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Abstract

Background: PPARs (a,c,d) are a family of ligand-activated transcription factors that regulate energy balance, including lipid
metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct
PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic
lipase (HL), an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.

Methods/Principal Findings: Using PPAR ligand binding domain transactivation assays, we found that HL interacted with
triglyceride-rich VLDL (.HDL&LDL, IDL) to activate PPARd preferentially over PPARa or PPARc, an effect dependent on HL
catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARd in a VLDL-concentration
dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA
expression of canonical PPARd target genes, including adipocyte differentiation related protein (ADRP), angiopoietin like
protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this
gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In
ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%,
demonstrating the importance of triglyceride substrate for HL-mediated PPARd activation. Global metabolite profiling
identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARd
activation and ADRP gene regulation in vitro.

Conclusions: These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARd through generation
of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic
approaches provides insight into specific lipid mediators and pathways of lipid metabolism that regulate transcription.
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Introduction

Peroxisome Proliferator-Activated Receptors (PPARs) are

ligand-activated transcription factors that regulate genes involved

in energy balance [1]. Three PPAR isotypes – alpha (a), beta/

delta (b/d), and gamma (c)- are expressed in metabolically active

tissues as well as vascular and inflammatory cells [2,3]. Genetic

models and studies with synthetic PPAR agonists reveal key but

distinct functions for PPARa and PPARd in regulating fatty acid

(FA) metabolism in muscle and liver, whereas PPARc is a critical

determinant of adipose tissue differentiation [4]. PPAR activation

also modulates inflammatory pathways relevant for atherosclerosis

and type 2 diabetes (T2D) [5–8]. Although various lipid mediators

including long chain FAs, eicosanoids and phospholipids (PLs) are

reported to activate PPARs in vitro, insight into pathways that can

generate endogenous PPAR ligands has been limited [9,10]. In the

absence of such information, it remains difficult to place PPAR

activation and subsequent transcriptional responses into a physio-

logic or pathologic network.

Prior work suggests that lipase-mediated lipoprotein metabolism

can regulate PPAR responses. Both lipoprotein lipase (LPL) and

endothelial lipase (EL) preferentially activate PPARa through

hydrolysis of VLDL and HDL, respectively [11–14]. The specific

LPL and EL-generated metabolites that mediate these responses

have remained unidentified. More recently, hepatic de novo

lipogenesis was reported to produce an endogenous phospholipid

PPARa ligand in murine liver with no effect on PPARd or PPARc
[10]. Since all three PPAR isotypes are expressed in hepatocytes,

the selectivity of de novo lipogenesis for PPARa activation suggests

that other pathways of lipid metabolism in the liver may be

involved in PPARd or PPARc activation.

Hepatic lipase (HL), expressed in hepatocytes as well as

macrophages, is central to lipoprotein metabolism [15–17]. As

both a triacylglycerol hydrolase and phospholipase, HL has been
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shown to metabolize HDL, IDL and VLDL substrates, yielding

FAs as well as other lipid mediators [18]. Murine transgenic and

HL-deficiency models have established that HL regulates HDL

and IDL-cholesterol with modest effects on VLDL triglyceride

(TG) content [19,20]. Humans carrying an HL loss-of-function

mutation manifest elevated TG content in lipoproteins including

VLDL and HDL [21]. Despite these important effects, uncertainty

persists regarding HL’s role in systemic metabolism. Indeed, HL

has been alternatively reported to promote or limit both

atherosclerosis and T2D [22–26]. Transcriptional responses

induced through HL action have not been previously explored.

We postulated that HL hydrolytic activity might be involved in

transcriptional regulation via PPARs, given the role of these FA-

activated nuclear receptors in hepatic responses. We also reasoned

that probing HL’s effects on transcriptional regulation might

provide a new way to consider functional roles of HL in systemic

metabolism. In contrast to EL and LPL, which activate PPARa,

we demonstrate here that HL hydrolyzes VLDL to generate

predominantly PPARd activation. By integrating this data with a

global metabolite profiling approach, we found that VLDL

hydrolysis by HL generates specific unsaturated FAs that can

induce canonical PPARd dependent transcriptional responses in

vitro and in vivo, with functional effects on cellular lipid droplet

formation in hepatocytes. Together these data provide new insight

into HL biology, how PPARd may be activated and an example of

how coupling cell biology with metabolomic methods can identify

specific lipid mediators exerting distinct biologic effects.

Materials and Methods

Ethics statement
All animal experiments were approved by the Institutional

Animal Care and Use Committee (IACUC) and conducted in

agreement with NIH policy (Protocol # 03121).

Reagents
A 1.5 kb human HL cDNA was subcloned into pcDNA3 [18].

The HL catalytic mutant was generated by replacing serine

position 149 with alanine using the Stratagene QuikChange PCR

approach (primers 59-CACCTAATTGGGTACGCCCTGGGT-

GCA-39 and 59CGTGTGCACCCAGGGCGTACCCAATTA-

39), and the mutation was confirmed by DNA sequencing.

