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Abstract

Background: Today, dementias are diagnosed late in the course of disease. Future treatments have to start earlier in the
disease process to avoid disability requiring new diagnostic tools. The objective of this study is to develop a new method for
the differential diagnosis and identification of new biomarkers of Alzheimer’s disease (AD) using capillary-electrophoresis
coupled to mass-spectrometry (CE-MS) and to assess the potential of early diagnosis of AD.

Methods and Findings: Cerebrospinal fluid (CSF) of 159 out-patients of a memory-clinic at a University Hospital suffering
from neurodegenerative disorders and 17 cognitively-healthy controls was used to create differential peptide pattern for
dementias and prospective blinded-comparison of sensitivity and specificity for AD diagnosis against the Criterion standard
in a naturalistic prospective sample of patients. Sensitivity and specificity of the new method compared to standard
diagnostic procedures and identification of new putative biomarkers for AD was the main outcome measure. CE-MS was
used to reliably detect 1104 low-molecular-weight peptides in CSF. Training-sets of patients with clinically secured sporadic
Alzheimer’s disease, frontotemporal dementia, and cognitively healthy controls allowed establishing discriminative
biomarker pattern for diagnosis of AD. This pattern was already detectable in patients with mild cognitive impairment (MCI).
The AD-pattern was tested in a prospective sample of patients (n = 100) and AD was diagnosed with a sensitivity of 87% and
a specificity of 83%. Using CSF measurements of beta-amyloid1-42, total-tau, and phospho181-tau, AD-diagnosis had a
sensitivity of 88% and a specificity of 67% in the same sample. Sequence analysis of the discriminating biomarkers identified
fragments of synaptic proteins like proSAAS, apolipoprotein J, neurosecretory protein VGF, phospholemman, and
chromogranin A.

Conclusions: The method may allow early differential diagnosis of various dementias using specific peptide fingerprints and
identification of incipient AD in patients suffering from MCI. Identified biomarkers facilitate face validity for the use in AD
diagnosis.
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Introduction

In an aging population dementias are a serious threat. Currently

30 million people worldwide suffer from Alzheimer’s disease (AD)

and the World Health organization projects that this number will

triple over the next 20 years [1]. The cumulative incidence of AD

has been estimated to rise from about 5% by age 70 to 50% by age

90 [2]. The clinical diagnosis of dementias is established late in the

course of the disease process with poor sensitivity and specificity

[3–5]. According to current diagnostic criteria, AD cannot be

diagnosed before the disease has progressed so far that clinical

dementia is present. The disease process, however, probably starts

20–30 years before first clinical signs emerge [6]. Hence we are in

need of new diagnostic tools that are capable of detecting pre-

clinical signs of neurodegenerative disorders. Recently different

new analytical proteomic technologies like mass spectrometry
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coupled with protein separation or protein microarrays that can be

applied on cerebrospinal fluid (CSF) have been developed to study

proteins in neuroscience [7]. Due to the intimate relation between

brain function and CSF composition, pathological brain-processes

are more likely to be reflected in CSF than in other body-fluids

(e.g. blood or urine). Since more than 70% of the CSF-proteins are

isoforms of albumin, transferrin and immunoglobulines [8], and

due to technical limitations only few studies have focused on the

composition of proteins in CSF in the past [9]. Nonetheless an

enormous wealth of information regarding pathological processes

should be present in the less abundant CSF-proteins and the

identification of changes in CSF composition at that level beside

the current disease models would promote the understanding of

the various dementias and their fundamental pathological

processes. Such valid new biomarkers for AD could also serve as

surrogate markers in detecting treatment effects while any earlier

identification of AD patients is another goal to enable the

development of treatments that stop or postpone the disease

processes.

We report proteome analysis of CSF using capillary

electrophoresis coupled to an electrospray ionisation time of

flight mass spectrometer (CE-MS) and its potential use in the

diagnosis of AD and other dementias. This approach allows the

comprehensive analysis of low molecular weight peptides and

protein fragments present in biological fluids in a single time-

limited step. The method was already successfully applied to the

examination of human urine for the differential diagnosis of

renal diseases [10–13], the diagnosis of prostate or urothelial

cancer [14–16], ureteropelvic junction obstruction [17], and

rejection of renal transplants [18] demonstrating the broad

application spectrum of this new technique that also allows the

comparison of biomarker sequencing data by use of different

mass spectrometer types [19]. In addition we already imple-

mented the recommendations for studies in clinical proteomics

that were recently formulated by experts in the field [20] to

avoid pitfalls and circumvent methodological problems that

became apparent in earlier studies in this fast developing field of

science.

Methods

Ethics Statement
The study was approved by the ethics committee of the

‘‘Ärztekammer Hamburg, Germany’’ and all patients and/or their

relatives gave written informed consent and all clinical investiga-

tions have been conducted according to the principles expressed in

the Declaration of Helsinki. Furthermore, the University Hospital

Hamburg-Eppendorf has carried out all investigations according

to international Good Laboratory Practice (GLP) and Good

Clinical Practice (GCP) standard.

