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India is home to a large and diverse buffalo population. The Murrah breed of North India is
known for its milk production, and it has been used in breeding programs in several
countries. Selection signature analysis yield valuable information about how the natural and
artificial selective pressures have shaped the genomic landscape of modern-day livestock
species. Genotype information was generated on six buffalo breeds of India, namely,
Murrah, Bhadawari, Mehsana, Pandharpuri, Surti, and Toda using ddRAD sequencing
protocol. Initially, the genotypes were used to carry out population diversity and structure
analysis among the six breeds, followed by pair-wise comparisons of Murrah with the other
five breeds through XP-EHH and FST methodologies to identify regions under selection in
Murrah. Admixture results showed significant levels of Murrah inheritance in all the breeds
except Pandharpuri. The selection signature analysis revealed six regions in Murrah, which
were identified in more than one pair-wise comparison through both XP-EHH and FST
analyses. The significant regions overlapped with QTLs for milk production, immunity, and
body development traits. Genes present in these regions included SLC37A1, PDE9A,
PPBP, CXCL6, RASSF6, AFM, AFP, ALB, ANKRD17, CNTNAP2, GPC5, MYLK3, and
GPT2. These genes emerged as candidates for future polymorphism studies of
adaptability and performance traits in buffaloes. The results also suggested ddRAD
sequencing as a useful cost-effective alternative for whole-genome sequencing to carry
out diversity analysis and discover selection signatures in Indian buffalo breeds.
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INTRODUCTION

Water buffalo is considered as an important livestock resource in tropical and sub-tropical countries
due to its high milk production ability along with adaptability to hot and humid environment, and
high feed conversion efficiency (Kumar et al., 2019). Buffaloes are the major contributors of milk
production in India accounting for 49.2% of 187.7 million tons of total milk production (DAHD&F,
2018). India possesses a remarkably large and diverse buffalo population with 109.85 million
buffaloes and 17 registered breeds (DAHD&F, 2018; NBAGR Karnal, 2021).

Murrah is the most important buffalo breed of India, constituting about 44.3% of the total buffalo
population of the country. The main breeding area of this breed is the northern states of India,
namely Punjab, Haryana, and Western Uttar Pradesh. Due to its high milk potential in varied
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environmental conditions, the germplasm of the breed has been
extensively used throughout the country. It has also been
imported in several countries like China, Brazil, Vietnam,
Egypt, Bangladesh, etc., due to its higher milk production
potential (Zhang et al., 2020). As part of the breed
improvement schemes, Murrah buffalo has been selected for
improved milk production for the past 30 years, and the
process is going on. By investigation of selection sweeps in the
Murrah genome, we may gain insights into the genes and
genomic regions related to important economic traits in
buffaloes. Recently, Dutta et al. (2020) identified selection
sweeps in seven Indian riverine buffaloes and compared
patterns of between-species selective sweeps with different
cattle breeds using whole-genome sequencing (WGS) data.
Since WGS is a costly process, several workers have proposed
reduced representation genotyping techniques such as the double
digest restriction site-associated DNA sequencing (ddRAD-seq)
as a useful alternative to WGS for genotyping Indian buffaloes
(Surya et al., 2019; Mishra et al., 2020). For the present study, the
genotype data of six Indian buffalo breeds (Murrah, Surti,
Mehsana, Bhadawari, Pandharpuri, and Toda) was generated
using ddRAD sequencing.

This study aimed to assess the genetic diversity and population
structure among the six Indian buffalo breeds using ddRAD data.
Furthermore, we attempted to unravel signatures of positive
selection in Murrah by comparing it with other reference
Indian breeds (Surti, Mehsana, Bhadawari, Pandharpuri, and
Toda) through cross-population extended haplotype
homozygosity (XP-EHH) and cross-population fixation index
(FST) approaches.