Adenovirus HL catalytic mutant was amplified/purified by

Welgen, Inc. (Worcester, MA). Human lipoproteins (VLDL,

HDL) were purchased from Biomedical Technologies, Inc

(Stoughton, MA). LDL was isolated by potassium bromide

density ultracentrifugation [11]. IDL was prepared from plasma

of healthy volunteers as previously described. Lipoprotein

concentrations are normalized to protein in mg/mL and sti-

mulations were performed for each lipoprotein fraction at levels

consistent with the published literature. [23,27–29]. Chemicals

were purchased from: Roche Pharmaceutics (Tetrahydrolipsta-

tin), Alexis Biochemical (GW501516), Cayman Chemical

(WY14643 and all FAs), Sigma-Aldrich (Lipoprotein deficient

serum, triolein, egg phosphatidylcholine and FA-free BSA). The

time-resolved, fluorescence resonance energy transfer (TR-

FRET) PPARd competitive binding assay was performed for

PPARd as per manufacturer protocol (Invitrogen) using a

PerkinElmer Envision fluorescence plate reader. Briefly, a GST

tagged recombinant PPARd-LBD is incubated with a terbium

labeled anti-GST antibody along with a fluorescein labeled

small molecule (synthetic) PPAR ligand. In the absence of

exogenous ligand, the fluorescein labeled PPAR ligand binds to

the PPAR-LBD and FRET occurs between the terbium and

fluorescein fluorophores. In the presence of an unlabeled PPAR

ligand, displacement of the fluorescein PPAR ligand reduces

FRET as measured by the emission ratio of 520 nm/495 nm.

Cell culture
FAO hepatoma cells were maintained in RPMI supplemented

with 10% FBS and antibiotics. HUVEC were cultured in M-199

medium supplemented with 20% fetal bovine serum, endothelial

cell growth factor, 1% heparin and penicillin/streptomycin

antibiotic. Lipoprotein stimulations were done in serum free

medium. Fatty acid-BSA complex was generated by mixing oleic

acid with 10%, fatty acid free BSA (4:1 molar ratio) for 1 hour at

37 degrees.

Cell transfection, reporter assays, siRNA and adenovirus
infection

HEK-293, COS-7 and FAO cells were transfected in a 24 well

plate with each PPAR-ligand binding domain construct (LBD)

using Fugene HD (Roche) as previously described. [12,30]. Briefly,

fusion constructs of the PPAR-LBDs and the yeast GAL4 DNA

binding domain were transfected into cells at 100 ng DNA/well

along with a GAL4 dependent luciferase reporter at 70 ng DNA/

well and the internal control CMV-b galactosidase at 50 ng

DNA/well. Where indicated, cells were also transfected with

human HL, catalytically inactive HL or control vector (pcDNA3)

at 100 ng DNA/well. PPAR ligand activity was quantified by

changes in luciferase reporter gene expression measured by

standard luminometer assay and normalized to b-galactosidase.

ADRP promoter constructs were a gift from Dr. Toshiya Tanaka,

University of Tokyo, Japan [31] and were transfected at 100 ng

DNA/well in a 24 well plate. SiRNA constructs (Ambion) were

transfected using siDeliverX reagent (Panomics) according to

manufacturer’s protocol. For adenovirus experiments, cells were

seeded (16106) in 6 well plates and infected for 24 hours with

adenovirus constructs (MOI 100) in 1 mL of serum free medium.

The media was replaced with fresh, serum free media with

indicated concentrations of lipoproteins for 12 hours unless

otherwise indicated.

Mice
Eight-week-old male, C57BL/6 and ob/ob mice were pur-

chased from Jackson Laboratories (Bar Harbor, ME). Animals

were acclimated for 5 days and fed standard chow diet.

Adenovirus was injected by tail vein using 161011 virus particle

in 100 mL volume. Five days after injection, mice were euthanized

and whole liver, epididymal fat and quadriceps skeletal muscle

were isolated and snap frozen in liquid nitrogen for RNA isolation.

RNA isolation, reverse transcription and real time PCR
Total cell mRNA was isolated using an RNeasy kit (Qiagen).

For whole liver and skeletal muscle RNA isolation, 30–50

micrograms of tissue were homogenized in RNA lysis buffer

1 mL (Qiagen); epididymal fat from wild type mice and ob/ob

liver RNA isolation was isolated using the RNeasy lipid isolation

kit (Qiagen). Following isolation, 1 microgram of RNA was

digested with DNase I (invitrogen) and reverse transcribed using

QuantiTect kit (Qiagen). Real Time PCR (RT-PCR) was

performed in a MyiQ Single-Color Real Time PCR system using

SYBR Green I (Bio-Rad). The mRNA levels of test genes were

normalized to 36B4 internal control gene. Standard curves were

generated to calculate relative copy number. The primer

sequences used were: Human ADRP: 59-TGAGATGGCA-

GAGAACGGTGTG-39 and 59-GGCATTGGCAACAATCT-
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GAGT-C-39; Human 36B4: 59-CAACCCAGCTCTGGAGAA-

AC-39 and 59-GTGAGGTCCTCCTTGGTGAA-39; Human

PPARd: 59-TGGCTTTGTCACCCGTGAGT-39 and 39-ACT-

GAGTTCGCCAAGAGCAT-39;Rat ADRP: 59-GCCTCTCAA-

CTGGCTGGTAG and 59-GCTCAGACTGCTGGACCTTC-

39; Rat 36B4: 59-CACCTTCCCACTGGCTGAA-39 and 59-

TCCTCCGACTCTTCCTTTGC-39; Murine ADRP: 59-CAA-

GTCGGAGCTGCTGGTAG-39 and 59-CCGAGAGCAGAGC-

TTGGTAG-39: Murine 36B4: 59-CAACCCAGCTCTGGAGA-

AAC-39 and 59-GAGGTCCTCCTTGGTGAACA-39.

Western blotting
Transfected cells were lysed in RIPA buffer containing EDTA

and protease inhibitors. Following SDS-PAGE separation, immu-

noblotting was performed using a monoclonal antibody human

HL antibody (Santa Cruz Biotechnology) as described previously

[32]. Human HL western was performed on plasma following a

50-fold dilution in PBS.

