
rsfs.royalsocietypublishing.org
Review
Cite this article: Hennebert E, Maldonado B,

Ladurner P, Flammang P, Santos R. 2015

Experimental strategies for the identification

and characterization of adhesive proteins in

animals: a review. Interface Focus 5: 20140064.

http://dx.doi.org/10.1098/rsfs.2014.0064

One contribution of 15 to a theme issue

‘Biological adhesives: from biology to

biomimetics’.

Subject Areas:
biochemistry

Keywords:
biological adhesion, metazoans,

protein characterization

Author for correspondence:
Patrick Flammang

e-mail: patrick.flammang@umons.ac.be
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Experimental strategies for the
identification and characterization of
adhesive proteins in animals: a review

Elise Hennebert1, Barbara Maldonado2, Peter Ladurner3, Patrick Flammang1

and Romana Santos4

1Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons,
23 Place du Parc, 7000 Mons, Belgium
2Molecular Biology and Genetic Engineering, GIGA-R, University of Liège, 1 Avenue de l’Hôpital, 4000 Liège,
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Adhesive secretions occur in both aquatic and terrestrial animals, in which

they perform diverse functions. Biological adhesives can therefore be

remarkably complex and involve a large range of components with different

functions and interactions. However, being mainly protein based, biological

adhesives can be characterized by classical molecular methods. This review

compiles experimental strategies that were successfully used to identify,

characterize and obtain the full-length sequence of adhesive proteins from

nine biological models: echinoderms, barnacles, tubeworms, mussels, stick-

lebacks, slugs, velvet worms, spiders and ticks. A brief description and

practical examples are given for a variety of tools used to study adhesive

molecules at different levels from genes to secreted proteins. In most studies,

proteins, extracted from secreted materials or from adhesive organs, are ana-

lysed for the presence of post-translational modifications and submitted to

peptide sequencing. The peptide sequences are then used directly for a

BLAST search in genomic or transcriptomic databases, or to design degenerate

primers to perform RT-PCR, both allowing the recovery of the sequence of the

cDNA coding for the investigated protein. These sequences can then be used

for functional validation and recombinant production. In recent years, the

dual proteomic and transcriptomic approach has emerged as the best way

leading to the identification of novel adhesive proteins and retrieval of their

complete sequences.
1. Introduction
Biological attachment systems can be subdivided into several groups according

to the fundamental physical mechanisms underlying their operation [1]. There

are many systems based entirely on mechanical principles (e.g. hooks, suckers

or friction devices), whereas others rely on the chemistry of polymers and col-

loids (diverse types of adhesives) [2]. Biological adhesives, also comprising

glues and cements, can be defined as sticky materials preventing the separation

of two substrates. The surface properties of the substrates and the chemical and

physical properties of the adhesive determine the strength of adhesion and cohe-

sion [3]. Adhesives present several advantages compared to other attachment

systems: (i) they are versatile, being able to bind surfaces with various chemistry

and roughness, (ii) they can join dissimilar materials, and (iii) they show

improved stress distribution in the joint [3]. This is why adhesive systems are ubi-

quitous in nature, being found in bacteria, fungi, protists, plants and animals.

Although the diversity of adhesion mechanisms in animals is huge, currently

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2014.0064&domain=pdf&date_stamp=2014-12-19
mailto:patrick.flammang@umons.ac.be


rsfs.royalsocietypublishing.org
Interface

Focus
5:20140

2
little is known of this complex phenomenon. However, in

recent years, an increasing number of reports have been

published on the characterization of biological adhesives [4–6].

In this review, wewill focus on adhesives from animals, play-

ing a key role in diverse functions and therefore varying widely

in terms of structure, composition and capability. Adhesive

systems occur in both aquatic and terrestrial animals. It is clear

that the physico-chemical conditions are different underwater

than in air, and therefore different kinds of adhesives will be

required. However, all animal adhesive secretions are predomi-

nantly made up of proteins, although other components can be

involved [4,5]. Recently, the development of new techniques

allowing high-throughput characterization of protein-based

materials, such as transcriptomics and proteomics, has acceler-

ated the discovery of new adhesive proteins [7]. The aim of

this review is to compile a list of the molecular methods that

have been used to identify and characterize adhesive proteins

in multicellular eukaryotic organisms (i.e. metazoans).
064
2. Animal protein-based adhesives
2.1. Diversity
From the biologists’ point of view, adhesives may serve a var-

iety of functions in metazoans: (i) attachment of an organism

to a non-living surface, including dynamic attachment during

locomotion and permanent fixation, (ii) attachment of one

organism to another (phoresy or parasitism, prey capture), or

(iii) attachment of exogenous materials together for the building

of tubes, nests or burrows [6]. The evolutionary background

and the biology of species on the one hand, and environmental

constraints on the other hand, both influence the specific com-

position and mode of operation of the adhesive secretion in a

particular organism. Biological adhesives can therefore be

remarkably complex and involve a large range of interactions

and components with different functions [4,5].

We have selected nine biological models (adult animals

only) in which the complete sequence of at least one adhesive

protein is known (a list of the proteins described in this

review is presented in table 1). These organisms (figure 1)

encompass the whole metazoan phylogeny, cover all types of

habitats (marine, freshwater and terrestrial) and use protein-

based adhesives for a large variety of functions (attachment,

locomotion, prey capture, building and defence).
2.1.1. Echinoderms
Echinoderms are among the most familiar marine creatures,

and representatives, such as the sea stars (figure 1a), have

become virtually a symbol of sea life. In sea stars and sea urch-

ins, adhesion takes place at the level of a multitude of small

appendages, the tube feet (or podia), and involves the secretion

of an adhesive between these specialized organs and the sub-

stratum [37]. The tube feet are the external appendages of the

ambulacral system of these organisms and are used in loco-

motion and attachment. They consist of a proximal extensible

stem and a distal disc-shaped extremity. The stem allows tube

foot movements while the disc mediates adhesion to the sub-

stratum through the secretion of an adhesive material from

one or two types of adhesive cells [38]. Adhesion is temporary,

however, and after the tube foot has become voluntarily

detached, the adhesive material remains firmly bound to

the substratum as a footprint [39,40]. At present, data on the
biochemical composition of echinoderm adhesive are only

available for the sea star Asterias rubens and the sea urchin

Paracentrotus lividus [39,41]. The water content of the adhesive

material has never been measured but, in terms of dry

weight, the adhesive material is mainly made up of proteins

(20.6% in sea stars and 6.4% in sea urchins), carbohydrates

(8% in sea stars, 1.2% in sea urchins) and a large inorganic frac-

tion (approx. 40% in sea stars, 45.5% in sea urchins) [39,41]. In

both species, potential novel adhesive proteins have been

extracted [41,42]. However, only one has been completely

sequenced: the protein Sfp1 from sea stars [8]. This protein, a

primary constituent of the footprints, consists of four subunits,

each displaying specific domains that mediate interactions

with other proteins present in the adhesive material and on

the tube foot surface. Sfp1 forms a structural scaffold and

appears to provide cohesion to the adhesive layer [8].

2.1.2. Barnacles
Barnacles (figure 1b) are marine sessile crustaceans that attach

firmly and in large numbers to a variety of underwater natu-

ral substrata such as rocks, and also to man-made substrata

such as ship hulls, leading to increased fuel consumption,

requiring regular cleaning, and therefore causing major econ-

omic losses. In these organisms, attachment is mediated by

the release of a permanent adhesive called cement [43,44].

This cement is produced by large isolated secretory cells

(the cement cells) joined together by ducts which open onto

the base of the animal [45–47]. The cement is composed of

approximately 90% proteins with the remainder being carbo-

hydrates (1%), lipids (1%) and inorganic material (4%, of

which 30% is calcium) [48]. More than 10 proteins have been

identified in the cement (cement proteins abbreviated as cp),

of which six have been purified and characterized, originally

from the species Megabalanus rosa and later from other species

[44,49,50]. Among these proteins, three (cp-19k, cp-20k and

cp-68k) have a surface coupling function, two (cp-52k

and cp-100k) have a bulk function, and the last one (cp-16k)

is an enzyme whose possible function is the protection of the

cement from microbial degradation [44,49,50].

2.1.3. Tubeworms
Some marine worms (figure 1c) of the family Sabellariidae

are tube dwelling and live in the intertidal zone [51]. They

are commonly called honeycomb worms or sandcastle

worms because they are gregarious and the tubes of all indi-

viduals are closely imbricated to form large reef-like mounds.