MATERIAL AND METHODS

Sample Collection and Generation of
Double Digest Restriction Site-Associated
DNA Data
Ninety-six samples were collected from six breeds of riverine
buffalo from different parts of India. These breeds are diverse in
terms of physical features, milk production, and adaptation.
Selection of the animals was done in a way to cover the
genepool of the respective breeds. So the animals of all the
breeds in the present study were chosen randomly from their
respective institutional farms (except animals of the Toda breed
of buffalo for which random samples were collected from its
breeding tracts in the Nilgiri Hills area of Tamilnadu state of
India). As the Murrah breed is mainly found in the northern part
of India, the random samples were collected from three
institutional farms of the area, i.e., the Livestock Research
Station (LRS) ICAR-IVRI situated in Izatnagar, Bareilly (Uttar
Pradesh), the Buffalo Farm at livestock research station of
GBPUA and T, Pantnagar (Uttarakhand), and the Livestock
Farm, GADVASU Ludhiana. The samples of Bhadawari
buffalo were collected from the Buffalo Farm, ICAR-IGFRI,
Jhansi (Uttar Pradesh), Mehsana buffalo samples were
collected from the Livestock Research Station, SDAU, SK

Nagar (Gujarat), Surti buffalo samples were collected from the
Livestock Research Station, CVAS, Udaipur (Rajasthan), and
Pandharpuri buffalo samples were collected from the Buffalo
Farm, Zonal Agriculture Research Station, Kolhapur
(Maharashtra). All these farms are situated in their respective
breeding tract, and animals were randomly selected from these
institution farms as to cover substantially the genepool of the
population. The breed-wise details of sample numbers and
location are also provided in Supplementary Table S1.
Whole-blood samples were collected from the jugular vein of
the animals in 10-ml vacutainers under aseptic condition, and
genomic DNA was extracted using the standard
phenol–chloroform method (Sambrook and Russell, 2006).
The concentration and purity of the DNA were measured
using agarose gel electrophoresis and NanoDrop
spectrophotometer. Following the ddRAD protocol (Peterson
et al., 2012), the double digestion of genomic DNA was
carried out using Sph I and MluC I enzymes as mentioned in
Kumar et al. (2020), and the samples were sequenced on Illumina
Hi-seq 2000 platform to generate 150-bp reads.

Quality Control and Variant Calling
The reads were quality checked using FastQC (Andrews, 2010).
Trimming of Illumina universal adapters and quality filtering was
performed by the process_radtags function of the STACKS v2
software (Rochette et al., 2019). Reads were examined using a
sliding window spanning 15% of the read length, and the reads
having average phred score of <15 were discarded. The barcode of
the reads was removed using Cutadapt 2.10 (Martin, 2011).

The paired reads were aligned to the Bubalus bubalis assembly
UOA_WB_1 downloaded from NCBI (Low et al., 2019; https://
www.ncbi.nlm.nih.gov/assembly/GCF_003121395.1/) using
BWA-MEM 0.7.17 (Li, 2013) with default settings. The
percentage of reads aligning to the reference genome was
determined by Samtools (v1.7) flagstats (Li et al., 2009)
function. Variant calling was performed through the bcftools
mpileup utility of the Samtoolsv1.7 suite in a multi-sample mode
as recommended by Wright et al. (2019). SNPs with quality score
greater than 30 and a read depth of 10 were retained for further
analysis.

The structural and functional annotation of the retained SNPs
was performed using SnpEff v4.3 (Cingolani et al., 2012). Quality
filtering of the annotated variants was performed by removing
unmapped and non-autosomal SNPs. SNPs missing in more than
25% of the individuals and below the minor allele frequency
(MAF) threshold of 0.01 were also filtered out using PLINK 1.9
(Purcell et al., 2007). Genotype imputation of sporadically
missing genotypes was done using Beagle 4.1 (Browning and
Browning, 2016).

Genetic Diversity and Population Structure
Analysis
Linkage disequilibrium (LD) pruning of the SNPs was carried out
using the indep-pairwise command parameters (indep-pairwise
50 5 0.2) of the PLINK software. The observed (Ho) and expected
(He) heterozygosities for different buffalo breeds were estimated
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using PLINK 1.9. Furthermore, admixture analysis was
performed on the LD pruned data for K values ranging from
K � 2 to K � 6 using ADMIXTURE 1.3 software (Alexander et al.,
2009). The results of the admixture analysis were visualized using
PONG (Behr et al., 2016). A genomic relationship matrix was
prepared in GCTA (Yang et al., 2011), and the first 10 principal
components were extracted. The top principal components were
plotted in R (R Core team, 2018) to visualize population
clustering. A maximum-likelihood phylogram was constructed
using TREEMIX (Pickrell and Pritchard, 2012) to infer the
ancestral relationships and migration patterns between the
breeds.

