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 Abstract 

 Bruton's  tyrosine  kinase  (BTK)  inhibitors  are  effective  for  the  treatment  of  chronic  lymphocytic  leukemia  (CLL) 

 due  to  BTK’s  role  in  B  cell  survival  and  proliferation.  Treatment  resistance  is  most  commonly  caused  by  the 

 emergence  of  the  hallmark  BTK  C481S  mutation  that  inhibits  drug  binding.  In  this  study,  we  aimed  to  investigate 

 whether  the  presence  of  additional  CLL  driver  mutations  in  cancer  subclones  harboring  a  BTK  C481S  mutation 

 accelerates  subclone  expansion.  In  addition,  we  sought  to  determine  whether  BTK-  mutated  subclones  exhibit 

 distinct  transcriptomic  behavior  when  compared  to  other  cancer  subclones.  To  achieve  these  goals,  we  employ 

 our  recently  published  method  (Qiao  et  al.  2024)  that  combines  bulk  DNA  sequencing  and  single-cell  RNA 

 sequencing  (scRNA-seq)  data  to  genotype  individual  cells  for  the  presence  or  absence  of  subclone-defining 

 mutations.  While  the  most  common  approach  for  scRNA-seq  includes  short-read  sequencing,  transcript 

 coverage  is  limited  due  to  the  vast  majority  of  the  reads  being  concentrated  at  the  priming  end  of  the  transcript. 

 Here,  we  utilized  MAS-seq,  a  long-read  scRNAseq  technology,  to  substantially  increase  transcript  coverage 

 across  the  entire  length  of  the  transcripts  and  expand  the  set  of  informative  mutations  to  link  cells  to  cancer 

 subclones  in  six  CLL  patients  who  acquired  BTK  C481S  mutations  during  BTK  inhibitor  treatment.  We  found  that 

 BTK  -mutated  subclones  often  acquire  additional  mutations  in  CLL  driver  genes,  leading  to  faster  subclone 

 proliferation.  When  examining  subclone-specific  gene  expression,  we  found  that  in  one  patient,  BTK  -mutated 

 subclones  are  transcriptionally  distinct  from  the  rest  of  the  malignant  B  cell  population  with  an  overexpression 

 of CLL-relevant genes. 

 Introduction 

 Chronic  lymphocytic  leukemia  (CLL)  is  the  most  prevalent  subtype  of  leukemia  in  adults,  affecting  ~200,000 

 individuals  in  the  United  States,  and  is  characterized  by  an  overaccumulation  of  dysfunctional  B  cells  (Byrd  et 

 al.  2004;  Kipps  et  al.  2017)  .  B  cell  receptor  (BCR)  signaling  is  crucial  for  cell  survival  and  proliferation, 

 becoming  a  prime  target  for  therapeutic  intervention  (Burger  and  Chiorazzi  2013)  .  The  inhibition  of  Bruton’s 

 tyrosine  kinase  (BTK),  a  kinase  necessary  for  proper  BCR  signaling,  has  proven  to  be  an  effective  treatment 

 for  most  patients  (Petro  et  al.  2000;  Herman  et  al.  2011;  Byrd  et  al.  2013;  Pal  Singh  et  al.  2018)  .  However, 

 secondary  resistance  to  treatment  develops  in  ~20%  of  patients  over  time,  leading  to  poor  clinical  outcomes, 

 including  shorter  survival  (Nakhoda  et  al.  2023)  .  The  BTK  C481S  mutation  is  the  most  common  cause  of  BTK 
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 inhibitor  resistance  (up  to  80%  of  relapses)  and  confers  drug  resistance  via  impairing  binding  of  the  drug  to 

 CLL  cancer  cells,  transforming  the  normal  covalent  BTK  inhibitor  binding  to  a  noncovalent  bond  (Woyach  et  al. 

 2017;  Sedlarikova  et  al.  2020)  .  The  evolution  of  mutations  in  additional  CLL-driver  genes  has  also  been  shown 

 to  contribute  to  treatment  resistance  (Landau  et  al.  2015;  Komarova  et  al.  2014;  Burger  et  al.  2016)  .  Our 

 present  study  aims  to  investigate  whether  the  presence  of  additional  CLL  driver  mutations  in  cancer  subclones 

 harboring  a  BTK  C481S  mutation  accelerates  subclone  expansion  and  whether  BTK-  mutated  subclones  exhibit 

 distinct transcriptomic behavior when compared to other cancer subclones. 

 Previously,  we  have  demonstrated  the  ability  to  use  bulk  DNA  to  deconvolute  cancer  subclone  structures  (Qiao 

 et  al.  2014;  Brady  et  al.  2017;  Than  et  al.  2018;  Huang  et  al.  2021;  Black  et  al.  2022)  ,  as  well  as  using 

 single-cell  RNA  sequencing  (scRNA-seq)  data  to  genotype  individual  cells  and  study  subclone-specific 

 transcriptomic  behavior  using  scBayes  (Qiao  et  al.  2024)  .  We  use  whole-exome  sequencing  (WES)  or 

 whole-genome  sequencing  (WGS)  of  tumor/normal  pairs  to  identify  somatic  mutations  and  reconstruct  the 

 subclone  structure  of  the  tumor  as  well  as  its  evolution  across  tumor  progression.  Individual  cells  from  the 

 scRNA-seq  data  are  assigned  to  genomic  subclones  based  on  the  presence  or  absence  of  subclone-defining 

 mutations.  By  combining  subclone  identity  with  single-cell  gene  expression  information,  this  approach  enables 

 a subclone-specific gene expression analysis. 