To build the tube in which they live, they collect with their

tentacles particles such as sand grains or shell fragments

from the water column and sea bottom. These particles are

then conveyed to the building organ, which is a crescent-

shaped structure near the mouth. There, the particles are

dabbed with spots of cement secreted by two types of unicel-

lular glands (cells with homogeneous granules and cells with

heterogeneous granules), and they are added to the end of the

pre-existing tube by the building organ [52–54]. Cement com-

position has been extensively investigated in the species

Phragmatopoma californica, and consists mostly of several differ-

ent proteins, a sulfated macromolecule and large amounts of

Mg2þ and Ca2þ ions [34,35,54,55]. The five major cement pro-

teins, named Phragmatopoma cement proteins (abbreviated as

Pc-1 to Pc-5), have highly repetitive primary structures with

limited amino acid diversity [34,55,56]. Pc-1, Pc-2, Pc-4 and



Table 1. List of the adhesive proteins cited in the text for which full-length sequences have been deposited in the National Center for Biotechnology Information.

common
name classification species protein

NCBI accession
number reference

sea star Echinodermata Asteroidea Asterias rubens Sfp-1 AHN92641 [8]

stickleback Chordata Actinopterygii Gasterosteus aculeatus spiggin NM_001267690 [9]

velvet worm Onychophora Udeonychophora Euperipatoides rowelli Er_P1 HM217027 [10]

Er_P2a HM217028 [10]

Er_P2b HM217029 [10]

Er_P3 HM217030 [10]

barnacle Arthtropoda Crustacea Megabalanus rosa Mrcp-19k BAE94409 [11]

Mrcp-20k BAB18762 [12]

Mrcp-52k BAL22342 [13]

Mrcp-100k BAB12269 [14]

Balanus albicostatus Balcp-19k AB242295 [11]

Balcp-20k AB329666 [15]

Balanus improvisus Bicp-19k AB242296 [11]

spider Araneae Nephila clavipes ASG1 EU780014 [16]

ASG2 EU780015 [16]

PySp2 HM020705 [17]

Latrodectus hesperus AgSF1 JX262195 [18]

AgSF2 JX262192 [18]

PySp1 FJ973621 [19]

tick Acari Rhipicephalus appendiculatus RIM36 AY045761.1 [20]

64P AF469170 [21]

Rhipicephalus haemaphysaloides RH50 AY550980 [22]

mussel Mollusca Bivalvia Dreissena polymorpha Dpfp1 AAF75279 [23]

Dpfp2 AM229730 [24]

Mytilus californianus Mfp-3S DQ165556 [25]

Mcfp-5 DQ444853 [26]

Mcfp-6 DQ351537 [26]

Mytilus edulis Mefp-1 AY845258 [27]

Mefp-3 AF286136 [28]

Mefp-5 AAL35297 [29]

Mytilus galloprovincialis Mgfp1 D63778 [30]

Mgfp5 AY521220 [31]

Perna viridis Pvfp-1 AAY46226 [32]

Pvfp-2 AGZ84282 [7]

Pvfp-3 AGZ84285 [7]

Pvfp-5 AGZ84279 [7]

Pvfp-6 AGZ84283 [7]

slug Gastropoda Lehmannia valentiana Sm40 ABR68007 [33]

Sm85 ABR68008 [33]

tubeworm Annelida Polychaeta Phragmatopoma californica Pc-1 AAY29115 [34]

Pc-2 AAY29116 [34]

Pc-3A AY960618 [34]

Pc-3B AY960621 [34]

Pc-4 GH160602 [35]

Pc-5 GH160603 [35]

(Continued.)
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Table 1. (Continued.)

common
name classification species protein

NCBI accession
number reference

Sabellaria alveolata Sa-1 CCD57439 [36]

Sa-2 CCD57460 [36]

Sa-3A CCD57480 [36]

Sa-3B CCD57502 [36]

(a)

(d )

(g) (h) (i)

(e) ( f )

(b) (c)

1 cm

1 cm

2.5 mm 1 mm1 cm

1 cm 1 cm

1 cm 2 mm

Figure 1. Model animals used for the study of biological adhesives. (a) Sea star of the species Asterias rubens attached to a rock by its tube feet. (b) Group of
barnacles of the species Elminius modestus attached on a rock ( picture courtesy of N. Aldred, Newcastle University, UK). (c) Polychaete of the species Sabellaria
alveolata extracted from its tube. (d ) Mussel of the species Mytilus edulis attached to a Teflon surface by means of byssal threads. (e) Three-spine stickleback of the
species Gasterosteus aculeatus assembling its nest ( picture courtesy of I. Barber, University of Leicester, UK). ( f ) Slug from the species Arion fasciatus creeping on a
rock on an adhesive mucus film ( picture courtesy of A. Smith, Ithaca College, USA). (g) Velvet worm of the species Principapillatus hitoyensis ejecting sticky threads
for defence or prey capture ( picture courtesy of A. Bär, University of Leipzig, Germany). (h) Spider of the species Nephila pilipes on its web ( picture courtesy of
J. Delroisse, University of Mons, Belgium). (i) Tick of the genus Ixodes ( picture courtesy of J. Delroisse, University of Mons, Belgium). (Online version in colour.)
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Pc-5 are all basic. Pc-3 is characterized by the overabundance of

serine residues which are largely phosphorylated. Pc-3 is there-

fore extremely acidic. Tyrosine residues of both Pc-1 and Pc-2

are post-translationally modified into 3,4-dihydroxyphenylala-

nine (DOPA) [57]. DOPA groups take part in surface coupling

either through hydrogen bonds or by forming complexes with

metal ions and metal oxides present in mineral surfaces [58].

Following oxidation, DOPA groups also contribute to cement

curing by forming intermolecular cross-links [34]. The different

cement components are packaged and stored in concentrated

granules in the two cell types. Homogeneous granules contain

the sulfated macromolecules and the proteins Pc-2 and Pc-5,

whereas heterogeneous granules contain the proteins Pc-1,

Pc-3 and Pc-4, paired with divalent cations. Co-secretion and
limited mixing of the preassembled adhesive packets lead to

formation of a complex composite cement in which the localiz-

ation and role of the different adhesive proteins are still poorly

understood [59].
2.1.4. Mussels
Mussel is the common name used for members of several

families of bivalve molluscs, from both marine and fresh-

water habitats. To attach themselves to the substratum,

mussels produce a byssus (figure 1d ), which consists of a

bundle of proteinaceous threads, each connected proximally

to the base of the animal’s foot, within the shell, and termi-

nating distally with a flattened plaque which mediates
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adhesion to the substratum [3,27]. The composition of these

plaques has been mostly characterized from marine mussels

of the genera Mytilus and Perna. They are formed by the

auto-assembly of secretory products originating from four

distinct glands enclosed in the mussel foot. These products

comprise a collagenous substance, a mucous material, a mix-

ture of polyphenolic proteins (known as foot proteins 2 to 6,

abbreviated as fp-2 to fp-6) and an accessory protein (fp-1)

[3,7,26,60–62]. Since the characterization of fp-1 in the early

1980s, Mytilus foot proteins have been the subject of a very

large number of studies leading to a detailed knowledge on

their structures, functions and interactions within the byssal

attachment plaque. Proteins fp-2 and fp-4 form the central

core of the plaque; fp-3, fp-5 and fp-6 are located at the inter-

face between the plaque and the substratum (primer layer);

and fp-1 forms a hard cuticle protecting the core from

hydrolysis, abrasion and microbial attack [27,58,62,63].

Among the latter, the presence of DOPA is a common distinc-

tive feature shared by all the proteins identified in the byssal

plaque. This modified amino acid fulfils the same roles as in

tubeworm adhesive proteins: it is involved in the formation

of cross-links between the different fps (cohesion) and it med-

iates physico-chemical interactions with the surface

(adhesion) [58].

Among freshwater mussels, adhesion has been investi-

gated mostly in zebra mussel (Dreissena polymorpha) because

it is a highly invasive species. Although the zebra mussel

byssus is superficially similar to the one of marine mussels,

significant structural and compositional differences have

been reported [64]. For example, contrary to the situation in

marine mussels, the composition of the zebra mussel thread

and plaque appears to be quite similar. To date, 13 zebra

mussel proteins (Dpfp-0 to Dpfp-12) have been characterized

that do display similarities to the marine fps including the

presence of DOPA [23,24,65,66].