HL activity assay
A glycerol-stabilized emulsion of triolein and egg phosphatidyl-

choline containing glycerol-tri[9,10(n)-3H] oleate was used to

measure HL activity in conditioned media from cells as described

previously [32]. For HL activity in vivo, plasma was collected at

baseline or 30 minutes following heparin injection (intraperitoneal,

200 U); activity assays were performed on 10 microliters of

plasma.

Liquid Chromatography/Mass Spectrometry
For metabolite profiling experiments, COS-7 cells (16106) were

infected with adenoviral GFP or HL- expressing constructs for

24 hours in 6 well plates. Cells were treated with heparin 10 U/

mL for 1 hour, followed by stimulation with VLDL at 50 mg/mL

for 6 hours. The cell supernatant was harvested on ice, centrifuged

at 3000 rpm for 5 minutes, transferred to a fresh tube and snap

frozen in liquid nitrogen for subsequent lipid extraction. A 2:1:1

CHCL3/MeOH/conditioned media solution was prepared for

lipid extraction to isolate organic soluble metabolites. A 13C oleic

acid standard was included in these samples for targeted FA

quantification. Following brief vortexing, samples were centrifuged

at 2500 rpm at 4 degrees for 10 minutes. After centrifugation the

organic layer (bottom) was transferred to a new vial and solvents

evaporated under a stream of nitrogen. Samples were resuspended

in CHCL3 (120 mL) and stored at 280 until LC/MS analysis

(within 48 hours of extraction). For both positive and negative

ionization mode LC/MS runs, 30 ml of extract was injected.

LC/MS analysis was performed using an Agilent 6530

Accurate-Mass Quadrupole-TOF LC/MS system. For LC

analysis in negative mode, a Gemini (Phenomenex) C18 column

(5 mm, 4.66100 mm) was used together with a pre-column (C18,

3.5 mm, 2620 mm). Mobile phase A consisted of 95/5 water/

methanol and mobile phase B was composed of 60/35/5

isopropanol/methanol/water. Both A and B were supplemented

with 0.1% ammonium hydroxide. The flow rate for each run was

0.5 mL/min. The gradient started at 0% B and linearly increased

to 100% B over 40 minutes, was then maintained at 100% B for

8 minutes before equilibrating for 8 minutes at 0% B. For the LC

analysis in positive mode, a Luna (Phenomenex) C5 column

(5 mm, 4.66100 mm) was used together with a pre-column (C4,

3.5 mm, 2620 mm). Mobile phase A and B and the gradient were

the same as for negative mode, but supplemented with 0.1%

formic acid and 5 mM ammonium formate. MS analysis was

performed with an electrospray source ionization (ESI) interface.

The capillary voltage was set to 3.0 kV and the fragmentor voltage

to 100 V. The drying gas temperature was 350uC, the drying gas

flow was 10 L/min, and the nebulizer pressure was 45 psi. Data

was collected using a mass range from 100–1200 Da.

Statistical analysis
For luciferase reporter experiments all results were performed in

triplicate and are reported as mean +/2 SD. For RT-PCR, results

are reported as mean +/2 SD. Differences were analyzed by 2

tailed, student’s t test. LC/MS data are presented as mean +/2

SD of the ion intensity area. Results are interpreted as statistically

significant for p value,.05.

Results

Hepatic Lipase uses VLDL preferentially to activate PPARd
Standard PPAR ligand binding domain (LBD) assays for all

three human PPAR isoforms were performed in hepatic lipase

(HL)-transfected 293 cells stimulated with HDL, IDL, LDL and

VLDL at the concentrations shown (normalized to total protein).

With TG-rich VLDL as a substrate, HL activated PPARd
preferentially relative to PPARa or PPARc, with significantly

lesser responses to HDL and even less for LDL and IDL

(VLDL...HDL.LDL, IDL, Fig. 1A). HDL stimulation with

protein concentrations as high as 1 mg/mL, which approximates

circulating Apolipoprotein A1 plasma levels, had no effect on

PPAR activation (Fig. S3). PPARd LBD activation in HL-

expressing cells was evident in a VLDL concentration-dependent

manner (10–50 mg/mL, Fig. 1B). In similar HL-transfected 293

cells, VLDL stimulation also activated a co-transfected canonical

PPAR response element (PPRE) direct repeat luciferase construct

(Fig. 1C). HDL, IDL or LDL stimulation had no effect on the

PPRE-reporter in similar HL-transfected cells (Fig. 1C).

HL/VLDL activation of PPARd requires intact catalytic HL
function

In addition to its lipolytic activity, HL can also promote non-

catalytic lipoprotein transport into cells [33,34]. The role of HL

catalytic function in PPAR activation was investigated in two ways:

using the lipase inhibitor tetrahydrolipstatin and transfection of a

catalytically inactive HL mutant. Tetrahydrolipstatin inhibited

HL/VLDL activation of PPARd in a dose-dependent manner in

293 cells (Fig. 2A). In a complementary approach, we mutated the

catalytic site in human HL by site-directed mutagenesis. This

mutant expressed to a similar degree in cell lysate and media

compared to wild type HL, as determined by western blot (Fig.

