocycles [17]. Most of these classes 
are dominated by compounds not used in present-day biology [18]. In light of this, it seems plausible 
that a similarly complex compound suite was provided to primitive Earth (or existed on another 
planet [19]) from one or more sources (e.g., [20–22]), and indeed various prebiotic chemistry 
simulations similarly produce a complex array of organic products (Figure 2) [23]. 

 

Figure 2. Mass spectrum of a complex product mixture from a laboratory simulation of an 
atmospheric discharge reaction consisting of liquid water, methane gas, and ammonium gas starting 
materials in the presence of cyanamide, showing the remarkable chemical diversity produced from a 
prebiotically plausible organic chemical reaction. Reprinted with permission from Parker, Cleaves, 
Bada, and Fernandez. “Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid 
chromatography/tandem mass spectrometry.” Rapid Commun. Mass Spectrom. 30(18):2043–2051. 
[23] Copyright John Wiley & Sons, Inc. 

Given the magnitude of prebiotic chemical diversity, the early environment likely included non-
biomolecules along with biomolecules and quite possibly more of the former than the latter. 
However, relatively little effort has been expended towards understanding the identities or reactivity 
of the non-biomolecules generated in prebiotic syntheses [24], or the processes or novel chemical 
phenomena they might enable. It may be likely that during early chemical evolution, proto-biological 
functions involved different-possibly larger, smaller, or partially overlapping sets of chemical 
compounds compared to contemporary biochemistry. 

Although several studies suggest that biomolecules conferred a significant advantage to 
primitive systems resulting in their dominance in contemporary biochemistry [25–27] it does not 

Figure 2. Mass spectrum of a complex product mixture from a laboratory simulation of an
atmospheric discharge reaction consisting of liquid water, methane gas, and ammonium gas starting
materials in the presence of cyanamide, showing the remarkable chemical diversity produced from a
prebiotically plausible organic chemical reaction. Reprinted with permission from Parker, Cleaves,
Bada, and Fernandez. “Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid
chromatography/tandem mass spectrometry.” Rapid Commun. Mass Spectrom. 30(18):2043–2051. [23]
Copyright John Wiley & Sons, Inc.

Given the magnitude of prebiotic chemical diversity, the early environment likely included
non-biomolecules along with biomolecules and quite possibly more of the former than the latter.
However, relatively little effort has been expended towards understanding the identities or reactivity
of the non-biomolecules generated in prebiotic syntheses [24], or the processes or novel chemical
phenomena they might enable. It may be likely that during early chemical evolution, proto-biological
functions involved different-possibly larger, smaller, or partially overlapping sets of chemical
compounds compared to contemporary biochemistry.

Although several studies suggest that biomolecules conferred a significant advantage to primitive
systems resulting in their dominance in contemporary biochemistry [25–27] it does not necessarily
follow that life was originally based on the same biomolecules. Indeed, it is known that biomolecules
represent a minute fraction of the molecular diversity produced by prebiotic chemistry (as mentioned
above) and this would tend to lower the probability that chemical bonds formed exclusively among
biomolecules particularly in a one-pot prebiotic synthesis [3,24,28]. The possible importance of
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non-biomolecules in the OoL has been suggested previously as a sort of “chemical opportunism” [29].
According to this notion whatever molecules conferred the greatest selective advantage (via function,
persistence, availability, etc.) would be selected by primitive chemical systems. If non-biomolecules
conferred a greater advantage to primitive chemical systems over biomolecules, then non-biomolecules
would have dominated. A notional example of such “chemical opportunism” is the emergent systemic
autocatalysis proposed by [30]. The idea that the first autocatalytic chemical systems could have been
composed of non-biomolecules has also been proposed by Lancet and coworkers [19,29]. More nuanced
examples of primitive non-biomolecular systems, include those incorporating purely in vitro-produced
polymers (themselves produced from biomolecular components such as amino acids) which do
not participate in modern biology, have also been explored including self-assemblies of lipid-like
peptides [31]. Earlier examples of non-biomolecule-based OoL models include the so-called pre-RNA
world [32–35] and polyester-based origins of life models [36].