2.1.5. Sticklebacks
Three-spined sticklebacks, Gasterosteus aculeatus (figure 1e),

are small freshwater fish that are used increasingly as

models in evolutionary biology and ecology [67]. One fasci-

nating aspect of stickleback biology is that the males build

nests, which serve as receptacles for eggs and a focus for

courtship. The male constructs his nest from plant materials,

which are stuck together and to the substratum using an

endogenous adhesive protein, spiggin, produced in the

fish’s kidney [9,68]. This protein is stored in the urinary blad-

der and, upon release, forms highly elastic adhesive threads.

Spiggin is a cysteine-rich glycoprotein presenting a modular

organization [9,68]. It is encoded by several distinct genes,

some of which presenting splicing variants [69]. It is pro-

posed that the presence of a multi-gene family coding for

spiggin could contribute to the production of this protein in

enough amounts to build nests during the breeding season

[69]. Recently, Seear et al. [70] showed that spiggin genes

expression is significantly affected by both the flow regime

experienced by the fish and its nesting status.

2.1.6. Slugs
Slugs are terrestrial gastropod molluscs (figure 1f) which attach

to surfaces by secreting a viscous mucus film on which they creep

by mean of waves of muscular contractions running along their

foot [71,72]. The so-called trail mucus is left behind by the slug
as it moves. In Lehmannia valentiana, this adhesive mucus is prin-

cipally composed of water (approx. 90%) while the remaining

10% consists mainly of carbohydrates (34–41% of dry weight)

and proteins (25–34% of dry weight) [33]. Among the 18 proteins

making up the protein fraction, two have been sequenced, Sm40

and Sm85. Both contain specific domains which could promote

protein–protein interactions [33].
2.1.7. Velvet worms
Velvet worms are terrestrial soft-bodied invertebrates inhab-

iting tropical and temperate forests. To defend themselves

against predators or to capture their prey, these organisms

use a sticky secretion produced by large glands located on

each side of the gut within the body cavity and expelled via

a pair of modified limbs called slime papillae (figure 1g)

[73,74]. This secretion is ejected as adhesive threads forming

a net entangling the prey [75,76]. To date, biochemical analyses

have focused on the composition of the slime produced by

velvet worms from the genus Euperipatoides. This slime is prin-

cipally composed of water (approx. 90%) while the remaining

10% consists mainly of proteins (55% of dry weight) associated

to carbohydrates (1.3%), and small quantities of lipids and the

surfactant nonylphenol [75]. In the species Euperipatoides
rowelli, the protein fraction is mainly made up of high molecu-

lar weight proline-rich proteins (Er_P1, Er_P2 and Er_P3).

Carbohydrate-binding proteins and small peptides are also

present in the adhesive secretion where they could act as

antimicrobial agents and protease inhibitors [10].
2.1.8. Spiders
Spiders (figure 1h) are able to spin high performance silk

fibres that they use for a wide range of functions, including

prey capture, locomotion and protection of eggs. In Araneomor-

phae, seven distinct glands comprise the spinning apparatus.

Among them, two are involved in adhesion: the pyriform

gland produces attachment disc silks, which attach dragline

silk to substrates, and the aggregate gland produces an

aqueous glue which covers the silk fibres of the web as well as

an adhesive which lash the connection joints of the web

[16,18,19]. The pyriform secretion from orb web and cobweb

spiders is a gelatinous substance, which dries to form a strong

chemical adhesive [19]. It is composed of adhesive proteins

(pyriform spidroins 1 and 2) that contain different internal

block repeats (including proline-rich segments) and share a

high percentage of polar amino acids within their protein

sequences [17,19,77]. The viscid glue produced by the aggregate

glands of orb-weaving spiders functions primarily to retain

flying insects. It is a complex assembly of glycoproteins and

an aqueous solution of low molecular weight hygroscopic

salts that regulate water content in the drop and keep the glyco-

proteins soft and tacky to maintain the stickiness in variable

humidity environments [78,79]. The glycoprotein component

is composed of two unique protein subunits (aggregate spider

glue 1 and 2) that are both glycosylated. ASG1 has a high pro-

portion of charged amino acids and is highly similar to chitin-

binding proteins, while ASG2 has similarities with elastin and

is thus associated with elasticity [16]. In the cobweb spider

Latrodectus hesperus, the aggregate gland also produces two pro-

teins, AgSF1 and AgSF2, that interface with dragline silks to

form the connection joints of the web [18]. Both proteins are

non-glycosylated and present internal amino acid block repeats.
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Figure 2. Schematic illustration of the synthesis and secretory pathway followed by adhesive proteins in a typical adhesive cell (not to scale). The names of
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2.1.9. Ticks
Ticks are small, ectoparasitic acarids (figure 1i), living by hae-

matophagy on the blood of mammals and birds. To feed on

their hosts, Ixodid ticks rely on the secretion of a cement to

remain attached on the host skin for the complete duration

of their blood meal. The formed cement cone extends from

the tick hypostome to the host epidermis. It is primarily pro-

teinaceous, and also contains some carbohydrate and lipid

[20,80]. The protein fraction appears to be made up of pro-

teins rich in glycine, the number of which varies according

to the species [20,80–82]. Some of these proteins, generally

defined as glycine-rich proteins, have been characterized

and tested as anti-tick vaccines [20,80,81]. In Rhipicephalus
appendiculatus, two cement proteins, RIM36 and 64P, have

been characterized. They possess a high content of glycine,

serine and proline, and contain two types of glycine-rich

amino acid repeats [20,21].

2.2. Biosynthesis
The biosynthesis, packaging and release of the adhesive pro-

teins by the adhesive organs follow the so-called regulated
secretory pathway [83]. This pathway is summarized in

figure 2 for a typical adhesive cell. In the nucleus, the genes

encoding adhesive proteins are transcribed into mRNAs,

which are then matured and exported to the cytosol where

they are translated at the level of ribosomes. The rough endo-

plasmic reticulum (RER) then captures secreted proteins from

the cytosol as they are being synthesized. Indeed, these pro-

teins possess a polypeptide signal sequence that directs the

engaged ribosome to the endoplasmic reticulum membrane.

The newly formed protein is then fully translocated across

the RER membrane and released into its lumen. All adhesive

protein precursors described so far present such a signal pep-

tide, which is cleaved off in the RER. Proteins are then

transferred from this compartment to the Golgi apparatus

and from the Golgi apparatus to immature secretory granules

by means of transport vesicles. As the granules mature, their

contents become concentrated, probably as the result of both

the continuous retrieval of membrane and the progressive

acidification of the granule lumen. In adhesive cells, it has

been suggested that protein condensation could involve a

process called complex coacervation which is the spon-

taneous fluid–fluid phase separation of an aqueous protein
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solution into two immiscible aqueous phases, a dilute equili-

brium phase and a denser, protein-rich coacervate phase [84].

In sandcastle worms, given the presence of both polyanions

(acidic proteins) and polycations (basic proteins) in the gran-

ules, coacervation is driven by the electrostatic attraction and

neutralization of these oppositely charged polyelectrolytes

[34,55]. In mussels, polyanions are not known to be involved

in adhesion but it has been demonstrated that a zwitterionic

variant of the protein fp-3 (Mfp-3S [85]) can coacervate with

itself through both electrostatic and hydrophobic interactions

[86]. Because their final mature secretory granules are so den-

sely filled with contents, adhesive cells can release large

amount of material promptly by exocytosis when triggered

to do so.

During their transfer from one compartment to the next, pro-

teins are successively modified. Post-translational modification

(PTM) is indeed a common feature of many adhesive proteins

(see §3.3). One such modification, N-glycosylation, takes place

in the endoplasmic reticulum, with subsequent oligosaccharide

processing in the Golgi apparatus [83]. Many other PTMs, such

as O-glycosylation or phosphorylation, occur in the Golgi

apparatus [83]. Another possible PTM is protein cleavage. In

sea stars, cleavage of the adhesive protein Sfp-1 apparently is

autocatalytic, occurring at low pH in the late secretory pathway

(in the Golgi apparatus or in the maturing secretory granules)

of the tube foot adhesive cells, and generating four protein

subunits [8].

Upon release, the adhesive proteins spread readily on the

substrate where they auto-assemble to form the adhesive

joint. This formation is usually accompanied by a gelation

or curing process of the adhesive. For terrestrial organisms

in which the adhesive is released in the form of a liquid

protein solution, gelation could be triggered by water loss

owing to evaporation. This model has been proposed to

explain the formation of velvet worm slime, in which water

evaporation would bring hydrophobic domains and regions

of opposite charge from the proline-rich adhesive proteins

in closer proximity to enable ionic and hydrophobic inter-

actions [10]. In aquatic organisms, gelation could result

from a pH or ionic strength differential between the secretory

granules and water. Many marine adhesive proteins are post-

translationally modified with different chemical groups.