Analysis of Selection Signatures
Cross-population selection signatures between Murrah buffalo
and five other Indian water buffalo breeds (Bhadawari, Surti,
Mehsana, Pandharpuri, and Toda) were derived using XP-EHH
(Sabeti et al., 2007) and FST (Weir and Cockerham, 1984)
methodologies. The genotypic data of all the breeds were
phased using BEAGLE v5.1 (Browning et al., 2018) using
default settings (burnin � 6; iterations � 12; and phase-states
� 280). The XP-EHH scores of the Murrah buffalo were
calculated for each breed comparison using the R package
rehh (Gautier et al., 2017), taking the other water buffalo
breeds in the study as the reference populations. To detect
positive selection, average XP-EHH scores were computed for
100-kb regions with a 50-kb overlap. Regions with absolute XP-
EHH scores of four or above were considered as putative
candidate regions in Murrah.

The pairwise FST estimates between the Murrah and other
buffalo breeds were calculated with VCFTOOLS (Danecek et al.,
2011), with a sliding window of 100 kb and a 50-kb step size.
Windows belonging to the top 0.1% of the FST values were
considered as potential regions under selection (Singh et al.,
2020).

The candidate genes in the selected regions were annotated
using the GTF (gene transfer format) file supplied with the
UOA_WB_1 assembly, using BEDTools (Quinlan and Hall,
2010) intersect function. Each putative selected region was
cross-referenced with the literature to find previously detected
regions of functional importance.

RESULTS

In the present study, total 397.8 million paired-end reads of 150-
bp length were obtained for the 96 buffalo breeds, averaging 4.14
million reads per sample. After initial quality control, a total of
367.2 million reads (92.3% of the total reads) of average 135-bp
length were retained. The average alignment rate of the reads was
99.82% with the reference genome. Sample-wise alignment
percentages are given in Supplementary Table S2. A total of
569,535 variants were identified, out of which 502,476 were SNPs
and 67,059 were indels. A total of 551,458 variants were present
on autosomes, 15,315 on the X chromosome and 12 on the
mtDNA, and 2,750 variants were located on unmapped contigs
(Supplementary Table S3). A variant was discovered for every

4,637 bp of the genome length. The total number of SNPs and
indels of each buffalo breed at read depth 10 is mentioned in
Supplementary Table S4. The highest number of SNPs was
found for the Mehsana (489,738) buffalo followed by the
Murrah buffalo (484,449), and lowest for the Toda buffalo
(448,714). After quality control and imputation of sporadically
missing genotypes, a total of 237,762 SNPs, which were common
across all the breeds, were used for downstream analysis.

Genome-wide Annotation of SNPs in Water
Buffalo Breeds
Based on the sequence ontology terms, a greater number of
identified SNPs were located within the intronic regions
(66.57%), followed by the intergenic regions (22.13%), and
0.34% of SNPs were found to be located in the transcript
region (Supplementary Figure S1). The impact-wise and
region-wise distribution of variant effects, as generated by
SNPeff, are given in Supplementary Table S5.

About 71.89% of the annotated SNPs were identified as
transitions (Ts) while 28.10% as transversions (Tv) with a TS/
TV ratio of 2.5578. The Ts/Tv ratio serves as a quality control
indicator of high-throughput sequencing data. Our values are
consistent with previous reports of targeted sequencing methods
in buffalo (Surya et al., 2019; Kumar et al., 2020).

Genetic Diversity
For the genetic diversity and population structure analyses, we
used a subset of 67,798 SNPs after pruning the SNPs in LD. The
average observed heterozygosity (Ho) and expected
heterozygosity (He) of all breeds in the study are presented in
Table 1. The Ho and He was found highest for the Murrah (0.237
and 0.246) and lowest for the Toda (0.215 and 0.211). The genetic
distances (FST) of the Murrah with the Bhadawari, Mehsana,
Surti, Pandharpuri, and Toda were 0.11, 0.17, 0.09, 0.15, and 0.13,
respectively.

Population Structure
The population structure of the Indian water buffalo breeds was
identified using PCA. The first and second principal component
(PC) explained 3.4 and 2.86% of the total variance. PC1 separated
the crossbred Mehsana individuals from the rest of the breeds,
while PC2 separated the Pandharpuri, Surti, and Toda from the
Murrah and Bhadawari (Figure 1A). PC3 explained 2.71% of the

TABLE 1 | Number of animals, means of observed (HO) and expected
heterozygosity (HE), and differentiation (FST) between each breed and the
Murrah.