Polyesters offer a particularly interesting model for studying chemical evolution due to their
structural similarity to peptides, ease of polymerization into diverse polydisperse polyester mixtures
(polyesters form easily during low-temperature wet-dry cycling of hydroxy acids [37,38]) (Figure 3),
and ability to perform enzyme-like catalysis [39] and compartmentalization of molecules through
microdroplet assembly [40]. Polyester-based oligomers are fundamentally different from contemporary
biological macromolecular catalysts such as proteins. Polyester systems can interact due to hydrophilic,
hydrophobic, and electrostatic interactions such as dipole-dipole interactions [41], but they lack the
ability to form regular repeating intramolecular hydrogen bonding motifs of the sort that facilitate
protein folding [42,43]. However, although polyesters cannot structurally fold in the same way as
polypeptides, they might still be distant relatives of biochemistry and could have provided functions
that promoted primitive molecular assembly and dynamics essential for the emergence of biology.

Simple non-biomolecule monomers, best experimentally demonstrated so far using α-hydroxy
acids (αHAs) [38–40,44], but which could include many other prebiotic monomer types, can form
diverse macromolecular assemblages with a wide range of physical properties and functions such
as self-assembly and catalysis. Though these are often dismissively lumped together as “tars,” such
assemblies could present opportunities to form extremely complex “ecosystems” of microcompartments,
each with different chemical properties, in which different abiotic chemistries could have been
facilitated and their products exchanged. These could represent a pre-genomic analog of Woese’s
rampant horizontal genome transfer-characterized LUCA [45], also known as a progenote, and
an important aspect of global chemical evolution. According to this model, prior to LUCA,
a community of progenotes [45], as in primitive entities in the process of (but prior to) establishing the
genotype-phenotype relationship, could have dominated the prebiotic world while allowing for genetic
information transfer amongst themselves and the surrounding environment. These informational
materials may not be limited to nucleic acid-based materials, but also could be composed of other types
of genetic information, such as those based on the composome model [29]. Such a character could
have arisen among such systems, and then spread throughout them, co-opting and replacing their
more primitive modes of reproduction, such as autocatalytic chemical sets proposed by Kaufman [30],
potentially eventually leading to systems with established genotype-phenotype relationships that
could have evolved into modern biology as-we-know-it.
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Figure 3. Mass spectra showing the synthesis of polyesters from simple drying of solutions of the alpha
hydroxy acids (αHAs) (A) glycolic acid (GA), (B) lactic acid (LA), and (C) a mixture of five different
αHAs (LA, GA, DL-2-hydroxy-4-methylpentanoic acid, DL-2-hydroxy-4-(methylsulfanyl) butanoic
acid, and DL-3-phenyllactic acid). Insets show higher m/z regions. Asterisks represent peaks showing
water loss. Reprinted with permission from Chandru, Guttenberg, Giri, Hongo, Butch, Mamajanov,
and Cleaves. 2018. “Simple prebiotic synthesis of high diversity dynamic combinatorial polyester
libraries.” Commun. Chem. 1:30. [38] under a Creative Commons License.

2. Polyesters as a Model System for Chemical Evolution

The free energy of the peptide bond is around +3.5 kcal mol−1 under physiological conditions [46].
In biochemistry, peptides are synthesized from amino acids through a complex system of enzyme-mediated,
energy-consuming reactions. Abiotic peptide synthesis is often accomplished with varying degrees of
success through activation (e.g., [47–50]), heating, and/or low water activity conditions (e.g., [51–53]).
Alternatively, polyesters, which have a considerably lower energy for bond formation (~0 kcal mol−1 [54]),
have been considered as possible ancestral precursors of peptides [36,55]. Such polyesters can be easily
produced by drying hydroxy acids, the monomer precursors of polyesters. The loss of water, for example
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during evaporative drying, shifts the equilibrium towards polyester elongation [38] (Scheme 1). Hydroxy
acids are equally as prebiotically plausible as amino acids, as hydroxy acids may be produced in the
same model prebiotic reactions that produce amino acids [56,57], and are also common in meteorites [58].
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Esters are common in modern biochemistry. For example, many cell membrane lipids are esters of
glycerol, phosphate, and fatty acids. Another example is cutin, a polyester synthesized fromω-hydroxy
acids that is the main component of the cuticle that covers plant aerial surfaces [59]. Polyhydroxyalkanoates
are also produced by various bacteria as energy-storage molecules [60], and pores assembled from
polyphosphate associations with β-hydroxy acid polymers have been isolated from E. coli [61].