Among those, phosphates and sulfates may be involved in

non-covalent adhesive and/or cohesive interactions, possibly

through Ca2þ or Mg2þ bridging. In the cement of the tube-

worm P. californica, which contains the polyphosphorylated

protein Pc-3 [34], the jump in pH accompanying secretion,

from about 5 in the secretory granule to 8.2 in seawater,

could trigger a change in bonding between Ca2þ and phos-

phate from electrostatic to ionic, the effect of which would

be to harden spontaneously and solidify the adhesive [87].

Creating covalent cross-links between constitutive macro-

molecules is another way to cure the adhesive secretion. In

DOPA-containing adhesives, such as the tubeworm cement

or the mussel byssal plaque, cross-linking reactions follow

the oxidation of DOPA to DOPA-quinone, a reaction catalysed

by a polyphenol oxidase (catechol oxidase1). Once formed,

DOPA-quinone is capable of participating in a number of

different reaction pathways leading to intermolecular cross-

link formation [7,34,88]. Secreted catechol oxidases have

been detected in both the tubeworm cement and the mussel

byssus [55,89]. In barnacles, Dickinson et al. [90] proposed

that cement polymerization could depend on glutamyl-
lysine cross-linking mediated by a transglutaminase but this

hypothesis was later refuted by Kamino [50].
3. Molecular tools to characterize protein-based
adhesives

On the basis of the adhesive cell secretory pathway (figure 2),

two different strategies can be used to characterize putative

adhesive proteins: molecular biology tools allow the retrieval

of complete primary sequences from the cell nucleotidic infor-

mation (DNA or mRNA) while protein chemistry tools permit

one to obtain polypeptidic sequences and PTM information

directly from the secreted proteins or from their precursors in

the cells (figure 3). Although these two strategies can be used

independently (e.g. protein chemistry approach for the mussel

protein Mefp-3 [91]; molecular biology approach for the tube-

worm proteins Sa-1 to Sa-3 [36]), they are generally conducted

in parallel because the combination of their respective results

facilitates the identification and characterization of the adhesive

protein candidates.

3.1. Identification of adhesion-related genes and
mRNAs

To the best of our knowledge, no adhesive protein has ever

been identified directly from an animal’s genome. The identifi-

cation and isolation of adhesion-related genes can indeed be

hampered by the lack of information or sequence data for the

respective organism. On the other hand, for many organisms,

there is no genomic database available. Therefore, mRNA

sequencing is an essential prerequisite to get access to the

genes expressed in certain tissue. Until recently, this was

achieved by constructing a complementary DNA (cDNA)

library and sequencing clones randomly to generate expressed

sequence tags (ESTs; e.g. [92]). However, with the advent of

next-generation sequencing (NGS), access to mRNA infor-

mation is now obtained directly by transcriptome sequencing

(e.g. [93,94]).

A cDNA library is a combination of cloned cDNA frag-

ments inserted into a collection of host cells (generally

bacteria), which together constitute some portion of the

transcriptome of the organism or the tissue investigated. The

generation of cDNA libraries involves the following steps:

(i) isolation of mRNA, (ii) reverse transcription of mRNA into

cDNA, and (iii) ligation of cDNA fragments into bacterial plas-

mids. Stewart and co-worker [35] took advantage of a cDNA

library constructed from the adhesive gland of the tubeworm

P. californica to identify potential novel adhesive proteins. As

mRNAs are present in high number of copies for proteins pro-

duced continuously by the adhesive cells, they hypothesized

that cDNAs coding for adhesive proteins should be more rep-

resented in the library than other cDNAs. They sequenced

about 300 random clones and analysed the sequences using

bioinformatics tools (see below). This approach allowed the

identification of 18 genes encoding proteins with character-

istics of secreted structural proteins, including the most

abundant cement proteins Pc-1 to Pc-5 [35,56]. Some specific

knowledge about the composition of the adhesive secretion

can also be useful to obtain the full-length sequence of particu-

lar adhesive proteins. This is exemplified by the work of Zhao

et al. [34], who compared the amino acid analysis of whole

tubeworm cement to the amino acid composition of its two
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constitutive proteins known at that time (Pc-1 and Pc-2), and,

by doing this, deduced that a third protein containing more

than 80 mol% of serine was probably present in the cement.

Therefore, they designed a degenerate primer corresponding

to five consecutive serine residues (using the codon preference

for serine in Pc-1 and Pc-2), and used it to amplify by PCR the

sequence of the protein Pc-3 from a cDNA library of the tube-

worm cement gland. Choresh et al. [16] used similar methods

(random sequencing and PCR) to screen the aggregate gland

cDNA library from the spider Nephila clavipes. They identified

an abundant clone coding for two proteins: ASG1 and ASG2.

The selection of clones representing highly expressed proteins

can also be done through DNA microarray analysis (e.g. identi-

fication of the proteins AgSF1 and 2 from the aggregate gland

of the spider L. hesperus [18]). In ticks, a 15 kDa cement protein,
64P, was identified in a cDNA library prepared from the sali-

vary glands of adult female R. appendiculatus, based on its

amino acid composition [21,95].

Generation of a transcriptome using a short reads NGS

method involves several steps (figure 4a): (i) isolation of

mRNA, (ii) fragmentation of mRNA, (iii) generation of a

sequencing library with adapters on both ends, (iv) paired-

end sequencing, and (v) bioinformatic assembly of paired-end

reads. While a transcriptome provides the full complement of

expressed transcripts, an adhesion-related tissue- or cell-type

specific candidate gene list would be favourable. For this pur-

pose a differential RNA-seq approach [96–99] can be applied

(figure 4a), especially if only small amounts of adhesive

tissue can be collected. Briefly, tissue containing adhesive

cells and tissue lacking adhesive cells are sequenced using
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short reads (50 bp). These reads are mapped to the existing

transcriptome to identify differentially expressed transcripts,

both on a qualitative and on a quantitative level [100]. This

differential approach allows one to identify candidate adhesive

genes in the absence of protein information (molecular weight,

composition or sequence), and is therefore of particular interest

when the amount and/or insolubility of the adhesive material

hinders protein extraction (see also below). In the marine flat-

worm Macrostomum liguano, the differential RNA-seq

approach allowed the identification of an intermediate-fila-

ment gene which, although it does not code for an adhesive

protein, is essential for the adhesive process [101]. In barnacles,

high-throughput NGS has been applied to compare transcrip-

tomes of the prosoma (non-adhesive tissue) and the basis

(which contains the cement gland) of the membranous-based

species Tretraclita japonica formosana [102]. The authors

showed that homologues of barnacle cement proteins cp-19K,

cp-52K and cp-100K as well as adhesion-related genes such

as crustin or fibroin were predominately expressed in the

basis. Likewise, existing adhesive protein sequences available

in publicly accessible databases can be very valuable for the

identification of adhesion-related genes in related species

through bioinformatic comparisons. For instance, Guerette

et al. [7] sequenced the transcriptome of the foot of the green

mussel Perna viridis, and conducted BLAST homology searches

of all known Mytilus foot proteins against it. By doing so, they

retrieved the full-length sequences of two adhesive proteins

from P. viridis: Pvfp-1 and Pvfp-2. Other protein characteristics

such as molecular weight or composition can also be used to

help retrieve sequences from transcriptomes (e.g. Pvfp-3,

Pvfp-5 and Pvfp-6 [7]).

When the sequence of an adhesive protein has already

been characterized in a closely related species and high

protein homology is likely, straightforward techniques of

molecular biology such as RT-PCR can be used to obtain

the full-length sequence of putative adhesive proteins with-

out the need to sequence a high number of transcripts

(figure 3). For example, Becker and co-workers [36] designed

primers from the known cDNA sequences coding for the pro-

teins Pc-1, Pc-2 and Pc-3A and Pc-3B of the tubeworm

P. californica to target the cDNA coding for the homologous

proteins Sa-1, Sa-2 and Sa-3A and Sa-3B in Sabellaria alveolata.