S1A), but possessed no enzymatic activity (Fig. S1B). In the

presence of VLDL stimulation, catalytically inactive HL no longer

activated PPARd (Fig. 2B). Together, these data establish HL-

mediated PPARd activation requires HL catalytic function. To

further examine the direct role of HL hydrolysis of VLDL in

generating a PPARd ligand, we performed time-resolved,

fluorescence resonance energy transfer (TR-FRET) PPARd
competitive binding assays with increasing concentrations of

VLDL in the presence of recombinant HL. This cell free assay

measures FRET induced by interaction between a known,

fluorescently labeled synthetic PPARd agonist and recombinant,

fluorescently labeled PPARd LBD. The presence of another

PPARd ligand, in this case one generated by HL-mediated VLDL

hydrolysis, causes competitive displacement of the labeled ligand

resulting in decreased FRET. When tested in this cell free system,

recombinant HL in the presence of VLDL reduced FRET in a

linear, VLDL concentration-dependent manner, consistent with a

concentration-dependent increase in a PPARd ligand (Fig. 2C).

Hepatic Lipase and VLDL Activate PPARd
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Figure 1. Hepatic lipase activates PPARd selectively in the presence of human VLDL. (A) HEK293 cells transfected with human PPARa, c, or
d ligand binding domain-Gal4 fusion constructs along with the pUAS64TK Gal4 dependent luciferase reporter were stimulated with human VLDL
50 mg/mL, IDL 20 mg/mL, HDL 100 mg/mL or LDL 100 mg/mL for 12 hours. Luciferase values were normalized to b-galactosidase and results expressed
as mean fold change of the normalized luciferase RLU. Each experimental condition was performed in triplicate and results are mean +/2 SD. *p,.05
vs. empty vector. (B) HEK-293 cells were transfected with the PPARd-LBD along with the luciferase reporter above. Cells were stimulated with
indicated concentrations of human, pooled VLDL for 12 hours, then samples harvested for analysis. * p,.05 vs. empty vector. (C) HEK-293 cells were
transfected with a PPRE-Luciferase reporter along with CMV-b-galactosidase and pcDNA or HL. Following transfection cells were stimulated with
VLDL 50 mg/mL, HDL 100 mg/mL or LDL 100 mg/mL as before for 12 hours. *p,.05 vs. pcDNA.
doi:10.1371/journal.pone.0021209.g001
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These results establish that HL hydrolysis of VLDL is sufficient to

generate a PPARd agonist.

HL/VLDL induces expression of ADRP, a canonical PPARd
target gene, in a manner dependent on HL catalysis and
PPARd expression

PPARd regulates genes involved in lipid metabolism. Adipocyte

differentiation-related protein (ADRP), a lipid droplet associated

protein involved in the cellular adaptation to lipid loading, is an

established PPARd target gene [31]. We used primary human

umbilical vein endothelial cells (HUVEC) as a heterologous cell

model that contains PPARd but does not express HL or LPL to

test whether VLDL regulates ADRP gene expression after

adenoviral HL (Ad-HL) versus control GFP (Ad-GFP) infection.

VLDL stimulation (20 mg/mL) of Ad-HL infected HUVECs

increased ADRP mRNA levels ,4 fold but had no effect on Ad-

GFP cells, as assessed by RT-PCR (Fig. 3A). A similar fold change

in ADRP mRNA expression was observed with the PPARd
synthetic agonist GW501516 (1 mM) in HUVECs. In contrast,

adenoviral transfection of a catalytically inactive HL had no effect

on ADRP expression in the presence of VLDL stimulation in this

same HUVEC system (Fig. 3B). To test if HL/VLDL induction of

ADRP was dependent on PPARd, similar experiments were

repeated in the presence of a small interfering PPARd construct

(siPPARd, Fig. S2). ADRP mRNA expression in response to HL/

VLDL stimulation was decreased ,80% in the presence of

siPPARd versus control siRNA (Fig. 3C). Previous work has

identified a functional PPRE in the human ADRP promoter

region (22361 to 22345 bp) [31]. To determine if HL/VLDL

activates ADRP expression through this PPRE, we used a 4 kb

human ADRP promoter-luciferase reporter construct (4 kb

ADRP-Luc) transfected into COS cells. VLDL stimulation of

COS cells expressing HL doubled the activity of the cotransfected

ADRP promoter-Luc reporter; no effect was seen in an ADRP

promoter construct in which the PPRE contained a point

mutation (D1 ADRP-Luc, Fig. 3D).

HL/VLDL regulates PPARd target gene expression in FAO
hepatoma cells in vitro and in murine liver in vivo

Given the data above, we next tested HL regulation of ADRP

expression through PPARd in a hepatocyte-derived model system

in vitro. Rat FAO hepatoma cells were used since primary mouse

hepatocytes lose PPARd expression shortly after isolation (data

not shown). VLDL stimulation of FAO hepatoma cells infected

with Ad-HL significantly increased ADRP mRNA levels in a

VLDL concentration-dependent manner (Fig. 4A). HL hydrolysis

of VLDL also increased expression of angiopoietin like protein-4

(ANGPLT4) and pyruvate dehydrogenase kinase 4 (PDK4), two

known PPARd-regulated genes with important roles in systemic

lipid metabolism (Fig. 4A) [31]. ADRP facilitates storage of

neutral lipids in cytoplasmic lipid droplets. Consistent with this

role, HL/VLDL stimulation increased lipid accumulation in

FAO cells versus control, as measured by Oil Red O staining

(Fig. 4B).