While the relative lability of polyesters could be considered a disadvantage, the reversibility of ester
formation provides an experimental model to study dynamic synthesis/hydrolysis cycling, potentially
caused by environmental perturbations such as seasonal or diurnal cycling. This property makes
polyester systems an abstract model of non-biomolecular prebiotic polymer formation suitable for
the study of the environmental selection of different chemical properties. For example, the abiotic
reactions between αHA and α-amino acid monomers have been studied in model wet-dry cycling
experiments [44]. These co-polymerization reactions initially produce depsipeptide oligomers that
contain both ester and amide linkages. Over time oligomers enriched in peptide bonds are generated
through a combination of ester–amide bond exchange and ester bond hydrolysis reactions [44]. This is
a good example of how a plausibly prebiotic non-biomolecule could help scaffold the formation of a
biomolecule type in a primitive environment.

We have previously characterized the polymerization of L-malic acid, a dicarboxylicαHA, by wet-dry
cycling simulating various geological settings that dry intermittently [37]. In this system, L-malic acid
polymerizes during drying and hydrolyzes during rehydration. If the wet phase temperature in these
reactions is sufficiently low, the polymer formed in the dry phase is kinetically trapped and undergoes only
partial hydrolysis, suggesting that some components of the product mixture, i.e., the most stable/persistent
products, could be carried over from cycle to cycle. The presence of carryover products thus raises the
possibility of selective preservation and amplification of specific polymeric structures or functionalities,
i.e., stability towards hydrolysis due to intramolecular folding or intermolecular aggregation.

Primitive polymerization processes should ideally survey large swathes of sequence space to effectively
find the most stable or catalytic sequences. If a wide range of sequence space is not accessible, it is possible
that the most stable and/or catalytic polymers cannot be produced. Reversible esterification offers a facile
way to access polymer sequence space. Taking advantage of favorable polymerization thermodynamics,
starting from a pool of 5 different αHA monomer types, a large diversity of oligomer sequences was
achieved (Figure 3) [38]. The experiments in this study generated vast, likely sequence-complete libraries
over a variety of reaction conditions (temperature, concentration, salinity, and presence of congeners)
compatible with geochemical settings on primitive Earth and in other Solar System environments.

While many biopolymers, i.e., proteins and nucleic acids, are linear polymers (as was the model
polyester system studied in [38], for purely analytical tractability purposes), some biopolymers, i.e.,
glycogen, amylopectin, and dextran, are branched. In abiotic settings, diverse pools of monomers likely
oligomerized without enzymatic control, forming significant amounts of branched and crosslinked
polymers, further increasing the chemical complexity above what could be present with purely
linear polymers. Such branched polymers have been considered as possible precursors to globular
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proteins [36] and enzymes [39]. When branched polyesters are generated under wet/dry cycling
or continuous drying conditions, different properties may be “imprinted” on the products [62].
For example, periodic wetting, during which partial hydrolysis of the polymer may occur, inhibits
polymerization and helping keep the oligomer products water soluble which is presumably important
for their function. Continuous drying, on the other hand, favors the production of insoluble high
molecular weight crosslinked polyester structures [62].

While we have argued that the prebiotic milieu (for example, chemicals that are produced in model
prebiotic reactions such as spark discharge experiments or those found in carbonaceous meteorites) is
a “messy” chemical system with high molecular diversity, identifying each and every compound in
such a system is still beyond the abilities of contemporary analytical chemistry [13]. The combinatorial
hydroxy acid systems that have discussed here could be combinatorially complex, but likely still
compositionally simple compared to what might be expected in a real environmental setting. Further
advancement of analytical methods and techniques will allow future studies to examine systems
including still greater chemical diversity, including both non-biomolecules and biomolecules.