S.No Breeds Number of
animals

Ho He FST

1 Murrah 30 0.2372 0.2462 -
2 Bhadawari 15 0.2343 0.2366 0.11
3 Mehsana 15 0.2314 0.2239 0.17
4 Surti 15 0.2361 0.2255 0.09
5 Pandharpuri 15 0.2366 0.2390 0.15
6 Toda 6 0.2150 0.2111 0.13
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total variation and showed clear separation between the Murrah
and Bhadawari (Figure 1B).

The maximum-likelihood phylogram constructed with
Treemix also displayed a similar tree (Figure 1C). The addition
of one migration path in Treemix revealed the introgression of the
Murrah inheritance in the Mehsana buffaloes. This tree explained
99.6% of the covariance observed between populations, whereas
the tree without any migration events included explained only
98.3% of the covariance.

As seen with PC1, the Mehsana was separated from the rest of
the breeds at K � 2 in the admixture analysis. K � 3 separated the
Pandharpuri as a distinct population from the rest of the breeds,
which gives credence to the results of the phylogenetic analyses.
The Toda samples in our study showed a mixture of Pandharpuri
and Murrah inheritance. At K � 6, all the breeds were assigned to
their own clusters, with varying levels of Murrah ancestry
appearing in other breeds (Bhadawari, Mehsana, Surti, and
Toda) (Figure 1D).

Cross-Population Signatures of Selection
(XP-EHH and FST)
The distribution of XP-EHH scores for the Murrah buffalo
(positive values) against other water buffalo breeds in the

study is visualized in Figure 2. A total of 164 putative
selection regions for the Murrah buffalo were identified in
comparison with the reference breeds (Supplementary Table
S6). Ten selection sweeps were detected in comparisons of the
Murrah with more than one breed (Table 2).

The Manhattan plot for pairwise FST across all comparisons
are shown in Figure 3. A total of 58 positive regions were
identified from all comparisons. The selection sweeps were
located on all autosomes except for chromosome 5, 14, and
21. The highest number of selected regions were identified on
chromosome 8 (seven regions), followed by chromosomes 1, 9,
and 10 from all pairwise comparisons (Supplementary Table S7).

A total of six fully or partially overlapping selection sweeps
were identified from both the approaches XP-EHH and FST
(Table 3). These regions were distributed on chromosomes 1,
7, 8, 13, 15, and 18.

DISCUSSION

In the present study, ddRAD sequencing was used to identify
genetic variants in six water buffalo breeds of India. The average
heterozygosity levels ranged from 0.215 to 0.237, which were
lower compared with a previous study (Kumar et al., 2006).

FIGURE 1 | (A) Plot of the first two principal components (PC1 and PC2) of the genomic relationship matrix of the 96 animals under study. (B) Plot of PC2 and PC3.
(C) Treemix phylogram showing one migration path. (D) Admixture results from K � 2 to K � 6.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6736974

Tyagi et al. Signatures of Selection in Murrah

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


However, they used microsatellite data, which suffers from
ascertainment bias due to the most polymorphic microsatellite
markers being studied, resulting in inflated heterozygosity
estimates (Fischer et al., 2017). The population structure

analysis separated the six breeds under study. Our findings
confirmed two existing notions about the Indian buffaloes.
First, it has been traditionally believed that the Mehsana breed
is of the Murrah and Surti lineage (Patel et al., 2017; Sathwara

FIGURE 2 |Cross-population extended haplotype heterozygote (XP-EHH) plot of the Murrah in comparison with the Bhadawari, Mehsana, Surti, Pandharpuri, and
Toda.
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et al., 2020). The maximum-likelihood phylogram constructed
using Treemix in our study showed the Mehsana and Surti
emerging from the same node in the phylogenetic tree, with
introgression of the Murrah germplasm into the Mehsana, which
supports the anecdotal knowledge about this breed. The
admixture analyses also showed varying levels of Murrah
inheritance into the Mehsana breed. Second, the western
Indian buffalo, the Pandharpuri, formed a separate lineage
from the rest of the breeds and appeared free of any Murrah
inheritance, which was in agreement with previous studies
(Kumar et al., 2006). However, in our study, the
geographically distinct semi-wild Toda breed clustered with
the Murrah. Admixture analysis showed all the Toda samples to
contain significant levels of Murrah inheritance, which is a
cause for concern. The samples were collected from the hamlets
of the Toda tribes, situated in the jungles in and around Nilgiris
district. In the 1990s, some of the Murrah bulls were introduced
in Toda hamlets near small towns. This may be one of the
reasons for the inheritance of the Murrah in Toda, which is
reflected predominantly due to only six samples taken in
the study.