We next investigated evidence for this HL/VLDL/PPARd
pathway in vivo. Although human and murine HL metabolize

similar lipoprotein substrates, murine HL circulates freely in

plasma in mice (.70% of HL activity), whereas human HL is

retained in the liver, bound to heparin sulfate proteoglycans

(HSPGs) on the hepatocyte cell surface [35]. Eight week old

C57BL/6 male mice on standard chow diet were infected with

similar human Ad-GFP or Ad-human HL constructs by tail vein

injection, followed five days later by plasma and tissue harvest for

analysis of human HL protein and activity as well as changes in

gene expression. Human HL mRNA expression was restricted to

the liver and was not detected in skeletal muscle or epididymal fat

(Fig. 4C). HL protein levels and activity in the plasma were also

not different compared to GFP expressing mice at baseline

(Fig. 4C). However, thirty minutes after heparin treatment plasma

HL activity was significantly higher in the human HL-overex-

pressing mice compared with the Ad-GFP injected mice. This

result is consistent with human HL localization to liver HSPGs

and release into plasma by heparin (Fig. 4C). As such, HL

expression by adenoviral infection provides a model to test directly

whether increasing hepatocyte HL expression regulates hepatic

PPARd transcriptional responses in vivo. In this model, ADRP

expression was significantly increased by 30% in livers from the

C57Bl/6 mice receiving HL as compared to GFP (Fig. 4D). ADRP

expression did not differ between HL or GFP in the epididymal fat

or skeletal muscle of these mice (Fig. 4D). As noted, HL is an

important determinant of circulating TG levels. In C57BL/6

mice, TG levels are low on standard chow diet. Adenoviral HL

infection in C57BL/6 mice decreased TG levels from 48 mg/dL

to 28 mg/dL. Given our in vitro data for VLDL, a TG-rich

lipoprotein, serving as the preferred substrate for HL-mediated

PPARd activation, we reasoned that circulating TG levels might

influence HL/VLDL mediated PPARd responses. The ob/ob

mouse develops modestly higher plasma TGs than chow-fed

C57BL/6 mice, but still within the normal range. Six-eight week

old, ob/ob mice were infected with Ad-GFP or Ad-HL. Baseline

TG levels were 70 mg/dL the Ad-GFP group versus 25 mg/dL in

the Ad-HL cohort five days after adenoviral infection. In this ob/

ob model with higher triglycerides compared to the wild-type

mice, hepatic ADRP mRNA levels increased more than in the

C57BL/6 mice (70% vs 30%) following HL overexpression, as

compared to GFP (Fig. 4D, Liver – ob/ob).

VLDL hydrolysis by HL liberates unsaturated FAs that
activate PPAR transcription

HL/VLDL activates PPARd through its catalytic products.

VLDL is a TG-rich lipoprotein, with lower concentrations of PL,

diacylglycerol, monoacylglycerol and cholesterol [36]. To inves-

tigate the role of specific HL/VLDL hydrolytic products in

PPARd activation, a global metabolite profiling approach using

liquid chromatography coupled to mass spectrometry (LC/MS)

was employed [37]. A profiling LC/MS approach can identify

metabolites generated by HL-mediated VLDL hydrolysis in an

unbiased fashion. By coupling this global metabolite profiling

Figure 2. HL/VLDL activation of PPARd depends on catalytic function. (A) HEK-293 cells were transfected with PPARd-LBD and pretreated
with indicated concentrations of tetrahydrolipstatin (THL) or DMSO control for 30 minutes prior to stimulation with VLDL 30 mg/mL for 12 hours.
Results expressed as mean fold change. *p,.05 vs. empty vector. (B) COS-7 cells were transfected with pcDNA, HL or catalytically inactive HL and
stimulated with indicated concentrations of VLDL for 12 hours. *p,.05 vs. pcDNA. **p,.05 versus HL and pcDNA. (C) Time-resolved FRET PPARd
competitive binding assay: Recombinant HL was incubated with increasing concentrations of VLDL (1 mg/mL and 10 mg/mL) for 1 hour with
recombinant GST-PPARd-LBD, terbium-labeled anti-GST antibody and a fluorescein-labeled PPARd synthetic agonist. FRET activity, measured by the
emission ratio of fluorescence at 520 nm/495 nm, was inhibited in a VLDL concentration dependent manner in the presence of HL. The synthetic
PPARd ligand, GW501516, maximally inhibited FRET at 1 mM. *p,.05 compared to VLDL alone.
doi:10.1371/journal.pone.0021209.g002

Hepatic Lipase and VLDL Activate PPARd

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e21209



Hepatic Lipase and VLDL Activate PPARd

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21209



approach with our prior experimental data and methods, the

ability of specific HL/VLDL metabolites to activate PPARd can

be tested. Further, by using 13C labeled oleic acid as an internal

standard, LC/MS also enables quantification of specific FA

products liberated by HL/VLDL.

As compared to GFP-expressing COS cells, VLDL stimulation

of HL-expressing cells (6 hours) generated statistically significant

increases in levels of specific long chain FA species, as measured by

LC/MS in negative ionization mode (Fig. 5A, left panel). This

platform also affords analysis of relative TG versus PL hydrolysis

by HL with intact lipoprotein substrates. Sample analysis in

positive ionization mode revealed greater reductions of both TG

and diacylglycerol levels relative to PL levels in the HL group,

indicating TG as the major source of HL-generated FA in this

model (Table 1). Other lipids, including cholesterol, cholesterol

esters and sphingomyelin, were unchanged (Table 1).

The fold changes seen in HL- versus GFP-expressing cells for

both saturated and unsaturated FAs were significant, but a

proportionally larger difference in release of monounsaturated and

polyunsaturated FAs was detected, with a particular difference in

palmitoleic (PO - C16:1, 8 fold) and oleic (OA - C18:1, 4.5 fold)

FAs (Fig. 5A, right panel). The fold changes for linoleic (C18:2),

linolenic (C18:3), arachidonic (C20:4), and eicosapentaenoic

(C20:5) were also statistically significant (Fig. 5A, right panel).

We focused on the most abundant FAs identified by metabolite

profiling, PO and OA (15, 80 mM, Fig. 5A, left panel), as well as

the corresponding saturated FAs palmitate (PA, C16:0) and

stearate (SA, C18:0) to determine if the specific HL/VLDL-

induced FA changes detected were relevant for PPARd activation.