 Until  recently,  scRNA-seq  has  been  carried  out  almost  exclusively  with  short-read  sequencing  technologies.  A 

 disadvantage  of  traditional  short-read  scRNA-seq  is  the  5’  or  3’  bias,  where  the  vast  majority  of  the  reads  are 

 concentrated  at  the  5’  or  3’  ends  of  the  transcript  (Ziegenhain  et  al.  2017)  .  This  bias  limits  our  ability  to 

 determine  the  cell's  genotype  at  the  sites  of  somatic  tumor  mutations  farther,  i.e.,  at  greater  than  sequencing 

 read-length  distances,  from  the  priming  site.  Long-read  scRNA-seq  provides  a  promising  alternative,  as  it  can 

 provide  coverage  across  the  full  transcript  length.  MAS-seq,  a  long-read  scRNA-seq  solution  by  Pacific 

 Biosciences  (PacBio),  is  a  ready-to-use  kit  that  concatenates  cDNAs  generated  from  the  10X  Chromium 

 platform  to  create  long  composite  molecules  that  can  be  sequenced  with  over  99.9%  accuracy  via  HiFi 

 sequencing  (Al’Khafaji  et  al.  2023;  Wenger  et  al.  2019)  .  We  hypothesized  that  the  highly  accurate  full-transcript 

 coverage  afforded  by  MAS-seq  would  yield  improved  coverage  of  somatic  mutations  falling  outside  the 
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 standard  short  read-length  distance  of  priming  sites,  thus  enabling  enhanced  single-cell  genotyping  and 

 subclone assignment. 

 In  a  recent  study,  we  investigated  subclonal  evolution  using  WES  in  38  patients  with  CLL  treated  with  a  BTK 

 inhibitor  (Supplemental  Table  1)  (Black  et  al.  2022)  .  We  found  that  the  evolution  of  subclones  containing 

 mutations  in  CLL  driver  genes  within  the  first  two  years  of  treatment  had  a  significant  association  with  eventual 

 relapse.  Among  these  patients,  we  identified  six  who  developed  at  least  one  subclone  harboring  a  BTK  C481S 

 resistance  mutation.  Here,  we  performed  long-read  scRNA-seq  with  MAS-seq  on  samples  from  these  six 

 patients  taken  before  BTK  inhibitor  treatment  and  at  the  time  of  relapse  to  use  in  conjunction  with  the  WES 

 data  to  study  the  co-occurrence  of  BTK  C481S  and  additional  CLL  driver  mutations,  as  well  as  BTK  -mutant 

 subclonal phenotypes. 

 Results 

 Long-read sequencing with MAS-seq expands transcript and variant coverage 

 Table 1.  Long-read scRNA sequencing metrics for each  sample across the six patients. 
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 A.  B. 

 Figure  1.  Long-read  scRNA  sequencing  metrics.  A)  Comparison  of  the  total  number  of  HiFi  reads,  the  total  number  of  segmented 
 reads,  and  the  mean  reads  per  cell  for  each  sample,  colored  by  the  sequencer  used.  B)  The  canonical  transcript  coverage  for  each 
 read  aligning  to  a  given  gene  is  calculated  for  all  protein-coding  genes  with  at  least  one  read  aligned  to  it.  The  percentage  of  reads 
 covering  X%  of  the  given  transcript  is  plotted  for  each  sample,  colored  by  the  sequencer  used  for  the  sample.  Eight  short-read  samples 
 are included in black for comparison. 

 We  generated  long-read  scRNA-seq  data  for  the  pre-treatment  and  relapse  samples  from  the  six  CLL  patients 

 who  developed  BTK  C481S  mutations  during  treatment.  Cell  isolation  was  performed  using  the  10X  Genomics 

 Chromium  3’  Single  Cell  Kit,  followed  by  cDNA  concatenation  and  HiFi  sequencing  with  PacBio’s  MAS-seq 

 technology.  Four  samples  were  sequenced  on  the  Sequel  II  system,  while  eight  samples  were  sequenced  on 

 the  Revio  system.  When  comparing  the  number  of  reads  produced  by  the  two  sequencing  instruments,  we  find 

 that  the  Revio  produced  ~4x  the  number  of  reads  per  sample  (Figure  1A).  Samples  sequenced  on  the  Sequel 

 II  produced  an  average  of  3,363  reads  per  cell,  with  4,251  cells  per  sample  (Table  1).  In  contrast,  samples 

 sequenced  on  the  Revio  produced  an  average  of  9,283  reads  per  cell,  with  6,239  cells  per  sample.  These 

 outcomes  highlight  the  Revio’s  superior  data  generation  capabilities,  offering  a  more  cost-effective  long-read 

 sequencing  solution  and  enabling  a  more  robust  analysis.  All  samples  across  both  platforms  maintained  a  high 

 median base quality, consistently at or above Q30. 

 To  examine  the  transcript  coverage  afforded  by  reads  generated  from  MAS-seq,  we  selected  the  Ensembl 

 canonical  transcripts  for  all  protein-coding  genes  and  calculated  the  percentage  of  transcript  coverage 

 provided  by  each  read  mapping  to  the  given  gene  (Figure  1B).  In  addition,  we  calculated  this  same  coverage 

 within  pre-treatment  and  relapse  samples  from  four  patients  (within  our  original  38-patient  cohort  but  not 
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 among  the  six  patients  in  the  present  study)  that  were  sequenced  using  short-read  scRNA-seq.  We  find 

 comparable  transcript  coverage  across  all  samples  sequenced  with  MAS-seq,  with  50%  of  reads  covering  at 

 least  41.3%  of  the  transcript  length  and  32.5%  of  reads  covering  >80%  of  the  canonical  transcript  on  average. 