In barnacles, a similar approach was used to identify the

protein homologous to Mrcp-19k from M. rosa in B. albicostatus
(Balcp-19k) and B. improvisus (Bicp-19k) [11]. Advantage can

also be taken of the presence of repeated amino acid sequences

in the known adhesive proteins. Degenerate primers can be

designed on the basis of these sequences and be used in PCR

in order to identify the cDNA sequence of homologous

proteins in close species (e.g. the protein from Mytilus
galloprovincialis Mgfp1 homologous to Mytilus edulis fp-1 [30];

and the protein from B. albicostatus Balcp-20k homologous to

M. rosa cp-20k [15]). These different strategies require however

that the adhesive proteins from the different species present

sufficient sequence identity between each other.

Once the complete primary sequence of a putative

adhesive protein has been obtained, its characterization

usually starts by in silico analyses. A large number of bioin-

formatics tools are available for making predictions about

the function and physico-chemical properties of a protein

on the basis of its primary sequence (see, for instance, the

ExPasy proteomics server [103]). These tools are of particular

interest in the field of bioadhesion, where sequence
characteristics are generally recognized as major contributors

to protein adhesive properties. One major tool used in most

studies is SignalP [104], which predicts the presence of the

signal peptide, a short (5–30 amino acid long) hydrophobic

sequence present at the N-terminal part of proteins destined

to be secreted (see §2.2). Identification of the so-called secre-

tome is an approach that has been used in tubeworms, for

example [35]. The analysis of amino acid composition of a

protein (e.g. with ProtParam [105]) allows one to reveal the

presence of highly expressed amino acids (e.g. the glycine-

or serine-rich proteins in the tubeworm P. californica [35]; or

the glycine-rich proteins of ticks [80]) and the resulting iso-

electric point (pI) of the protein (e.g. the basic proteins Sa-1

and Sa-2 in the tubeworm S. alveolata [36]). The presence of

repeated amino acid sequences is a frequent feature in

adhesive proteins that can be identified using the Rapid

Automatic Detection and Alignment of Repeats tool

(RADAR [106]). For instance, this analysis has been used to

identify the tandem repeats made up of consecutive charged

residues interspersed with short hydrophobic regions in the

velvet worm proteins Er_P1 and Er_P3 [10]. In some species,

adhesive properties appear to result from the presence of con-

served structural domains able to link to other molecules, and

which can be identified using, for example, the Conserved

Domain Database from NCBI [107]. Indeed, many adhesive

proteins display specific protein-, carbohydrate- and metal-

binding domains: e.g. von Willebrand factor type D domain

in the stickleback protein spiggin [68,69]; EGF-like and von

Willebrand factor type A domains in the slug proteins

Sm40 and Sm85 [33]; discoidin, von Willebrand factor type

D, galactose binding, C8 and EGF-like domains in the sea

star protein Sfp1 [8]. Finally, a number of tools are also avail-

able to predict potential sites of PTMs such as glycosylation,

hydroxylation and phosphorylation in the primary sequence.

Examples of the use of these tools can be found in Kawahara

& Nishida [9] for the fish protein spiggin, and in Haritos and

co-workers [10] for velvet worm adhesive proteins.
3.2. Identification of adhesive proteins
To date, most studies on adhesive proteins have been carried

out on proteins isolated from two enriched sources: the secreted

adhesive material or the adhesive gland/organ (figure 3).

Although in some cases proteins can be easily isolated from

the adhesive material (e.g. in velvet worms [75]), protein extrac-

tion is generally hindered by the insolubility of the adhesive

material. Strong denaturing (e.g. urea, guanidine hydrochlo-

ride) and/or reducing (e.g. b-mercaptoethanol, dithiotreitol)

conditions were indeed required to isolate proteins from

spider webs [18], stickleback nest threads [69], mussel byssal

adhesive plaques [108], barnacle cement [14] and sea star and

sea urchin adhesive footprints [41,42]. To bypass the challenge

of solubilizing the secreted cured adhesive material, it is some-

times more convenient to perform protein extraction on the

dissected adhesive gland or organ, which are a source of

soluble adhesive precursors (e.g. the stickleback kidney [68];

the mussel foot [26] or the sea urchin tube feet [109]). Once in

solution, adhesive proteins must be purified, i.e. separated

from non-protein parts of the mixture and from all other pro-

teins. Purification steps exploit differences in protein size (e.g.

separation by Sodium dodecylsulfate polyacrylamide gel

electrophoresis [33]), size and isoelectric point (e.g. separa-

tion by two-dimensional polyacrylamide gel electrophoresis
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[110]), physico-chemical properties (e.g. precipitation with

ammonium sulfate [108] or acetone [111]) and binding affinity

(separation using different types of chromatography [57]).

Usually, the next step in adhesive protein identification is

obtaining peptide sequences. Although several techniques

exist to obtain partial amino acid sequence of a protein, the

two dominant methods are Edman degradation and mass

spectrometry (MS). Both methods have been successfully

used to obtain the sequence of peptide fragments from

adhesive proteins. These peptides result from the digestion

of the purified protein (either in solution or in a gel band/

spot) using chemical agents (e.g. cyanogen bromide [14]) or

endopeptidases (e.g. trypsin or pepsin [41,112]). Peptides are

usually desalted and/or separated by electrophoresis and/or

chromatography before sequencing [109]. The Edman degra-

dation method involves the chemical modification of the

N-terminal amino acid of the peptide, which can then be

cleaved from the chain and identified. Successive cycles of

degradation are then used to identify the sequence of the

peptide (e.g. mussel fps [108,111]). The same method can

also be exploited to determine the N-terminal amino acid

sequence of pure proteins (e.g. the tubeworm protein Pc-2

[57]) or of proteins separated by electrophoresis, transferred

onto poly(vinylidene fluoride) or nitrocellulose membranes,

and excised (e.g. the barnacle protein Mrcp-20k [12]).

In MS, biomolecules are ionized and their mass is measured

by following their specific trajectories in a vacuum system [113].

Two fundamental strategies for protein identification and

characterization by mass spectrometry are currently employed:

top-down proteomics, in which intact proteins or large protein

fragments are subjected to gas-phase fragmentation for MS, and

a bottom-up proteomics, in which purified proteins, or complex

protein mixtures, are subjected first to proteolytic cleavage, and

what is analysed by MS are the peptide products (see [114–117]

for review). Although MS can measure the mass of intact

adhesive proteins (e.g. in mussel adhesive footprints [7,25]), it

is usually used to sequence peptides resulting from enzy-

matically digested adhesive proteins. The two most popular

techniques to identify protein sequences using MS are peptide

mass fingerprinting (PMF) and tandem mass spectrometry

(tandem MS or MS/MS). In the first method, the mass

spectrometer generates a list of peptide masses which are com-

pared with calculated peptide masses generated by in silico
cleavage of protein or cDNA sequences present in publicly

available databases using the same specificity as the enzyme

that was employed experimentally (e.g. NCBI [118]). PMF can

be performed with the same instrumentation used for MS/

MS, but it is usually done using time-of-flight mass

spectrometers with matrix-assisted laser desorption ionization.

This method is however seldom used to identify adhesive pro-

teins, because it requires pure proteins or simple mixtures of

proteins, and several peptides are needed to unambiguously

identify a protein. Tandem MS allows de novo internal sequen-

cing, in which isolated peptides are fragmented and the

generated mass spectra of resulting fragments are analysed to

reconstitute the peptide sequences (e.g. slug proteins [33]; sea

urchin and sea star proteins [41,42,109]; zebra mussel proteins

[24,66]). Unique peptide sequences or all MS/MS data can be

used for homology search in publicly available and/or home-

made databases (e.g. transcriptomes and EST libraries (see

§3.1), virtually translated into the six reading frames). A

common problem is that the obtained MS or MS/MS spectra

are typically matched against publicly available protein
databases that in the case of most adhesive-producing organ-

isms are nonexistent or derive from incomplete genome

assemblies and annotations leading to deficient protein identi-

fication. For instance, protein isoforms arising from genetic

polymorphisms, post-transcriptional events such as RNA-edit-

ing and PTMs will be largely missed (see [119] for review). This

can be circumvented by coupling MS approaches with whole

genome and total RNA sequencing, allowing the generation

of near-complete databases of genetic variation and its tran-

scripts for each adhesive organ (see §3.1). A dual proteomic

and transcriptomic approach is therefore the best way leading

to the identification of novel adhesive proteins and the retrieval

of their complete sequences (e.g. the velvet worm protein

Er_P1–3 [10]; the sea star protein Sfp1 [8]).

When the sequence of the unknown protein cannot be

obtained from databases, a PCR approach can be employed.