Both PA and PO modestly activated PPARd LBD, achieving 25%

LBD activation at 100 mM relative to maximal stimulation with

the potent PPARd selective agonist GW50156. By contrast, OA

activated PPARd in a concentration-dependent fashion, achieving

approximately 70% of maximal GW activation at 100 mM

(Fig. 5B); SA only modestly activated PPARd at the same

concentration. Additionally, the polyunsaturated FAs (C18:2,

C18:3, C20:4, C20:5 and C22:6) demonstrated minimal PPAR

transcriptional activity when used at the concentrations quantified

in metabolite profiling experiments (data not shown). Given

evidence that OA but not SA was released by HL/VLDL

hydrolysis, we next returned to ADRP regulation. We tested if OA

regulates ADRP gene expression in FAO hepatoma cells. OA

stimulation (12 hrs, 100 mM) increased ADRP mRNA expression

two fold, ,70% of the GW501516 response and consistent with

the PPARd LBD assay responses (Fig. 5C).

Discussion

The nuclear receptors PPARa, d and c coordinate carbohy-

drate, lipid, and lipoprotein metabolism. Despite the importance

of these transcription factors in hepatocyte biology, mechanisms of

PPAR activation in the liver remain poorly understood. The data

provided here identifies a new role for hepatic lipase (HL) in PPAR

activation. HL hydrolyzes VLDL to generate predominantly

PPARd activation, with markedly lesser effects on PPARa and

even less on PPARc. Despite HL’s known phospholipase activity,

HDL, the most PL-rich circulating lipoprotein class, was less

effective as a substrate in HL-mediated PPARd activation as

compared to VLDL. IDL remnant lipoprotein exposure to HL

also did not activate PPARd. In support of this novel HL/VLDL/

PPARd pathway, HL/VLDL induced expression of the canonical

PPARd target genes ADRP, ANGPLT4 and PDK4, in HUVECs

and FAO cells, and had functional effects on increased lipid

droplet formation. In keeping with these findings, hepatic

expression of human HL in vivo increased ADRP expression in

C57BL/6 and ob/ob mice. Global metabolite profiling to

annotate lipid products of HL hydrolysis of VLDL revealed

proportionally more release of monounsaturated (MUFA) and

polyunsaturated (PUFA) fatty acids including OA and PA.

Consistent with this finding, direct OA stimulation of FAO cells

in vitro recapitulated PPARd activation by HL/VLDL, inducing

ADRP expression, while PA had only modest PPARd effects;

stearic acid, which was not released by HL action on VLDL, had

no PPARd effects.

LPL, EL and HL are members of a family of lipases that

hydrolyze lipid substrates like TGs and PLs. Multiple parameters

define the distinct function of these lipases, including their

expression patterns, substrate preferences, catalytic activity,

endogenous inhibitors and cofactors [38]. Despite their critical

role in lipoprotein metabolism, specific links between the action of

these lipases and fatty acid-activated nuclear receptor responses

remain poorly defined. Prior work suggests lipases can induce

PPAR responses, although mainly with selective PPARa activa-

tion. Our group reported that LPL and EL could activate PPARa
through mechanisms involving VLDL and HDL, respectively

[11,12]. Others have shown that LPL-overexpression in cardiac

myocytes also induces PPARa target gene expression [14]. Chawla

et al. reported LPL-mediated PPARd regulation in murine

macrophages, which express lower levels of PPARa [28]. Both

murine and human hepatocytes express PPARa and PPARd,

making HL’s preferential activation of PPARd over PPARa by the

same VLDL substrate noteworthy. VLDL is a TG rich

lipoprotein; PPAR activation using VLDL as a substrate implicates

TG as an important source for PPAR ligands formed by HL-

mediated catalysis. The relative inability of HDL, IDL and LDL to

activate PPAR responses in our experimental models may be a

consequence of the lower TG content of that characterizes these

other lipoprotein classes in vivo. Additional studies will be needed to

determine how other factors such as apolipoprotein composition,

circulating cofactors or other cell surface co-receptors may also

influence lipase-lipoprotein mediated PPAR activation.

LPL, EL and HL can also facilitate lipoprotein transport

independent of their enzymatic activity [34,38]. We demonstrate

that HL-mediated PPARd activation requires active catalysis.