3. Self-Assembled Polyester Microdroplet Compartments

Segregation and compartmentalization are fundamental cellular functions, and these can be achieved
even with simple membraneless polyester droplets [40]. In the case of polyesters, drying aqueous solutions
of mixed αHAs at a mild temperature (80 ◦C) produces a combinatorially diverse set of oligomers,
which upon rehydration form gels that self-assemble into membraneless droplets (Figure 4). These droplets
differentially segregate and compartmentalize various hydrophobic organic dyes and fluorescently labeled
nucleic acids [40], suggesting a potential function as primitive compartments. Such droplets, or other
proposed prebiotic compartments with similar functionality such as liquid-liquid phase-separated
membraneless coacervate droplets [63–65] or lipid vesicles [5], may have served as protocells.

The polyester microdroplets generated in our studies likely assemble through hydrophobic
interactions, and their surfaces and interiors are also likely non-polar, while their interiors contain
less water than the surrounding aqueous environment [40]. Such microdroplets may have provided
non-polar environments important for the function, synthesis, or accumulation of certain molecules.
In a system with coexisting phases with differing chemical character, a given molecule could have
a different affinity for each phase. The ratio of the amount of molecule that dissolves in one phase
versus the other is known as the partition coefficient [66]. The partition coefficient largely depends
on physicochemical properties of both the solute in question and the two phases it partitions into,
and can be modulated by changing the charge, polarity, crowding, etc. of the components. In the
case of non-polar polyester droplets in water, the partition coefficient determines how much of a
molecule becomes sequestered in the polyester droplets. Non-polar molecules such as a hydrophobic
fluorescent dye like thioflavin T tend to segregate within non-polar polyester droplets [40]. The amount
of accumulation of thioflavin T within the droplets is correlated to the partition coefficient and inversely
correlated to the relative volume of the droplet phase versus that of the aqueous phase, resulting in a
specific concentration increase of the solute in the droplet phase. As another example, the structures of
proteins change depending on solvent polarity, and would be expected to change within polyester
droplets compared to polar solvents [67,68]. Likewise, primitive peptides containing large amounts of
hydrophobic residues would likely have different structures (and by extension, functions) in an aqueous
environment compared to a non-aqueous environment such as the droplet interiors. The interfaces
between different polarity phases, such as those between polyester microdroplets or supercritical
carbon dioxide droplets [69] and water, have also been shown to facilitate lipid assembly [40,70] and
accumulation of amphiphilic peptides [70]. Such assembly or accumulation mechanisms could be
extended to other possibly important early self-assembly chemistries [71].

The ability of polyester microdroplets to segregate and compartmentalize various molecules and
reactions with different chemical characteristics could be useful for enabling higher-order chemical
phenomena (Figure 5). As a hypothetical example, during template-directed non-enzymatic RNA
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polymerization in solution using activated nucleotide monomers [72,73], hydrolyzed, deactivated
monomers accumulate over time, and these hinder template-directed polymerization by competitively
occupying the complementary sites on the template strand [72]. Removal or reactivation of
these oligomerization inhibitors is an important unresolved problem [74]. Potentially, conducting
template-directed polymerization in the presence of droplet phases with an affinity for deactivated
monomers could provide a sink for these inhibitory waste products.Life 2020, 10, x FOR PEER REVIEW 8 of 16 
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resulting in a specific concentration increase of the solute in the droplet phase. As another example, 
the structures of proteins change depending on solvent polarity, and would be expected to change 
within polyester droplets compared to polar solvents [67,68]. Likewise, primitive peptides containing 
large amounts of hydrophobic residues would likely have different structures (and by extension, 