The second objective of this study was to identify positive
signatures of selection in the Murrah buffaloes. Humans have
exerted strong artificial selection on different breeds of buffalo
for similar traits since domestication (Dutta et al., 2020).
Probably milk production formed the basis of selection and
breeding, which resulted in the evolution of the dairy breeds of
the farmers of riverine buffalo like the Murrah, Bhadawari,
Mehsana, Surti, Pandharpuri, etc. (CIRB, Hisar, 2017). The
Toda, on the other end is a semi wild breed purposely used for
religious values from the past in the Nilgiri hills. These breeds
may share mutations in the same gene(s) or regulatory region
and, consequently, may have selective sweeps in the same area

of the genome. However, the scope of selective sweeps may
differ among breeds sharing mutations in the same genes
because of differences in breed history, effective population
size, and mutation rate (Pollinger et al., 2005), and also,
differences may be caused by large environmental
variations and different managemental practices throughout
the country.

The positive signatures of selection in the Murrah buffaloes
were identified using XP-EHH and FST approaches. Several fully
or partially overlapping candidate regions in Murrah were
identified through XP-EHH comparisons against more than
one breed, which indicated recent artificial selection in the
Murrah, given the characteristics of the XP-EHH test
(Cheruiyot et al., 2018). Many of these regions overlap with
previous reports in the Murrah.

On chromosome 1, a region was identified around the
192.2 Mb position against the Bhadawari, Mehsana, and
Toda, which was in agreement with Dutta et al. (2020).
This region includes UPK1B (Uroplakin 1 B), B4GALT4
(Beta-1,4-Galactosyltransferase), and ARHGAP31 (Rho
GTPase-activating protein 31) genes, which could be putative
candidate genes undergoing selection in the Murrah. The UPK1B
and ARHGAP31genes have previously been linked with growth
and carcass traits in cattle breeds (Kim et al., 2012; Medeiros de
Oliveira Silva et al., 2017). Another partly overlapping region
(17.4–17.5 Mb) in agreement with Dutta et al. (2020) was
identified on chromosome two against the Pandharpuri. The
region includes FABP3 (fatty acid-binding protein 3) gene, which
is involved in the synthesis of long-chain fatty acid and, thus,
regulates milk fat composition (Li et al., 2014).

A selection sweep (28.5–29.1 Mb) on chromosome seven in
comparisons of the Murrah with the Pandharpuri, Toda, and
Bhadawari also confirms a previously reported selection sweep

TABLE 2 | Common selection sweeps identified by cross-population extended haplotype homozygosity (XP-EHH) in two or more pairwise comparisons involving the
Murrah.

S.No References breeds Chr Start End Annotated gene

1 Bhadawari 1 192,319,897 192,322,098 LOC112580862
Mehsana

2 Bhadawari 2 56,674,658 56,740,551 HS6ST1
Pandharpuri

3 Bhadawari 3 143,278,931 143,620,455 DAPK1, CTSL, FBP2
Surti

4 Surti 4 41,323,382 41,449,515 IP O 8, CAPRIN2
Toda

5 Bhadawari 7 28,640,078 30,146,985 AFM, AFP, ALB
Toda
Pandharpuri

6 Mehsana 9 64,216,990 64,326,407 NEUROG1, TIFAB
Pandharpuri

7 Bhadawari 10 84,290,283 84,562,847 BCKDHB
Pandharpuri

8 Toda 12 86,340,919 86,501,726 KCNF1
Bhadawari

9 Toda 20 49,776,417 49,968,750 LOC112580801
Bhadawari

10 Pandharpuri 23 48,880,371 49,056,564 LOC112580801
Bhadawari
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(chromosome 7, 26.5–30.5 Mb) in the Murrah genome by Dutta
et al. (2020). This region contains ALB, AFP, and AFM belonging
to the family of albumin genes. The ALB (albumin) gene encodes
albumin protein, which is involved in the transportation of varied
endogenous molecules. ALB was reported to be significantly

associated with total milk yield, milk fat, and protein
percentage in the Holstein cattle (Seo et al., 2016) and obesity
in humans (Kunej et al., 2013).