Figure 3. HL/VLDL increases expression of the canonical PPARd target gene, ADRP. (A) HUVEC were infected with adenovirus constructs
expressing GFP or human HL (MOI of 100) in growth medium for 24 hours. The medium was replaced with serum free medium with lipoprotein
stimulation where indicated for an additional 12 hours. RT-PCR results are expressed as relative copy number arbitrary units (AU), as the ratio of ADRP
to 36B4 internal control. *p,.05 vs. GFP. (B) HUVEC were infected as above with adenovirus constructs expressing GFP, HL or catalytically inactive HL
for 24 hours. Cells were then stimulated with VLDL 20 mg/mL for 12 hours in serum free medium and RNA harvested for gene expression analysis.
*p,.05 vs. GFP. ** p,.05 vs. HL. (C) HUVEC were transfected with the indicated siRNA constructs for 24 hours. Following transfection, cells were
infected with adenovirus constructs for 24 hours in HUVEC growth medium. After adenovirus infection, cells were stimulated with VLDL for an
additional 12 hours before harvesting RNA for gene expression analysis. *p,.05 vs. GFP, **p,.05 vs HL. (D) COS-7 cells were transfected with either
the 4 kb-ADRP luciferase reporter, containing the endogenous PPRE from the human ADRP promoter, or the D1-ADRP luciferase reporter, possessing
a point mutation in the PPRE. Where indicated cells were also transfected with pcDNA3 or HL and stimulated with VLDL 50 mg/mL for 12 hours.
Luciferase and b-galactosidase were harvested as before. *p,.05 vs. control **p,.05 vs. control/VLDL.
doi:10.1371/journal.pone.0021209.g003
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Figure 4. HL/VLDL increases expression of PPARd target genes, in vitro and in vivo. (A) Left Panel. FAO hepatoma cells were infected with
adenovirus GFP, adenovirus HL and adenovirus catalytically inactive HL for 24 hours in serum free medium. After 12 hours stimulation with
lipoprotein, RNA was harvested for gene expression analysis and results are expressed as before. *p,.05 vs. GFP. (A) Right Panel. The concentration
dependent effect of VLDL induction of ADRP mRNA in HL-expressing FAO cells is shown. (B) Oil Red O staining. FAO hepatoma cells treated with
adenovirus GFP and HL along with VLDL 50 mg/mL were fixed in paraformaldehyde overnight then stained with Oil Red O to mark neutral lipid
accumulation. Magnification 106. (C) C57BL/6 (8 week, males) were injected by tail vein with adenovirus GPF or human HL constructs, 161011 viral
particles, 100 mL volume. Five days following adenovirus infection, plasma was collected pre-heparin and 30 minutes post heparin injection
(intraperitoneal, 200 U) for HL activity and protein expression; mice were euthanized and tissue was harvested for RNA isolation for gene expression
analysis. *p,.05 vs. GFP. RT-PCR results expressed as relative copy number in arbitrary units. (D) C57BL/6 and ob/ob mice (6–8 week, male)
underwent tail vein injection as above. Five days later tissue was harvested for gene expression. *p,.05 vs. GFP. RT-PCR results expressed as relative
copy number in arbitrary units.
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Although a catalytically inactive HL mutant can promote cellular

lipoprotein uptake, it was no longer capable of activating PPARd.

Similarly, a general lipase inhibitor also repressed HL-mediated

PPARd activation. In a TR-FRET ligand displacement assay,

VLDL hydrolysis by HL displaced a fluorescently labeled ligand

within one hour in a VLDL concentration-dependent way.

Although other intracellular enzymes could conceivably metabolize

VLDL following its endocytosis resulting in PPARd activation, the

data presented here argues for hydrolysis of VLDL and release of

metabolites by HL positioned on the cell surface as a major

contributor to PPAR activation. Together these results suggest

specific products of HL catalysis of VLDL may account for PPARd
activation.

Metabolite profiling using liquid chromatography coupled with

mass spectrometry (LC/MS) is a robust method for annotating

lipid metabolites produced by enzymes in complex biological

systems [37,39]. By applying this unbiased strategy to analyze

lipids generated by HL-mediated hydrolysis of VLDL, specific

molecules released by HL/VLDL were identified, including ones

that could replicate HL/VLDL/PPARd effects. Several new

insights have emerged using this approach. First, VLDL hydrolysis

by HL liberated OA and PA at micromolar concentrations, levels

that overlap the concentrations needed for PPAR activation, as

determined in concurrent PPAR transactivation assays. Second,

other FAs including linolenic, arachidonic, eicosapentaenoic, and

docosohexaenoic acid were also released by HL, but did not

stimulate PPAR transactivation, at least within this system. Third,

the HL depleted TG levels of VLDL more than PLs, further

demonstrating HL’s important TG hydrolase function and

highlighting the role of TG as a substrate in HL-mediated PPARd
activation. It will be of interest to apply this system to investigate

the lipid metabolites generated by LPL and EL, which are also

relevant for isotype specific PPAR responses.

Our finding here that OA is a major FA product of HL lipolysis

that can activate PPARd aligns with several recent reports in the

literature. Sanderson et al. found that OA activates PPARd, not

PPARa responses in liver. In those studies the source of OA

production was not explored [40]. Our data identifies HL as a

specific pathway relevant for hepatocytes that can generate OA

from VLDL, thus offering a direct link between hepatic lipid

metabolism and PPARd activation via HL-generated OA. Of

note, the hydrophobic nature of FAs liberated by HL requires

cytosolic chaperones such as fatty acid binding proteins (FABPs) to

facilitate FA delivery to the nucleus. In this regard, Tan et al.

reported that FABP5 binds OA and translocates this FA to the

nucleus where it interacts with PPARd, thereby promoting

keratinocyte differentiation [41]. By integrating unbiased lipopro-

tein/HL/PPAR activation assays, cell biology studies, and LC/

MS analysis of HL lipolytic reactions, the data provided here

converge with these observations using completely different

approaches. Collectively, these findings suggest a model involving

integrated extracellular to intracellular to nuclear metabolic

pathways that determine specific transcriptional responses.

Similar, but distinct pathways may exist for other nuclear

receptors as defined by variables of lipoprotein substrates, lipases,

metabolites, surface receptors and/or FABPs.