Figure 4. Rehydration of polyesters formed from wet–dry cycling of mixed αHA mixtures results in
spontaneous assembly of microdroplets. LA = lactic acid, GA = glycolic acid, PA = phenyllactic acid,
SA = 2-hydroxy-4-(methylsulfanyl)butanoic acid, MA = 2-hydroxy-4-methylpentanoic acid. Reprinted
with permission from Jia, Chandru, Hongo, Afrin, Usui, Myojo, and Cleaves. 2019. “Membraneless
polyester microdroplets as primordial compartments at the origins of life.” Proc. Nat. Acad. Sci. USA.
116(32):15830-15835. [40] Copyright Jia, T.Z., Chandru, K., et al., with an exclusive License to Publish to NAS.
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Figure 5. Top: A prebiotic chemistry scenario in which a chemical, A, participates in a chemical reaction
and produces a toxic byproduct, B, a molecule that inhibits reactions involving A. B accumulates
and eventually results in the complete inhibition of reactions involving A (to produce B). Bottom:
Chemical A in solution, coexisting with polyester droplets (blue). A produces the toxic molecule B as a
byproduct. However, assuming A and B are sufficiently different chemically, B could preferentially
partition into the droplets due to B’s affinity for that phase (due to polarity, electrostatic interactions,
sterics, etc.), allowing A to continue reacting uninhibited by B. It should be stressed that this is but
one possible scenario for the role such droplets could play in higher order prebiotic chemistry, one can
easily enumerate numerous other, more complex systems, that could be explored experimentally.

Although polyester droplets could be engineered to display interesting chemical properties,
whether the droplets themselves were direct or earlier transitional precursors to modern cells (and how
this transition occurred) is an open question. Polyester droplets can scaffold the assembly of lipids
around themselves, resulting in a molecularly crowded condensed phase with a lipid boundary [40].
Assembly of such a lipid encapsulated condensed-phases has been demonstrated with various
membraneless droplet systems such as coacervates [63,64]. Encapsulating layers could also be
composed of fatty acids, phospholipids, or even other molecules such as detergents [75], amphiphilic
peptides [76], DNA liquid crystals [77], or even mineral particles [78].

Finally, polyester microdroplets can segregate fluorescently labeled nucleic acids and fluorescent
proteins [40]. Primitive cells can, perhaps over-simplistically, be conceived of as molecularly crowded
droplets containing genetic or functional polymers encased by a lipid boundary [79]. This is a
reductionist view that obviously ignores the role lipids play in generating the cytosolic contents, and
the role the cytosolic contents play in generating the cell membrane in modern biology. Nevertheless,
that a cell-like lipid-enclosed droplet containing functional polymers [40] can be assembled using
non-biomolecules suggests that much remains to be learned about the functional structures that may
have been important for the emergence of life.

The study mentioned above [40] only included a small number of αHAs monomers, chosen for
analytical tractability, which could only form linear polymers and was simply a proof-of-principle
investigation that did not explore the effect of the presence of much greater molecular diversity [15]).
However, by increasing the chemical diversity of αHAs such as by varying compositional ratios
and introducing other non-amino-acid analog αHAs, the ability for a polymeric system to assemble
into such droplets should still remain as long as the synthesized polyesters are of sufficient length
(so they are insoluble in water) and that the initial monomer composition is not composed of a
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large quantity of very soluble species (such as polar monomers, charged monomers, or glycolic
acid). In fact, by increasing the diversity of ester-bond forming monomers [18,80], a wider variety of
higher-order chemistries could be obtained from droplets of this type. In addition to polyester droplets
with non-polar interiors [40], polyester droplets with other interior properties, e.g., polar or charged
interiors, could have also assembled depending on their chemical composition. Droplets could also
co-assemble with other non-biomolecular chemistries or assemblies. Such complex polyester droplets
could have acted as microreactors able to concentrate primitive chemical reactants. While we did not
perform any functional searches for catalytic behavior within the droplets, incorporating hyperbranched
structures [39], additional functional groups (e.g., charged groups), or other prebiotically available
biomolecules (e.g., amino acids) into the droplet composition could result in potential catalytic systems
and are a target of current investigations.

4. Prospective

After characterization of a more complex polyester system, the next step would be to increase
chemical diversity to include other chemicals that would have likely existed in the same prebiotic milieu.
Such realistic chemical diversity would likely result in systems which are difficult to characterize,
except with respect to systemic functional or bulk properties. There are a few laboratory simulations of
such stepwise increases in chemical diversity (examples include recent work with depsipeptides [44]
and DNA/RNA chimeras [81]) but these studies are just the first step towards laboratory simulations of
truly complex chemical systems that rival the actual complexity of the prebiotic milieu. It may actually
be the case that such extremely chemically complex and heterogeneous systems will have properties
which cannot be obtained in simpler and more analytically tractable model systems. Perhaps now that
many “pure” systems in OoL theories have been initially characterized, researchers can focus more
on the properties of more “messy” chemical systems, including those containing both biomolecules
and non-biomolecules.