 In  comparison,  we  found  that  the  short-read  sequencing  samples  had  50%  of  reads  covering  at  least  9.1%  of 

 the  transcript  length  and  only  0.1%  of  reads  covering  >80%  of  the  canonical  transcript  on  average.  This 

 comparison  illustrates  the  significant  increase  in  transcript  coverage  provided  by  each  read  when  using 

 MAS-seq. 

 To  determine  our  ability  to  identify  multiple  mutations  within  a  given  cell,  we  selected  heterozygous  germline 

 variants  from  each  sample  and  calculated  the  percentage  of  variants  with  coverage  in  each  cell  (Supplemental 

 Figure  1).  Figure  2A  illustrates  these  coverage  metrics  by  comparing  the  sample  with  the  best  coverage  from 

 the  Sequel  II,  Revio,  and  short-read  sequencing  technologies.  The  sample  sequenced  on  the  Sequel  II  had 

 12.61%  of  heterozygous  germline  variants  covered  by  RNA-seq  data  in  1%  or  more  of  the  cells  and  1.73%  of 

 variants  covered  in  10%  or  more  of  cells  (13,403  total  variants).  The  sample  sequenced  on  the  Revio  had  a 

 clear  increase  in  coverage,  with  18.59%  of  variants  covered  in  1%  or  more  of  the  cells  and  3.85%  of  variants 

 covered  in  10%  or  more  of  cells  (13,709  total  variants).  In  comparison,  the  sample  sequenced  with  short-reads 

 had  7.61%  of  variants  covered  in  1%  or  more  of  the  cells  and  1.59%  of  variants  covered  in  10%  or  more  of 

 cells  (12,954  total  variants).  Furthermore,  we  characterized  each  heterozygous  germline  variant  by  its  distance 

 from  the  priming  end  of  the  transcript  to  determine  the  impact  of  this  distance  on  variant  coverage  (Figure  2B, 

 Supplemental  Figure  2).  Samples  sequenced  with  MAS-seq  on  either  the  Revio  or  Sequel  II  show  uniform 

 variant  coverage  across  all  positions  in  the  transcript.  In  contrast,  the  short-read  sequencing  shows  a  bias  in 

 variant  coverage  for  those  that  are  <400  base  pairs  (bp)  from  the  priming  site.  These  results  indicate  that  the 

 Revio  system  provides  meaningfully  increased  variant  coverage  per  cell  compared  to  short-read  sequencing 

 and  that  this  coverage  can  be  seen  throughout  the  entire  transcript.  The  increased,  uniform  coverage  afforded 

 by  MAS-seq  improves  our  ability  to  genotype  cells  at  multiple  subclone-defining  somatic  mutation  sites  in  a 

 single cell, enhancing the quality of cell assignments to cancer subclones. 
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 A. 

 B. 

 Figure  2.  Variant  coverage  provided  by  each  scRNA-seq  technology.  A)  The  overall  variant  coverage  provided  by  the  Sequel  II  and 
 Revio  compared  to  Illumina  short-reads.  The  percentage  of  cells  covering  each  heterozygous  germline  variant  in  the  patient’s  WES 
 data  is  used  to  determine  the  percent  of  variants  covered  by  at  least  X%  of  cells.  B)  The  variant  coverage  binned  by  the  variant’s 
 distance from the priming site, as indicated above each plot (bp = base pairs). 
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 Full-transcript coverage allows for the identification and visualization of single-cell genotypes 

 Figure  3.  Overview  of  workflow  to  identify  and  use  cell  genotypes.  A)  Pre-determined  subclone  structures  with  accompanying 
 somatic  variants  are  used  to  genotype  individual  cells  in  scRNA-seq  data.  Cells  are  assigned  to  a  pre-determined  subclone  based  on 
 the  presence  or  absence  of  subclone-defining  mutations.  Subclone  assignments  are  then  used  to  group  cells  of  the  same  subclone  to 
 identify  subclone-specific  gene  expression.  B)  Genotype  matrix  plots  visualize  the  genotypes  of  all  cells  at  each  variant  of  interest, 
 showing green for reference allele, red for alternate allele, and white for no coverage. 

 We  have  recently  published  a  novel  computational  method,  scBayes,  to  study  cancer  subclone-specific 

 expression  phenotypes  by  combining  scRNA-seq  and  bulk  DNA  sequencing-based  subclone  structures  (Figure 

 3A)  (Qiao  et  al.  2024)  .  This  approach  enables  genotype  inference  for  mutations  lacking  sequencing  coverage 

 when  genotypes  are  present  for  other  subclone-specific  mutations  within  the  same  subclone.  The  cancer 

 subclone  structures  of  the  six  patients  in  this  study  have  been  extensively  characterized  in  our  previous  work 

 (Black  et  al.  2022)  ,  allowing  us  to  apply  scBayes  and  assign  each  cell  to  a  clone  of  origin.  Briefly,  scBayes 

 genotypes  each  cell  by  examining  the  presence  of  subclone-defining  somatic  mutations  (as  discovered  from 

 bulk  DNA  data,  Figure  3B,  y-axis)  in  the  scRNA-seq  reads  of  the  cell  (Figure  3B,  x-axis)  and  uses  a  Bayesian 

 probabilistic  framework  to  identify  the  most  likely  clone  of  origin  (Figure  3B,  x-axis  color  bars)  for  the  cell.  We 

 use  a  scatterplot-like  visualization  (Figure  3B)  to  illustrate  the  cell  genotypes,  showing  whether  the  mutant 

 allele  was  observed  (red)  for  each  variant  in  each  cell,  if  only  the  reference  allele  was  observed  (green),  or  if 

 there  was  no  read  coverage  for  the  variant  (white).  Once  cells  are  assigned,  those  of  the  same  subclone  can 

 be  grouped  together  and  compared  to  cells  of  other  subclones  for  subclone-specific  gene  expression  analysis 