Lipolytic mechanisms that direct specific PPAR isotype

activation suggests new ways to consider how lipid metabolism

may couple to transcriptional and cellular responses. Genetic and

Figure 5. Global metabolite profiling identifies specific unsaturated FAs generated by HL hydrolysis of VLDL that activate PPAR
transcriptional responses. (A) Left Panel. Negative ionization mode LC/MS analysis of lipid extracts from HL/VLDL treatment group demonstrated
significant increases in levels of long chain fatty acids including palmitic (C16:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), linolenic (C18:3),
arachidonic (C20:4), eicosapentaenoic (C20:5) and docosohexaenoic (C22:6) acid. Absolute nanomoles of fatty acid were calculated using the
integrated ion intensity of the internal standard C13 oleic acid. Each experimental condition was performed in triplicate, with results representing the
mean +/2 SD. Right Panel. The absolute fold change for each fatty acid comparing treatment with HL/VLDL vs GFP/VLDL is shown. *p,.05 vs GFP/
VLDL for each fatty acid. (B) COS-7 cells were transfected with PPARd-LBD and stimulated with the fatty acids fatty acids indicated. Results expressed
as the percent of maximal LBD activation measured with PPARd synthetic agonist GW501516. *p,.05 vs control. (C) FAO cells were treated with
indicated concentrations of fatty acid in media with 1% BSA, BSA control or the PPARd synthetic agonist GW501516 at maximal concentration.
Following stimulation RNA was harvested and ADRP expression analyzed by RT-PCR. Results expressed as relative copy number in arbitrary units.
*p,.05 vs BSA and control. **p,.05 vs vehicle.
doi:10.1371/journal.pone.0021209.g005

Table 1. Relative Levels of Representative Lipids Measured by
Metabolite Profiling in Samples with HL:VLDL and GFP:VLDLa.

Lipid Class HL:VLDL/GFP:VLDL

Phospholipids

C34:1 PC 0.83

C34:2 PC 0.73*

C36:2 PC 0.70*

C36:3 PC 0.66*

TAGs

C48:2 0.34*

C50:2 0.40*

C54:6 0.34*

DAGs

34:1 0.10*

36:2 0.09*

LPCs

C18:1 4.2*

CEs

C18:1 0.97

C18:2 0.52

SM

C16:0 0.81

C16:1 0.89

FFAs

C16:0 (2.1)*

C16:1 (7.7)*

C18:1 (4.6)*

C20:4 (6.1)*

C20:5 (7.0)*

C22:6 (1.1)

aData in parentheses were determined by directly quantifying FA levels using
targeted LC/MS method with internal FA standard. TAGs, triacylglycerols;
DAGs, diacylglycerols; LPCs, lysophosphatidic acid; CEs, cholesterol esters; SM,
sphingomyelin; FFAs, free fatty acids. Data represent the mass ion intensity
ratios performed in triplicate for each experimental condition.

*p,.05 for HL:VLDL compared to GFP:VLDL.
doi:10.1371/journal.pone.0021209.t001
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synthetic agonist studies establish a key role for PPAR in the

transcriptional regulation of genes involved in lipogenesis and lipid

storage typical of the fed state [42]. In contrast, PPARa controls a

transcriptional program regulating fatty acid b-oxidation and

ketogenesis in the liver as encountered during fasting [43]. The

action of HL to induce PPARd-mediated lipogenesis, including

lipid droplet formation through ADRP, mirrors PPARd effects

seen with synthetic agonists. In the liver, PPAR isotype-specific

responses may also be controlled by metabolites formed by an

opposing pathway of lipid metabolism. In support of this,

Chakravarthy et al. recently identified that fatty acid synthase

(FAS), the rate-limiting enzyme in hepatic de novo lipogenesis, could

generate a specific phosphatidylcholine (GPC 16:0/18:1) capable

of acting as an endogenous hepatic PPARa ligand [10]. The fact

that FAS is the first committed step in palmitic acid biosynthesis

but ultimately fosters FA oxidation through PPARa, while HL, as

a triacylglycerol hydrolase/ phospholipase, functions in lipoprotein

catabolism, but promotes lipogenesis through PPARd suggests

cross-integration of these pathways. Interestingly, levels of this

GPC 16:0/18:1 ligand were modestly reduced in our experiments,

entirely consistent with HL’s phospholipase activity and revealing

other ways through which lipolysis may influence both PPARd
and PPARa responses. Based on the data presented here, it will be

of interest to consider how HL-mediated PPARd activation

influences systemic and hepatic metabolic responses in vivo in

the context of HL and PPARd loss of function in mice and

humans. The recent observation that HL-deficient mice are

protected from diet-induced obesity, display altered energy

substrate utilization and have decreased hepatic steatosis suggests

that HL may play a broader physiologic role in metabolic

adaptations to diet [44]. Further work will be needed to resolve

these issues. The finding that VLDL hydrolysis by HL preferen-

tially activates PPARd provides a new way to reconsider the

functional role of HL and PPARd in the liver and serves as an

example of how cell-based assays can be combined with global

metabolite profiling to explore how lipid metabolism modulates

transcriptional responses.

Supporting Information

Figure S1 Catalytic mutant HL expresses similar pro-
tein levels, but has no triglyceride hydrolase activity.
Left Panel. Control vector, HL or HL catalytic mutant expression

vectors were transfected into COS cells. 24 hours after transfec-

tion, heparin (10 Units) was added to the media to release the

lipase from the cell surface. Both media and cell lysate were

collected for western blot. Right Panel. Media collected from

above was used in triolein activity assay.

(TIF)

Figure S2 SiRNA knockdown of PPARd achieved an 80–
90% knockdown of PPARd expression. HUVEC were

transfected with siRNA for PPARd or a scrambled control.

Following lipoprotein stimulation, RNA was collected for analysis

of gene expression. *p,.05 for siPPARd versus siControl.

(TIF)

Figure S3 Physiologic HDL concentrations activate
PPARd, but not to the same degree as VLDL. COS cells

were transfected with each of the human PPAR-LBDs and

stimulated with HDL (1 mg/mL) as in Figure 1. Data are

presented as relative fold change of luciferase/b-galactosidase.

(TIF)
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