Some studies suggest the modern complement of biomolecules was at least partially derived via
natural selection (e.g., [27,82–84]). If so, the question of when and how pre-biomolecular processes,
structures, or systems were replaced by the current set of biomolecules would be an important topic of
investigation. For example, ribosomes are also able to catalyze polyester formation using tRNAs charged
with αHAs instead of α-amino acids, suggesting that biological translation machinery is compatible
with such non-biomolecule monomer substrates [85]. Although the process to generate αHA-charged
tRNA in this study was through an artificial chemical process, the fact thatαHA-charged tRNA could be
generated suggests that αHA could have participated in ribosome-catalyzed elongation at some point
in history possibly contemporaneously with ribozyme-catalyzed peptide elongation. Co-existence of
αHA-charged and α-amino acid-charged tRNA may have resulted in a fairly promiscuous translation
system, but eventually, α-amino acids and peptides dominated and thus some mechanism to remove
this promiscuity would have been necessary.

While the promiscuity of the ribosome and other examples from biochemistry may be interpreted
as vestigial [86], it is possible many, if not most, transitional mechanisms in the evolution of biochemistry
have left no easily discernible trace in modern biology. As an analogy, the language the present
manuscript is written in is itself a mashup of at least two major previously existing spoken and written
languages (Old English and French), which themselves had predecessors that were also cross-seeded
before being melded into English. These two languages, by the time of their merging, had themselves
already been adapted to using alphabets derived from prior “dead languages” (meaning no one
living at the time spoke or wrote them) that those literate in Old English or French also could not
have understood. The analogy between human culturally transmitted knowledge and templated
or non-templated chemical information transfer is obviously imperfect, but it points to the gaps in
our knowledge and perhaps our imagination as to how such transitions may have occurred. This is
especially true when the up to one billion years [87] available for the origins of life is considered.
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Biological evolution is not teleological [88], and early chemical evolution could not have been
either. Rather, each new chemical circumstance that arose from previous non-directed reactions created
conditions that allowed for the creation of new reaction pathways, perhaps driven by changes in the
environment. While we don’t know which exact geological process would have a role in the Origins of
Life, Earth’s geological environment has changed over time (e.g., [89]). Assuming a diverse chemical
milieu earlier on, with each subsequent geological change (such as air temperature, water salinity,
mineral chemistry, atmosphere composition, etc.), some molecules/polymers that persisted, evolved,
and/or functioned in an earlier geological state could either degrade or fail to function in the new
geological state. At the same time, a select group of molecules could still persist in the new geological
state. As the geological state changes again and again over time, this results in even more “pruning” of
the total number of functional molecules in the system to result in a small set of functional molecules
which persisted throughout all cycles of geological change. These geological transitions, assuming that
geological changes were the only transitions on early Earth before the advent of living systems (once
living (or life-like) systems emerged, then geological changes would not have been the only potential
selective force on early Earth) thus led the way for the transition from the diverse prebiotic milieu into
more selected and functional early biochemistries. As an example, one reasonable possibility is that early
in Earth’s history, there was a much higher pCO2 atmosphere which would have resulted in considerably
more acidic surface waters [90]. As esters are more stable than amides under acidic conditions, it is
possible that as the pCO2 was lowered over time, the pH of surface waters increased, leading to a
relatively greater stability of amides vs. esters as we see in present day biology. Such environmental or
geological changes could also have led to innovation of increasingly specific and functional catalysts
from the initially diverse and chaotic prebiotic milieu [91,92]. It is unclear whether the earliest catalysts
were composed exclusively of biomolecules, or what catalytic functions primitive polymers would need
to accomplish. Though it is complicated to study the abiological emergence of functional polymers due
to uncertainties about the relevant environmental conditions and reactant availability, various screening
and dynamic combinatorial techniques [24,93–97] may be useful to probe the properties of complex
chemical systems. Nevertheless, understanding the potential contribution of the likely diversity of
prebiotic organic chemistry on early Earth to contribute to life’s emergence is a worthy enterprise.
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