This technique relies on the design of degenerate oligonucleo-

tide primers on the basis of the peptide sequences (figure 3).

These primers are used to screen cDNA libraries (e.g. the

mussel protein Mefp-5 [29]) or on mRNA reverse-transcribed

into cDNA (RT-PCR) (e.g. the barnacle protein cp52k [13]). In

this strategy, primers designed on N-terminal peptides are

more convenient as only sense degenerate primers are used

in combination with antisense universal primers encoded in

the vector used to build the cDNA library (e.g. Mefp-5 [29])

or encoded by a specific adapter incorporated during the

RT (e.g. the tubeworm proteins Pc-1 and Pc-2 [34]; the slug

proteins Sm40 and Sm85 [33]). Degenerate primers designed

on internal peptides, however, have to be tested as sense or

antisense. RT-PCR can also be performed using a sense

degenerate primer designed on an N-terminal peptide and

an antisense degenerate primer designed on an internal pep-

tide (e.g. the zebra mussel protein Dpfp1 [23]), or using

two primers designed on both extremity of a same peptide

(e.g. the barnacle protein Mrcp-100k [14]). Discrete PCR

products obtained following these strategies are subsequen-

tly cloned and sequenced. The generated partial sequences

are usually completed by 30- and 50- rapid amplification of

cDNA ends (RACE)-PCR using sequence specific primers

(e.g. the barnacle protein Mrcp-19k [11]). The full-length

sequence of the adhesive protein is then deduced from the

open reading frame of the cDNA sequence which, in eukar-

yotes, starts with an ATG codon (coding for methionine) and

ends with a stop codon.

3.3. Identification of post-translational modifications
The physico-chemical properties of many adhesive proteins are

derived in part from their PTMs [87,120]. In the adhesive pro-

teins described so far, these modifications are of three main

types: glycosylation, hydroxylation and phosphorylation.

3.3.1. Glycosylation
An impressive variety of carbohydrate–peptide linkages have

been described from glycoproteins found in essentially all

living organisms. These glycopeptide bonds can be classified

in different groups, the most common being the N-glycosidic

bonds in which the oligosaccharide is attached to the amide

group of an asparagine residue within the consensus peptide

sequence NXS/T, where X is any amino acid except proline;

O-glycosidic bonds in which a mono- or oligosaccharide is

attached to the hydroxyl group of a serine or threonine residue;

and C-mannosyl bonds in which a mannose residue is attached
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to a tryptophan residue through a C–C bond (see [121,122] for

review). Glycoproteins have been implicated in attachment

processes of fouling organisms such as barnacles and mussels.

Examples include the freshwater mussel adhesive proteins

Dpfp-1 and Dpfp-2 [65], which present extensive threonine

or serine O-glycosylation. The marine mussel adhesive protein

Pvfp-1 was shown to possess not only extensive threonine

O-glycosylation but also tryptophan mannosylation [32,123].

The roles of the sugar residues in mussel proteins are still

speculative, but have been proposed to increase conformation-

al stability and enhancement of protein binding ability [122].

C-linked mannosylation would indeed render tryptophan

more polar and solvent-accessible. It was also observed to

block cleavage in the vicinity of modified residues by exo-

and endoproteases, hence rendering proteins more resistant

to degradation [32]. In barnacles, one cement protein, cp-52k,

is known to be N-glycosylated [13].

The analysis of protein glycans is complicated by their

vast variety and the large number of potential glycosylation

combinations. Moreover, the same glycosylation site can be

occupied by different glycans in different copies of a protein

(see [122] for review). Despite the detection of glycoproteins

in the adhesives of a wide range of organisms, little is still

known about the composition of their carbohydrate fraction

and whether these carbohydrates are covalently attached to

the proteins or not. Below are some of the methods that

have been applied to bioadhesives.

Detection by staining. A basic, simple method to determine

whether a protein is glycosylated is to resolve it by one-

dimensional or two-dimensional electrophoresis and to stain

the gel for glycoproteins. Most gel-staining procedures are

based on the periodic acid–Schiff reaction, in which periodic

acid oxidizes vicinal diols in carbohydrate residues to form

two aldehyde groups, which react with the Schiff reagent to

give a magenta colour. This reaction was used by Ohkawa

et al. [123] to demonstrate the presence of O-glycosylated threo-

nines in Pvfp-1. Other reactions use periodate oxidation

followed by biotinylation and binding of peroxidase-labelled

avidin. This method was used by Kamino et al. [13] to highlight

the N-glycosylation of cp-52k. Affinity-based staining can also

be performed using lectins which are proteins that specifically

bind mono- or oligosaccharides, allowing glycoprotein detec-

tion and characterization through lectin histochemistry and

lectin bloting. Hennebert et al. [124] used a set of 16 lectins to

label tube foot sections, footprints, and proteins extracted

from these footprints in the sea star A. rubens. One N-linked

and one O-linked glycoprotein were detected, their oligosac-

charide chains enclosing galactose, N-acetylgalactosamine,

fucose and sialic acid residues.

Glycan structure analysis. Once protein glycosylation has

been confirmed, the glycan moiety structure can be further

studied by liquid chromatography and MS. The glycan can

be analysed either attached to the protein or following its

release, the latter being more reliable. Depending on its

nature, the glycan moiety can be removed from the protein

by chemical or enzymatic means. For chemical removal, the

two main methods for removing O- and N-linked oligosac-

charides are b-elimination and hydrazinolysis, respectively.

Amino acid analysis of Dpfp-1 and Dpfp-2 following removal

of carbohydrate residues by reductive b-elimination allowed

Rzepecki & Waite [65] to detect heavy loss of threonine and

serine residues, suggesting that approximately 76% of the

O-glycans in Dpfp-1, and some 90% in Dpfp-2, were attached
to threonine rather than serine. For enzymatic cleavage, most of

the commercially available enzymes are specific for N-glycans,

with fewer being available for O-glycans. In addition, given the

diversity of O-glycans several enzymes might be required for

the analysis of a single sample, and in most cases chemical

removal is preferable. The most used N-glycan-cleaving

enzymes are PNGase F and A, or endoglycosidases such as

Endo-H. After its release, the glycan moiety can be analysed

by chromatography using a fluorescent label to improve its

detection. Glycan chromatography is often coupled with mass

spectrometry for the elucidation of glycan sequence, branching

and linkage [125]. MS can also be used to analyse the protein

moiety from which the glycan was removed, in order to identify

the amino acids that were formerly attached to the glycans.

Tandem MS was used to demonstrate that, in mussel Pvfp-1,

some tryptophan residues are C2-mannosylated [32].
3.3.2. Hydroxylation
During the chemical process of hydroxylation, an amino acid

residue is modified by the attachment of at least one hydroxyl

group (–OH). Hydroxylation of amino acid side chains in pro-

teins is less common than other PTMs such glycosylation or

phosphorylation [126,127]. Protein hydroxylation is however

an important process in marine bioadhesion. Up to now, four

amino acids have been found to be hydroxylated in mussel

and tubeworm adhesive proteins, giving rise to five modified

residues. These residues seem to confer to marine proteins

their exceptional adhesive properties. Indeed, they may con-

tribute to make the protein more competitive with water by

creating hydrogen bonds with surfaces [58,91,128]. DOPA is

formed by the hydroxylation of tyrosine residues by a polyphe-

nol oxidase (tyrosinase1). This modified residue was found

in all the plaque proteins (fp-1 to fp-6) of mussels [58,63] and

in the tubeworm proteins Pc-1 and Pc-2 [57]. 4-Hydroxyproline

and 3,4-dihydroxyproline are the two hydroxylated derivatives

of proline. They were detected in the decapeptide consensus

repeat of the marine mussel protein Mefp-1 [3,129]. 4-Hydro-

xyarginine was found in the marine mussel protein Mefp-3

[91]. This protein has the ability to make conformational

changes owing to its small size and the presence of glycine

residues, a structural flexibility which enables the hydroxy-

lated arginines to form hydrogen bonds with the substrate.

7-Hydroxytryptophan was found in the sequence of the

protein Pvfp-1 from the mussel P. viridis [32]. In contrast to

Mefp-1, only trace levels of DOPA were detected in Pvfp-1,

what suggested the possibility that DOPA may be functio-

nally replaced by hydroxytryptophan. Indeed, this modified

amino acid resembles DOPA in having attributes that con-

tribute to both cohesive and adsorptive interactions necessary

for adhesion.