 (Figure  3C).  Long-read  RNA  sequencing  is  particularly  suitable  for  such  an  approach  as  it  maximizes  the 

 chance that any somatic mutation is covered by sequencing. 
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 Long-read scRNA-seq enables confirmation or refinement of subclone structures 

 Figure  4.  Visualization  of  single-cell  genotypes  to  identify  subclone  structures.  A)  The  subclone  structure  of  Patient  1  identified  in 
 the  bulk  DNA  sequencing  data.  Subclones  are  depicted  by  the  colored  circles,  with  representative  variant  clusters  inside  each  circle.  B) 
 The  cell  genotypes  at  subclone-defining  variants  in  Patient  1,  with  green  markers  representing  only  reference  alleles  present  in  the 
 scRNA-seq  reads  at  the  given  variant  location  within  the  cell  and  red  markers  indicating  at  least  one  scRNA-seq  read  in  the  cell 
 contains  the  somatic  variant  allele.  Darker  marker  coloring  indicates  an  increased  number  of  reads  supporting  that  genotype.  Variants 
 and cells are grouped by their subclone assignment. 

 To  determine  whether  the  structures  previously  identified  through  the  WES  data  were  corroborated  by  the 

 long-read  scRNA-seq  data,  we  analyzed  the  subclone  structure  of  each  patient  at  a  single-cell  level.  In  five  of 

 the  six  patients,  the  subclone  structure  identified  in  the  WES  data  was  confirmed  by  the  long-read  scRNA-seq 

 data  (Figure  4,  Supplemental  Figure  3,  and  Supplemental  Figure  4).  We  illustrate  such  concordance  in  Patient 

 1,  where  the  WES  data  showed  a  linear  pattern  of  subclonal  evolution  (Figure  4A).  To  visualize  this  same 

 pattern  of  evolution  within  the  scRNA-seq  samples,  we  created  a  genotype  matrix  plot  showing  each  cell's 

 genotype  at  each  somatic  variant  within  the  sample.  Figure  4B  shows  a  representation  of  the  genotype  matrix 

 plot  for  the  two  samples  from  this  patient.  Cells  belonging  to  the  same  subclone  show  similar  genotype 

 patterns,  seen  as  clusters  of  red  within  the  plot.  The  pretreatment  sample  depicts  five  distinct  subclones,  each 

 harboring  the  variants  of  the  previous  subclone.  In  the  relapse  sample,  we  again  see  the  linear  pattern  of 
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 evolution  where  the  BTK  -mutated  subclone  (SC6)  emerged  and  became  the  dominant  subclone.  By 

 genotyping  cells  in  the  long-read  scRNA-seq  data,  we  conclude  that  the  subclone  structure  identified  through 

 WES accurately represented the true subclonal heterogeneity in this patient’s cancer. 

 Figure  5.  Refining  the  subclone  structure  of  Patient  3.  A)  The  subclone  structure  identified  in  the  bulk  DNA  sequencing  data. 
 CLL-relevant  gene  mutations  are  annotated  under  the  subclone  they  are  found  in.  B)  The  genotype  matrix  plot  from  the  relapse  sample 
 of  Patient  3  enables  refinement  of  the  original  subclone  structure.  Green  markers  indicate  that  only  reference  alleles  were  present  in  the 
 scRNA-seq  reads  at  the  given  variant  location  within  the  cell,  and  red  markers  indicate  that  at  least  one  scRNA-seq  read  in  the  cell 
 contains  the  somatic  variant  allele.  Darker  coloring  indicates  an  increased  number  of  reads  supporting  that  genotype.  Only  the 
 CLL-relevant  mutations  are  included  for  increased  resolution  to  differentiate  subclones.  C)  The  refined  subclone  structure  that  depicts 
 the  subclone  containing  the  BTK  c.1543T>A  mutation  is  independent  of  the  subclone  containing  the  BTK  c.1544G>C  and  DICER1 
 mutations. 

 For  the  remaining  patient  (Patient  3,  see  Figure  5),  the  resolution  provided  by  long-read  scRNA-seq  highlighted 

 the  need  for  further  refinement  of  the  subclone  structure  that  was  previously  constructed.  In  the  WES  of  Patient 

 3,  two  BTK  C481S  mutations  were  identified  at  two  different  bases  of  the  same  codon  (  BTK  c.1543T>A  and  BTK 

 c.1544G>C),  exhibiting  similar  variant  allele  frequencies  (VAFs)  in  the  samples  where  they  were  detected 

 (Figure  5A).  Because  VAFs  are  used  to  cluster  variants  and  identify  subclones  in  bulk  DNA  sequencing,  these 

 BTK  mutations  were  initially  clustered  into  the  same  subclone  (SC2)  alongside  other  variants  with  matching 

 VAFs.  We  utilized  the  long-read  scRNA-seq  data  to  investigate  individual  cells  with  coverage  at  these  BTK 

 mutation  sites  and  found  that  these  two  BTK  mutations  were,  in  fact,  part  of  two  distinct  subclones.  The 

 genotype  matrix  plot  for  the  relapse  sample  of  this  patient  shows  that  cells  with  the  BTK  c.1544G>C  mutation 

 and  its  associated  mutations  never  co-exist  with  the  BTK  c.1543T>A  mutation  (Figure  5B).  This  increased 

 resolution  of  the  subclonal  architecture  afforded  by  the  long-read  scRNA-seq  data  allows  us  to  conclude  that 

 rather  than  being  on  different  haplotypes  within  the  cells  of  a  single  subclone,  these  mutations  belong  to  two 

 distinct  BTK  -mutated subclones that had similar cellular  prevalences in the patient sample (Figure 5C). 
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 The  ability  to  identify  variants  co-occurring  in  the  same  tumor  cells  allowed  us  to  identify  BTK  -mutated 

 cells with additional CLL driver gene mutations 

 Next,  we  wanted  to  determine  whether  cells  with  BTK  C481S  mutations  contained  additional  mutations  in  CLL 

 driver  genes.  For  this  analysis,  we  genotyped  BTK  -mutated  cells  to  identify  the  presence  of  mutated  alleles  in 