In agreement with Dutta et al. (2020), two regions on
chromosome 13 (23.4–24.9 Mb) and chromosome 18

FIGURE 3 | Manhattan plot for FST between the Murrah in comparison with the Bhadawari, Mehsana, Surti, Pandharpuri, and Toda.
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(14.6–14.9 Mb) were identified in our study. The region on
chromosome 13 included GPC5 (glypican 5) gene, which is
linked with fatty acid composition (Li et al., 2014), fertility
traits (Purfield et al., 2019), and feed efficiency (Serão et al.,
2013) in cattle. The MYLK3 (myosin light chain kinase 3) and
GPT2 (glutamic pyruvic transaminase 2) genes on chromosome
18 are involved in muscle cell development (Silva-Vignato et al.,
2019; Cheng et al., 2020) and Ca+2 signaling pathway in
contraction of striated muscles (Zhang et al., 2009).

In addition, several novel regions of positive selection were
also identified. These regions contain candidate genes, which are
associated with the phenotypes that are under selection in the
Murrah buffalo, including milk production and fat metabolism
(HS6ST1, FBP2, and PDE9A), immunity-related pathways
(DAPK1), stature (CTSL), and fertility traits (KCNF1 and
CNTNAP2) (Jiang et al., 2011; Abo-Ismail et al., 2017; Guan
et al., 2020). The regions included HS6ST1 (heparin sulfate 6-O
sulfotransferase 1) gene located on chromosome 2, which plays a
pivotal role in heparin metabolism pathway and regulates the
fatty acid composition (Jiang et al., 2011). Another region on
chromosome 3 contains DAPK1 (death-associated protein
kinase 1), CTSL (cathepsin L), and FBP2 (fructose
bisphophatase 2) genes, which are involved in various
metabolic processes such as immunity and milk production
(Vineeth et al., 2019; Guan et al., 2020). The KCNF1
(potassium voltage-gated channel modifier subfamily F
member 1) gene on chromosome 12 has been previously
reported to be associated with fertility traits in buffaloes (de
Araujo Neto et al., 2020). Another candidate region spanning
280 kb on chromosome 1, which was detected by both
approaches, contains PDE9A gene (phosphodiesterase 9A).
This gene is involved in the signaling pathway, which
regulates the level of cGMP inside the cell. Yang et al.
(2015) has reported the strong association of PDE9A gene
with milk production in Chinese Holstein cattle. On
chromosome 8, CNTNAP2 (contactin-associated protein 2)
gene was present in a significant region. This gene has been
reported to be associated with immunity and growth traits in
cattle (Abo-Ismail et al., 2017). CNTNAP2 gene is also reported
to play an important role in milk synthesis pathway in water
buffalo (Mishra et al., 2020). These positively selected genes
may create the observed differences in the Murrah buffaloes
from the rest of the buffalo breeds included in the study and
makes the Murrah as one of the high milk-producing buffalo
breed with high fertility and immunity.

CONCLUSION

The genetic diversity and population structure analysis revealed
varying levels of the Murrah inheritance in the Bhadawari,
Mehsana, Surti, and Toda buffalo breeds. The selection
signature analysis provides several genomic regions as
selection signature in the Murrah, which is the prominent
milch breed in India. Using reduced representation ddRAD
data, our results confirm many regions, which have been
previously identified as selection sweeps in the Murrah
genome using WGS data. In addition, novel regions were also
identified, which are involved in several biological pathways. The
candidate genes, found to be positively selected, are involved in
milk production (ALB, FBP2, PDE9A, and GPC5), immunity-
related traits (DAPK1), muscle cell development (MYLK3 and
GPT2), and fertility traits (KCNF1 and CNTNAP2). These genes
are suitable candidates for future polymorphism studies to detect
causative variants associated with these phenotypes in buffaloes.
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S. No Test Chr Start End Genes

1 XP-EHH (Surti); FST (Mehsana) 1 187,322,925 187,600,000 SLC37A1, PDE9A
2 XP-EHH (Pandharpuri, Bhadawri, Toda); FST (Bhadawari) 7 28,553,887 29,108,103 PPBP, CXCL6, RASSF6, AFM, AFP, ALB, ANKRD17
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