Below are some of the methods used to detect hydroxylation

(mostly tyrosine hydroxylation) in bioadhesives.

Amino acid analysis. This method requires the hydrolysis of

proteins, generally under acid conditions. Resulting amino

acids are then separated by chromatography, detected and

quantified by comparison with internal and external standards

[130,131]. For instance, amino acid analysis allowed the high-

lighting of the presence of 3,4- and 4-hydroxyproline, and

DOPA in mussel adhesive [132].

Detection by staining. Arnow staining specifically labels

catechols, including DOPA [133]. The chemistry of the tech-

nique involves nitration of o-diphenols (catechols), resulting
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in a relatively stable diphenolate derivative with strong red

colour. The nitroblue tetrazolium method indicates the pres-

ence of redox active compounds. It is based on the ability of

DOPA-containing proteins to reduce nitroblue tetrazolium in

the presence of alkaline pH and an excess of glycine (used as

reducing agent). The resulting product, formazan, is a deep

blue coloured compound [134]. Both methods were used to

visualize the distribution of DOPA-containing proteins in the

cement cells of the tubeworms P. californica [34,56] and

S. alveolata [36]. The same methods can also be used on gels

to stain DOPA-containing proteins after they have been

separated by electrophoresis (e.g. [57,111]).

Mass spectrometry. MS is generally used in combination

with a wide variety of separation methods (gel electrophoresis

and chromatography techniques) to detect hydroxylation

(see §3.2 for full explanation about MS). For instance, this meth-

odology has been widely used to detect hydroxylation of the

arginine residues in the mussel protein Mefp-3 [91].

Quantitative UV spectroscopy. The proportion of tyrosine

residues modified to DOPA can be quantitatively measured

by UV spectroscopy. The absorbencies of a 1 mM DOPA stan-

dard and of the DOPA-containing protein can be measured at

250–350 nm using a UV–visible spectrophotometer. The

spectra differences can be determined by subtracting the

spectra of the 1 mM DOPA standard from that obtained

from the modified sample. Using the lmax and D1 value of

the 1 mM DOPA standard, the number of DOPA residues

in the protein sample can be calculated according to the

Lambert–Beer law [135].
3.3.3. Phosphorylation
Protein phosphorylation is an important regulator of both

cellular and extracellular events. Recently, protein phosphoryl-

ation has also emerged as an important process in biological

adhesives. Among the four types of phosphorylation cur-

rently described (O-phosphorylation, N-phosphorylation,

S-phosphorylation and acylphosphorylation) [136,137], only

O-phosphorylation of serine residues has been detected in

some marine adhesive proteins [87,120]. So far phosphopro-

teins have been reported among mussel foot proteins (Mefp-5

[29], Mgfp-5 [138], Mcfp-5 and Mcfp-6 [26]), and tubeworm

cement proteins (Pc-3A and Pc-B [34]). In marine adhesives,

phosphorylation is thought to impart a potential for both

cohesive (by Ca2þ and Mg2þ bridging) and adhesive (as an

adaptation for adhesion to calcareous substrata) contributions

to the adhesive [26,53,84,118,139]. Moreover, phosphoserine

(pSer) residues may also be involved in protein–protein

cross-linking as they are thought to condense with histidine

residues to form histidinoalanine cross-links with the loss of

phosphate [140].

Different analytical methods have been developed for the

detection and quantification of O-phosphorylation [136,137].

Below are some examples.

Amino acid analysis. The same procedure described for the

detection of hydroxylation, although with some adjustment,

can be applied to detect phosphoserine residues (e.g. in

Mefp-5 [29]).

Detection by staining. Currently, fluorescent dyes are

becoming the method of choice to stain phosphorylated pro-

teins directly in acrylamide gels. The sensitivity is high (ng

scale) and it can be combined with a total protein stain,

allowing protein phosphorylation levels and expression
levels to be monitored in the same gel. This approach was

used by Santos et al. [109] to pinpoint putative adhesive pro-

teins from the proteome of the tube feet in the sea urchin

P. lividus. Within the total proteome, only 2% of the proteins

were related with cell–cell or cell–substrate adhesion.

Among those, one protein is homologous to nectin, a sea

urchin secreted protein involved in embryonic cell–cell and

cell–substrate adhesion. Two-dimensional gel staining with

specific fluorescent stains revealed that in the tube foot

nectin is present in eight isoforms of which five are simul-

taneously phosphorylated and glycosylated. Recent data

confirmed that nectin is secreted in the sea urchin adhesive

footprint (A. Toubarro et al. 2015, unpublished data).

Although these fluorescent stains are optimized for staining

sodium dodecylsulfate polyacrylamide gel electrophoresis

gels, they can also be used in histochemistry on tissue sec-

tions, or on the secreted adhesive [141]. Nowadays, a large

number of phospho-specific antibodies are commercially

available, allowing pSer affinity-based staining. These anti-

bodies can be used in western blot on extracted proteins and

peptides, and also in immunohistochemistry on tissue

sections. Antibodies can also be used to enrich and purify

phosphorylated proteins and peptides. The use of an

anti-pSer monoclonal antibody allowed the detection of

phosphorylated proteins in the cement cells of the honey-

comb worm S. alveolata, suggesting that, in this species,

a polyphosphoprotein homologous to the protein Pc3 of

P. californica would be also present [36,120].

Mass spectrometry. MS may be applied not only for detec-

tion of phosphorylation, but also for the identification of

phosphorylation sites. Phosphorylation is detected by the

analysis of mass spectra of trypsin-digested peptides that

present a mass shift (m/z 79.9 or neutral loss m/z 80 or 98)

in comparison with the theoretical peptide mass. This techni-

que provides high speed and high sensitivity for detection of

phosphorylation, but signals from phosphopeptides are

generally weaker as compared with non-phosphorylated

peptides and, therefore, it can be difficult to observe the

signals from low-abundance phosphoproteins in the high

background of abundant non-phosphorylated proteins.

This can be overcome by enrichment of phophoproteins or

phosphopeptides prior to MS. Waite & Qin [29] used MS

to analyse purified Mefp-5 and observed peak intervals

of about 80 Da suggestive of the presence of phosphate or

sulfate groups. This was further confirmed by subject-

ing Mefp-5 to an alkaline phosphatase treatment that

produced MS spectra with progressive mass decreases in

decrements of 80–90 Da, which is the mass change associated

with dephosphorylation.
3.4. Validation of the adhesive function of the protein
For a single organism or adhesive organ, the use of tran-

scriptomics and proteomics can generate long lists of

putative adhesive proteins (e.g. [101,109]). Not all these pro-

teins are actually involved in the adhesion process and, after

selection of an interesting candidate, it is important, there-

fore, to validate its adhesive function. This is usually done

by confirming the localization of the protein in the adhesive

cells as well as in the secreted adhesive, by knocking down

the expression of the protein and evaluating the resulting

phenotype, and/or by measuring the physico-chemical

properties of recombinantly expressed proteins.
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3.4.1. Localization of the protein in adhesive cells and in the
secreted adhesive

Genes and proteins identified by transcriptomics or proteo-

mics need to be validated by corroborating their expression

in the respective adhesive tissue or cell type.

Polyclonal antibodies represent a straightforward tool for

detecting proteins in whole mount preparations or tissue sec-

tions [142,143]. They offer great sensitivity, are simple to

handle, easy to store, and allow flexible applications (western

blots, immunohistochemistry, immuno-TEM). Polyclonal anti-

bodies are generated against one peptide or a complete

protein. In general, the protein sequence (full-length or partial)

is submitted to a commercial polyclonal antibody service pro-

vider. After bioinformatic analyses, a selection of 1–3 peptides

is provided. These peptides will be chemically synthesized

and used for immunization of two rabbits. Serum or affinity-

purified antibodies will be delivered to the customer after

about four months (but there are also rapid protocols). Disad-

vantages of polyclonal antibodies are the variability of

different batches generated in different animals at different

times, a higher potential for cross reactivity, and the limited

amount of serum. Monoclonal antibodies, on the other hand,

are quantitatively not restricted but require elaborate equip-

ment and experience or are expensive when outsourced.

Antibodies have been used in several model organisms to con-

firm the presence of putative adhesive proteins in the adhesive

cells: e.g. the protein Sfp1 in sea stars [8], the polybasic proteins

Pc-2, Pc-4 and Pc-5 in tubeworms [56], the protein Dpfp1 in

zebra mussels [144], the proteins AgSF1 and AgSF2 in spiders

[18] or the cement protein RIM36 in ticks [20]. In all these

studies, the antibodies were also used to localize the proteins

in the secreted adhesive, permitting one to investigate whether

the protein is present at the interface (adhesive function) or in

the bulk (cohesive function) of the adhesive layer.