 CLL-driver  genes.  We  found  that  the  BTK  -mutated  subclones  of  all  six  patients  contained  additional  mutations 

 in  driver  genes  at  the  time  of  relapse  (Table  2).  In  all  but  one  patient,  these  mutations  were  present  in  the  cells 

 before the  BTK  mutation developed and were detectable  in the pretreatment sample (Supplemental Figure 3). 

 Table 2.  The co-occurrence of  mutations in CLL driver  genes in  BTK  -mutated subclones. 

 Patient  3,  who  had  two  independent  BTK  -mutated  subclones  emerge  with  similar  allele  frequencies,  was  the 

 exception.  When  each  of  these  BTK  -mutated  subclones  developed,  neither  had  any  additional  CLL-associated 

 mutations  that  were  detectable  (Supplemental  Figure  4).  One  of  these  subclones  continued  to  evolve, 

 developing  a  mutation  in  DICER1  —a  gene  recently  implicated  in  CLL  (Knisbacher  et  al.,  Nature  Genetics, 

 2022).  At  the  time  of  relapse,  the  DICER1  and  BTK  co-mutated  subclone  demonstrated  a  higher  prevalence  in 

 the sample compared to the  BTK  -only subclone. 

 Patient  5  also  developed  two  independent  BTK  -mutated  subclones  during  treatment  (Supplemental  Figure  4). 

 The  first  to  develop  did  not  harbor  any  additional  CLL  mutations.  However,  the  second  BTK  -mutated  subclone 

 arose  from  a  cell  population  containing  a  NOTCH1  mutation,  a  known  CLL  driver  gene  (Arruga  et  al.  2014; 

 Fabbri  et  al.  2011)  .  This  second  BTK  -mutated  subclone  rapidly  expanded  and  became  the  dominant  subclone 
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 in  the  relapse  sample.  This  data  shows  that  subclones  with  co-occurring  mutations  in  BTK  and  additional  CLL 

 driver genes expanded more rapidly than subclones with just  BTK  mutations alone. 

 Subclone  assignments  enabled  by  long-read  scRNA-seq  reveal  transcriptomically  distinct 

 BTK  -mutated subclones 

 A.  B. 

 Figure  6.  Using  cell  assignments  to  identify  subclone-specific  gene  expression  patterns.  A)  Mapping  subclone  assignment  to 
 clustered  cells  enables  the  identification  of  phenotypically  distinct  subclones.  B)  Differential  gene  expression  analysis  between 
 subclones illuminates over- and under-expressed genes within the  BTK  -mutated subclone. (***) adjusted p-value  < 0.001. 

 After  subclone  assignment,  cells  underwent  further  analysis  with  Seurat,  a  standard  tool  for  single-cell  gene 

 expression  clustering  (Hao  et  al.  2021)  .  Here,  our  goal  was  to  determine  whether  subclone-level  gene 

 expression  patterns  could  be  identified  within  the  long-read  scRNA-seq  data.  Normalized  gene  counts  were 

 used  to  cluster  cells  based  on  gene  expression  patterns.  Utilizing  the  cell  barcodes  from  the  scBayes  subclone 

 assignments,  we  overlaid  subclone  identities  onto  these  gene  expression-based  cell  clusters,  facilitating 

 inter-subclone gene expression comparisons. 

 In  the  relapse  sample  of  Patient  1,  we  identified  two  distinct  gene  expression  clusters.  Mapping  subclone 

 assignments  onto  these  clusters  showed  that  the  larger  cluster  was  primarily  composed  of  cells  from  the 

 BTK  -mutated  subclone,  which  had  emerged  as  the  dominant  clone  in  that  sample  (Figure  6A).  The  smaller 

 cluster  consisted  of  cells  from  an  earlier  ancestral  subclone,  highlighting  the  transcriptional  divergence 
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 between  these  two  populations.  Of  the  6  patients,  Patient  1  was  the  only  one  where  the  BTK-mutated  subclone 

 created a distinct cluster of cells within the transcriptomic data (Supplemental Figure 5) 

 Differential  gene  expression  analysis  between  the  two  clusters  in  Patient  1  found  that  IGLL5  ,  a  gene  implicated 

 in  CLL  (Kasar  et  al.  2015;  Pérez-Carretero  et  al.  2020;  Deng  et  al.  2023)  ,  was  overexpressed  in  the 

 BTK  -mutated  subclone  when  compared  to  the  ancestral  subclone  (Figure  6B).  CD79A  and  CD79B  ,  two  genes 

 upstream  of  BTK  in  the  B  cell  receptor  pathway,  show  lower  levels  of  expression  in  the  BTK  -mutated  subclone 

 when  compared  to  the  ancestral  subclone.  These  findings  highlight  the  dual  utility  of  long-read  scRNA-seq  in 

 elucidating both genomic and transcriptomic subclonal dynamics within a single assay. 

 Discussion 

 This  study  utilizes  MAS-seq,  PacBio’s  long-read  scRNA-seq  technology,  to  comprehensively  analyze  the 

 subclonal  dynamics  and  gene  expression  patterns  within  CLL,  offering  insights  into  the  cellular  heterogeneity 

 and  mechanisms  underlying  BTK  inhibitor  treatment  resistance.  This  technological  advancement  represents  an 

 improvement  over  short-read  scRNA-seq,  primarily  by  improving  on  its  limitations  in  transcript  coverage  and 

 mutation  site  resolution.  By  comparing  samples  sequenced  on  the  Sequel  II  and  Revio  instruments,  we  see  a 

 significant  improvement  in  the  quantity  of  data  provided  by  the  latter.  When  comparing  to  samples  sequenced 

 using  traditional  short-read  scRNA-seq,  we  see  increased  transcript  and  variant  coverage  provided  by 

 MAS-seq.  Despite  these  improvements,  MAS-seq  is  still  limited  by  the  number  of  variants  with  coverage  within 

 a  single  cell.  This  limitation  in  variant  coverage  could  be  attributed  to  technical  factors,  such  as  a  relative 

 scarcity  of  reads  from  certain  cells,  or  biological  factors,  such  as  lower  expression  levels  of  the  genes  of 

 interest  compared  to  those  with  higher  expression,  which  consequently  receive  more  sequencing  reads.  To 

 address  this  limitation,  strategies  like  CRISPR/Cas9-mediated  depletion  of  over-represented  cDNAs,  e.g., 

 those  belonging  to  long-noncoding  RNA,  can  be  implemented  to  enhance  the  proportion  of  informative  reads 

 (Pandey  et  al.  2022;  Wang  and  Adler  2023)  .  Alternatively,  targeted  enrichment  strategies,  such  as  hybridization 

 capture  for  gene  panels,  could  be  utilized  to  enhance  the  coverage  of  key  genes,  improving  the  detection  of 

 variants  (Pokhilko  et  al.  2021)  .  These  approaches  would  increase  the  read  depth  at  variants  of  interest, 

 improving cell genotyping and gene expression analysis. 
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 Our  approach  provides  a  framework  for  utilizing  long-read  scRNA-seq  to  identify  patterns  of  subclonal 

 evolution  within  a  patient  sample.  When  used  in  conjunction  with  bulk  DNA-seq  data,  subclones  can  be 

 identified  and  refined  with  greater  resolution  than  using  bulk  DNA  alone.  In  one  patient,  we  found  that  the  data 

 provided  by  the  bulk  DNA-seq  was  insufficient  to  identify  the  correct  subclone  structure  due  to  two  different 

 subclones  having  very  similar  cellular  prevalences.  By  interrogating  the  genotypes  within  the  cells  of  these 

 subclones,  we  could  determine  that  they  were  two  independent  subclones,  and  rectify  the  bulk  DNA-based 

 subclone structure. 

 When  investigating  the  transcriptomic  behavior  within  the  patient  samples,  we  identified  one  patient  where  the 

 BTK  -mutated  subclone  represents  the  cells  of  a  distinct  gene  expression  cluster.  This  separation  enables  an 

 inter-subclone  differential  gene  expression  analysis  to  identify  genes  that  were  over-  or  under-expressed  in  the 

 BTK  -mutated  subclone.  No  other  patients  showed  the  same  pattern  of  BTK  -mutated  subclones  being 

 responsible  for  an  isolated  cluster  within  the  transcriptomic  data.  Increasing  the  number  of  reads  per  cell  would 

 allow  for  a  more  robust  transcriptomic  analysis  within  these  cell  populations.  To  improve  the  quantification  of 

 gene  expression  while  maintaining  the  additional  information  provided  by  long-read  scRNA-seq,  sequencing 

 libraries  could  also  be  sequenced  using  a  short-read  technology  to  increase  the  number  of  reads  per  gene 

 (Torre  et  al.  2023;  Mincarelli  et  al.  2023)  .  While  these  reads  will  not  provide  the  same  full-transcript  coverage, 

 they will enable a higher-resolution gene expression analysis within the sample. 

 Two  of  the  six  patients  included  in  this  study  developed  two  independent  BTK  -mutated  subclones.  We  found 

 that  subclones  harboring  both  a  BTK  C481S  mutation  and  additional  mutations  in  CLL  driver  genes  have 

 increased  expansion  compared  to  those  without  the  additional  driver  mutations  at  the  time  of  relapse.  These 

 findings  suggest  that  the  co-occurrence  of  these  mutations  may  confer  an  increased  cell  survival  advantage 

 and  contribute  to  resistance  to  therapy.  Understanding  the  BTK  -mutated  subclones'  dynamics  can  provide 

 valuable  insight  into  the  pattern  of  symptoms  that  occur  along  with  clinical  relapse  and  may  help  to  determine 

 how  quickly  relapse  will  occur.  Understanding  subclonal  evolution  can  help  detect  resistant  clones  early  and 

 guide  specific  subclone-directed  therapy  to  reduce  further  selection  of  aggressive  subclones.  Combination 
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 therapy  may  be  required  to  treat  CLL  with  multiple  subclones.  Alternatively,  the  presence  of  multiple  subclones 

 may  result  in  a  clinical  indication  to  shift  to  alternate  therapies  with  distinct  mechanisms  of  action  from  the 

 current therapy. 

 Methods 

 CLL Patient Cohort 

 We  received  samples  from  6  CLL  patients  treated  with  BTK  inhibitors  at  The  Ohio  State  University  to  undergo 

 long-read  scRNA-seq.  Blood  samples  and  other  standard  clinical  data  were  collected  through  an  IRB-approved 

 tissue procurement protocol during routine clinical visits. 