If antibodies cannot be obtained (e.g. low immunogenicity

of the protein like in the case of Pc-1 from tubeworms [56]), the

localization of the corresponding mRNA can be visualized by

in situ hybridization (ISH) [100,145]. By means of ISH a labelled

RNA probe is produced and allowed to hybridize with the

complementary mRNA. The labelled probe is then detected

by antibody staining. In the flatworm Macrostomum lignano,

ISH has been applied to study an adhesion-related inter-

mediate-filament protein, macif1 [101]. Expression of the

adhesive proteins Pc-1 to Pc-5 of the tubeworm P. californica
has been studied by ISH, showing that some of these proteins

are localized in cement cells with homogeneous granules while

the others are localized in cement cells with heterogeneous

granules [56]. Foot-specific expression of adhesion-related

genes has also been demonstrated in both marine [146,147]

and freshwater mussels [148,149].

3.4.2. RNA interference
Understanding of the function of a gene or protein involved in

bioadhesion is essential to elucidate the molecular foundation

of the adhesion mechanism. RNA interference (RNAi) revolu-

tionized the analysis of gene function by taking advantage of

a cellular machinery that ultimately leads to the degradation

of the mRNA of the gene of interest (e.g. [150,151]). Thereby,

a loss-of-function phenotype is generated allowing con-

clusions to be drawn regarding the function of the target

gene. The simplicity of application and the specificity of the

knock-down by which the loss of gene function analysis can
be achieved have boosted the use of RNAi in the past decade

for model and non-model organisms. The RNAi mechanism

is complex but today the components of the RNAi pathway

are well understood [150,151]. Briefly, in vitro generated

dsRNA molecules from 150 to 800 bp corresponding to the

gene of interest are provided externally by soaking or are

applied by injection. The dsRNA molecules become degraded

into RNA duplexes of 21–25 bp in length by the endonuclease

Dicer. The resulting short double stranded RNA molecules are

called ‘small interfering RNAs’ (siRNAs). Next, Argonaute

proteins bind and subsequently unwind the siRNA duplex

into single strands. The antisense strand (the guiding strand)

of the duplex becomes then incorporated into the RNA-induced

silencing complex (RISC) while the other strand (the passenger

strand) gets degraded. In the next step, messenger RNAs

(mRNAs) with the complementary sequence to the RISC-

located guiding strand are loaded into the RISC. Upon associ-

ation between the two RNA molecules the mRNA gets

cleaved. Eventually, this post-transcriptional gene silencing

process results in the depletion of target mRNA molecules. Ulti-

mately, as no new protein can be made, a knock-down

phenotype of the respective transcript will be obtained. The

lack of the particular protein will provide insight into its func-

tion. With respect to bioadhesion, the involved protein

components could be functionally analysed, and their contri-

bution to the adhesion process could be studied in detail with

this method. In M. lignano, RNAi knock-down of macif1
resulted in a lack-of-adhesion phenotype [101]. To the best of

our knowledge, this is however the only study so far in which

RNAi has been used to validate the adhesive function of a

protein in metazoans.
3.4.3. Recombinant proteins
To understand in detail the role of each protein component

in a biological adhesive, it is necessary to obtain these

components in large quantities. To bypass the problem of

extracting adhesive proteins directly from animals, biomimetic

molecules have been produced in the form of recombinant

preparations of the adhesive proteins. This production has

allowed the investigation of the essential functional charac-

teristics of the proteins such as adsorption properties and

adhesive properties on microscopic and macroscopic scales

(e.g. [11,152,153]). Description of the methods allowing one to

obtain these characteristics is out of the scope of this review

but details can be found in [154,155].

To produce the heterologous adhesive proteins, different

prokaryotic, eukaryotic and cell or tissue culture-based

expression systems can be used. Common hosts include bac-

teria (Escherichia coli), yeasts (Saccharomyces cerevisiae), plants

(tobacco) and mammals (goat, rabbit and mouse). Cell cul-

ture-based expression systems employ insect, plant and

mammalian cells or tissue cultures instead of using the

whole organism. All expression hosts have advantages and

disadvantages that should be considered when making a

choice. Some important variables for successful heterologous

protein expression systems include: a codon usage compati-

ble host; existence of promoter, transcriptional and

translational regulators; optimal cultivation and protein puri-

fication methods; the ability to perform PTMs and to achieve

correct folding of the recombinant protein; the possibility to

provide high yields of the heterologous protein and easy

scale-up process [27].
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The recombinant DNA technology approach has been used

mostly to produce large quantities of mussel adhesive proteins

(fps) (see [42] for review). First attempts to obtain recombinant

forms of the protein Mefp-1 started in the early 1990s [156,157].

However, these studies failed to obtain large amounts of recom-

binant proteins. In a later study, Lee et al. [158] expressed Mefp-

1 fused to an E. coli signal peptide and thus optimized the

expression of recombinant Mefp-1 in bacteria. Hwang et al.
carried out two different studies with recombinant M. gallopro-
vincialis foot protein 5 (rMgfp-5 [31]) and 3 (rMgfp-3 [152]). Both

recombinant proteins were fused to a histidine tag and pro-

duced in the soluble fraction of E. coli. Even though

recombinant mussel adhesive proteins were successfully pro-

duced and showed good performance in microscale adhesion

tests, macroscale testing and large-scale applications were still

not feasible. The main reasons included toxicity to the

expression host, low expression levels and low solubility of

the purified protein [27,159,160]. An additional problem related

to the heterologous expression of adhesive proteins is that,

generally, the recombinant proteins lack PTMs. These modifi-

cations include hydroxylation of proline, arginine and/or

tyrosine residues. The production of functional recombinant

mussel fps, therefore, requires an additional in vitro modifi-

cation step: the enzyme-catalysed modification of tyrosine

residues into DOPA. This is usually done using a commercially

available mushroom tyrosinase [160].

In addition to mussel proteins, recombinant adhesive pro-

teins were produced in E. coli from sequences obtained in

barnacles, tubeworms, spiders and ticks. Two barnacle recom-

binant adhesive proteins, rMrcp-19k [11] and rMrcp-20k [15],

have been successfully produced. The protein Sa-1 from the

tubeworm S. alveolata was also successfully expressed and the

recombinant protein, rSa-1, was mainly produced in the insolu-

ble fraction of the bacteria, probably as inclusion bodies [59]. In

spiders, fragments of the attachment disc glue silk fibroin 2

(PySp2) from N. clavipes [17] and the aggregate gland protein

AgSF1 from L. hesperus [18] were produced and used for artifi-

cial spinning. Finally, in the tick R. haemaphysaloides, the cement

protein RH50 was produced and used to immunize rabbits in

order to challenge tick infestation [22].
4. Conclusion
Many metazoans rely on adhesive secretions to perform diverse

functions. The diversity of biological adhesives is therefore huge

and they can involve a large range of components with different

functions and interactions. However, being mainly protein

based, biological adhesives can be characterized by modern mol-

ecular tools, including the ‘omics’ approach. In recent years, the

combined use of transcriptomics and proteomics has emerged as

the best way leading to the identification of novel adhesive

proteins and retrieval of their complete sequences. For a single

organism, however, the use of these tools can generate long

lists of putative adhesive proteins which therefore require

additional experiments to validate their function. When the

extraction of adhesive molecules is hindered by the amount of

tissue available or by the insolubility of the material, alternative

molecular tools exist to circumvent the problems at different

levels from genes to secreted proteins. The wide range of exper-

imental strategies compiled in this review are useful not only for

natural adhesives but also for other type of biological materials.
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Endnote
1Polyphenol oxidases catalyse the o-hydroxylation of monophenols
(e.g. tyrosine) to o-diphenols (e.g. DOPA) and the further oxidation
of o-diphenols to o-quinones. Enzyme nomenclature differentiates
between monophenol monooxygenases, traditionally called tyrosi-
nases (EC 1.14.18.1), and catechol oxidases (EC 1.10.3.1). Tyrosinases
can oxidize tyrosine to L-DOPA and L-DOPA to o-quinone. By contrast,
catechol oxidases oxidize L-DOPA to o-quinone. The formation of
o-quinone is responsible for the browning/tanning/curing processes
that occur in plants, bacteria and animals [161].
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