 B cell isolation and library preparation 

 Peripheral  blood  mononuclear  cells  (PBMCs)  were  initially  isolated  from  whole  blood  using  ficoll  density 

 gradient  centrifugation.  PBMCs  were  then  viably  frozen.  Prior  to  sequencing,  samples  were  processed  by 

 sequentially  using  the  EasySep™  Dead  Cell  Removal  (Annexin  V)  Kit  (cat  #  17899),  followed  by  buffer 

 exchange  and  B  cell  selection  using  the  EasySep™  Human  B  Cell  Enrichment  Kit  II  Without  CD43  Depletion 

 (cat  #  17963)  from  Stemcell  Technologies  (Vancouver,  BC).  Following  B  cell  selection,    the  10X  Genomics 

 Chromium  Next  GEM  Single  Cell  3ʹ  Reagent  Kits  v3.1  (Dual  Index)  was  used  for  cell  barcoding  and  cDNA 

 generation.  The  standard  protocol  was  followed  until  the  end  of  step  2,  stopping  before  cDNA  cleavage.  The 

 resulting cDNA was used as input for the MAS-Seq for 10x Single Cell 3’ kit by PacBio. 

 Long-read sequencing and data processing 

 Four  samples  (pre-treatment  and  relapse  samples  from  patients  3  and  4)  were  sequenced  on  the  PacBio 

 Sequel  II  system  using  8M  SMRTCells  for  30  hours.  The  remaining  samples  were  sequenced  on  the  PacBio 

 Revio  system  using  Revio  SMRT  Cells  for  24  hours.  Raw  HiFi  reads  were  segmented  into  representative 

 cDNAs  with  SMRT  Link  v12.0.0.177059  using  the  10X  Chromium  single  cell  3’  cDNA  primers  barcode  set  and 

 MAS-Seq  Adapter  v1  (MAS16)  barcode  set.  We  used  PacBio’s  Iso-Seq  single-cell  workflow  to  trim,  tag,  and 

 align  reads  using  the  default  parameters  of  the  tools  distributed  via  Bioconda 

 (https://github.com/PacificBiosciences/pbbioconda).  Briefly,  Lima  v2.7.1  removed  primers  from  the  segmented 
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 reads.  Isoseq  v4.0.0  added  tags  for  unique  molecular  identifiers  (UMIs)  and  barcodes,  followed  by  trimming  of 

 the  PolyA  and  primer  sequences.  Isoseq  was  then  used  to  correct  cell  barcodes  and  deduplicate  reads.  Finally, 

 pbmm2  v1.10.0  aligned  reads  to  the  reference  genome  using  the  GRCh38  reference  sequence.  Pigeon  v1.2.0 

 generated Seurat-compatible files for downstream transcriptomic analysis. 

 Reconstructing subclone structures from whole-exome sequencing data 

 In  a  previous  study,  we  collected  200X  whole-exome  sequencing  data  for  each  patient  at  multiple  timepoints 

 throughout  their  treatment  (Black  et  al.  2022)  .  Reads  were  aligned  to  the  GRCh38  reference  genome  with 

 BWA-mem  v0.7.17  (Li  and  Durbin  2009)  .  Samblaster  (Faust  and  Hall  2014)  removed  duplicate  reads  from  the 

 output  generated  by  the  alignment.  Samtools  v1.16  (Li  et  al.  2009)  was  used  to  merge  and  sort  BAM  files  by 

 leftmost coordinates. All data processing commands were run using the default parameters for each tool. 

 We  used  Freebayes  v1.3.4  (Garrison  and  Marth  2012)  to  call  variants  within  each  patient.  A  minimum  alternate 

 fraction  filter  of  0.5  was  used  along  with  the  following  options:  allele-balance-priors-off, 

 report-genotype-likelihood-max,  genotype-qualities,  pooled-discrete,  and  pooled-continuous.  The  VCF  that  was 

 generated  from  this  script  represents  all  variants  within  the  patient  and  their  allele  count  at  each  timepoint 

 during  BTK  inhibitor  treatment.  Using  Bedtools  intersect  v2.28.0  (Quinlan  and  Hall  2010)  ,  we  removed  any 

 variants  that  did  not  fall  within  exonic  regions  or  accessible  regions  specified  by  the  1000  Genomes  project 

 (1000  Genomes  Project  Consortium  et  al.  2015)  .  Using  Snpsift  filter  v4.3  (Cingolani  et  al.  2012)  ,  we  filtered  out 

 variants  with  a  quality  score  less  than  or  equal  to  20  or  a  sample  depth  of  50  or  less.  Only  biallelic  variants 

 were  used  in  our  analysis.  To  filter  for  somatic  variants,  we  used  snpsift  filter  to  remove  any  variants  that  had 

 more  than  5  alternate  allele  observations  (AO)  in  the  germline  sample.  Copy  number  variants  were  called 

 using  the  FACETs  v0.6.2  R  package  (Shen  and  Seshan  2016)  .  Somatic  variants  found  within  copy  number 

 regions were excluded from the subclone analysis. 

 To  identify  subclones  within  the  longitudinal  data,  we  used  PyClone-VI  v0.1.1  (Gillis  and  Roth  2020)  to  cluster 

 the  somatic  mutations  identified  in  each  patient.  We  ran  pyclone-vi  fit  using  the  beta-binomial  model,  100 

 restarts,  and  a  maximum  of  10  clusters  and  added  each  variant’s  cluster  assignment  to  its  VCF  info  field.  We 
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 reconstructed  the  subclonal  architecture  of  the  samples  based  on  this  clustering  information  using 

 SuperSeeker  (Qiao  et  al.  2014)  .  A  representation  of  the  subclone  structure  was  then  added  as  a  header  line  to 

 the somatic VCF file for downstream analysis. 

 Cell genotyping and assignment 

 Using  the  WES  VCF  file  annotated  with  variant  cluster  identities  and  the  subclonal  structure,  cells  were 

 genotyped  and  assigned  to  subclones  using  scBayes  v1.0.0  (Qiao  et  al.  2024)  .  Aligned  bams  containing  the 

 long-read  scRNA-seq  reads  for  each  sample  and  the  VCF  file  containing  the  subclone  annotations  for  the 

 given  patient  were  used  as  input  for  scBayes.  First,  we  used  scGenotype  to  create  a  matrix  representing  the 

 genotype  of  each  cell  at  all  variant  positions  contained  within  the  VCF  file,  with  one  row  per  variant  and  one 

 column  per  cell  barcode.  scAssign  was  then  used  to  assign  each  cell  to  a  subclone  based  on  the  presence  or 

 absence  of  subclone-defining  mutations  in  the  genotype  matrix.  We  used  default  parameters  for  each  of  these 

 commands. 

 Genotype Visualization 

 To  visualize  the  cell  genotypes  across  all  cells  in  the  sample,  we  developed  a  method  that  leverages  the 

 genotype  matrix  and  cell  assignment  from  scBayes  to  produce  a  genotype  matrix  plot.  Within  this 

 scatterplot-like  visualization  framework,  each  cell  is  represented  on  the  X-axis,  with  the  variants  of  interest 

 along  the  Y-axis.  Cell  genotypes  at  these  mutation  sites  are  indicated  with  a  marker:  a  green  marker  for  cells 

 with  only  reference  alleles  at  the  variant  position,  a  red  marker  signifying  the  presence  of  at  least  one  alternate 

 allele,  and  no  marker  present  when  there  is  a  lack  of  coverage  at  the  variant  position  within  the  given  cell.  The 

 organization  of  cells  and  variants  within  the  plot  is  done  by  subclone  assignment,  enabling  a  visual  depiction  of 

 the  subclone  structure  embedded  in  the  genomic  data.  Within  each  subclone,  cells  can  be  sorted  by  total  read 

 count,  number  of  alternate  variants,  or  assignment  quality.  By  providing  a  list  of  disease-driving  variants,  plots 

 can  be  tailored  to  include  only  cells  with  these  variants  to  further  identify  co-occurring  driver  mutations.  This 

 comprehensive  visualization  approach  offers  greater  insights  into  the  subclonal  architecture  revealed  by 

 long-read scRNA-seq data. 
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 Coverage metrics 

 We  calculated  the  percentage  of  coverage  each  sequencing  read  provides  to  its  given  transcript  by  selecting 

 all  protein-coding  genes  annotated  in  GENCODE  v44  (Frankish  et  al.  2021)  for  calculation.  For  each 

 protein-coding  gene,  we  used  Pysam  to  fetch  reads  that  overlapped  the  genic  region,  only  selecting  reads 

 where  at  least  90%  of  the  read  mapped  between  the  gene’s  start  and  end  position.  Next,  we  calculated  the 

 exonic  length  of  the  canonical  transcript  as  annotated  by  Ensembl  (Martin  et  al.  2023)  and  determined  what 

 percentage  of  the  canonical  transcript  was  covered  by  a  given  read.  Using  these  calculations,  we  determined 

 the percentage of reads that covered X percent of the given transcript for each sample. 

 In  addition,  we  calculated  the  fraction  of  heterozygous  germline  variants  within  the  WES  data  that  had  read 

 coverage  within  each  cell.  Using  scBayes,  we  generated  a  genotype  matrix  for  the  germline  variants  using  the 

 scGenotype  command.  For  each  variant  row  in  the  matrix,  we  computed  the  number  of  cells  containing  any 

 read  that  overlapped  the  variant  position,  as  well  as  the  number  of  cells  with  at  least  one  read  containing  the 

 given  variant.  The  number  of  cells  with  variant  coverage  was  divided  by  the  total  number  of  cells  present  in  the 

 sample to determine the percentage of cells covering that variant for plotting. 

 Transcriptomic analysis 

 Seurat  v4.3.0.1  (Hao  et  al.  2021)  was  used  to  cluster  cells  by  gene  expression  and  perform  a  differential  gene 

 expression  analysis.  The  sctransform  method  (Lause  et  al.  2021)  normalized  raw  gene  counts  and  removed 

 technical  variability.  The  standard  steps  in  the  Seurat  workflow  were  then  applied,  including  PCA 

 dimensionality  reduction,  clustering,  and  visualization.  Dimensions  1  through  20  were  used  for  clustering  and 

 UMAP  visualization.  Subclone  assignments  were  mapped  onto  cells  using  the  UMAP  coordinates  of  each  cell 

 barcode,  enabling  the  identification  of  subclonal  populations  within  clusters.  Inter-subclone  differential  gene 

 expression  analysis  was  performed  on  clusters  with  subclone  assignments  using  the  FindMarkers  function  with 

 the Wilcoxon Rank Sum test. P-values are adjusted using the Bonferroni correction. 

 Code availability 
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 The  custom  scripts  and  processed  datasets  generated  and/or  analyzed  in  the  study  are  available  in  the  GitHub 

 repository https://github.com/gageblack/BTK-subclones. 

 Data access 

 The  single-cell  expression  data  generated  in  this  study  have  been  submitted  to  the  NCBI  Gene  Expression 

 Omnibus  (GEO;  https://www.ncbi.nlm.nih.gov/geo/)  under  accession  number  GSE259253.  The  whole  exome 

 sequencing  data  used  in  this  study  are  available  in  the  NCBI  database  of  Genotypes  and  Phenotypes  (dbGaP; 

 https://www.ncbi.nlm.nih.gov/gap/) under accession number phs003042.v1.p1. 
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