Patient characteristics
Between April 2002 and December 2005 176 patients referred

to the memory clinic of the University Hospital Hamburg-

Eppendorf were recruited for this study. All patients underwent a

diagnostic work-up and were diagnosed according to ICD-10 and

the National Institute of Neurological and Communicative

Disorders and the Stroke-Alzheimer’s Disease and Related

Disorders Association criteria (NINCDS-ADRDA) to identify

patients with vascular dementia [21,22]. MCI diagnoses were

made according to the criteria of Petersen [23] and FTD was

diagnosed according to the Lund–Manchester criteria [24]. The

structure of cognitive dysfunction was assessed with a neuropsy-

chological test battery allowing the identification of MCI subtypes.

Distinction of MCI and dementia was based on CDR rating (see

Table S3 for neuropsychological tests). Patients underwent

lumbar puncture for diagnostic purposes. In a first step CSF of

17 control samples of cognitively healthy volunteers (these persons

underwent a lumbar puncture in connection with a knee

arthroscopy and agreed to obtain an additional cognitive testing

apart from allowing to collect some CSF during peridural

anaesthesia), 34 samples of patients with a clinical diagnosis of

sporadic AD, 12 samples of patients with FTD and 13 samples of

patients with schizophrenia (Table 1) was analyzed to establish

disease specific peptide patterns. The clinical diagnoses of these

training cases were supported by laboratory and image data from

magnetic resonance imaging (MRI) and positron emission

tomography (PET). The training set patients were selected to

have no other major medical comorbidity. In a second step 100

patients (51 female, 49 male; mean age 65.3612.3 years) (Table
S2) with memory complaints were recruited for a prospective

sample cohort, CSF was analysed to obtain a diagnosis and

patients were clinically followed. These patients suffered from

various dementias, MCI or memory complains of other causes. A

few had further medical comorbidities like hypertension or

diabetes type II or a history of insults or encephalitis.

Cerebrospinal fluid samples
Cerebrospinal fluid (CSF) was obtained by lumbar puncture in a

sitting position according to standard procedures [25]. After

collection of the 4 mL CSF for routine diagnosis, additional 5 ml

of the CSF was sampled for this study into a polypropylene test

tube. The CSF was centrifuged immediately after collection

(1600 g, 4uC, 15 min), aliquoted into polypropylene test tubes

(each aliquot, 750 mL), frozen within 30–40 min after the puncture

and stored at 280uC until use. The CSF was at no time thawed/

refrozen. After thawing, 700 mL of CSF were diluted with 700 mL

buffer (pH 10.5; 2 M urea, 100 mmol/L NaCl, 0.0125% NH3;

Sigma-Aldrich, Taufkirchen, Germany) and ultracentrifugated

using Centrisart ultrafiltration devices (cut off 20 kDa, Sartorius,

Göttingen, Germany) at 4uC until 1.1 mL of filtrate was obtained.

Table 1. Demographic data of training sets.

Group Number Male Female Age [years±SD] MMSE [mean±SD]

Controls 17 13 4 58.9611,5 30.060.0

AD Training set 34 14 20 69.066.5 21.265.1

FTD Training set 12 4 8 65.667.9 22.462.5

Schizophrenia set 13 5 8 38.1614.4 29.660.7

Baseline data of training sets for cognitively healthy controls and trainings sets for AD, FTD and schizophrenia. Given are numbers for gender, and the averages for age
and the scores of the Mini Mental State Examination (MMSE).
doi:10.1371/journal.pone.0026540.t001
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Subsequently the filtrate was applied onto a PD-10 desalting

column (Amersham Bioscience, Uppsala, Sweden) equilibrated in

0.01% NH4OH in HPLC-grade in water (Roth, Germany) to

decrease matrix effects by removing urea, electrolytes, salts, and to

enrich peptides present. Finally the eluate was lyophilized stored at

4uC and resuspended in 10 mL HPLC-grade water before CE-MS

analysis.

Since blood contaminations may affect the proteome of CSF

[26] we controlled our CSF samples for traces of haemoglobin and

the presence of erythrocytes by microscopy of a centrifuged CSF

sample. Using these two methods we can exclude any blood

contamination of our CSF samples above 0.001% by that

controlling a potential serious confounder of CSF biomarker

studies with regard to proteins abundant in plasma.

Immunochemistry
The CSF levels of Aß42, total tau, and phospho181-tau were

measured using commercial ELISAs (Innogenetics, Ghent,

Belgium) according to the manufacturer’s protocol. Cut-off values

for AD suspicious biomarker concentrations were .540 pg/ml for

total-tau, .61 pg/ml for phospho181-tau and beta-amyloid1–42

values ,240+1.186total-tau pg/ml [4].

CE-MS
CE-MS analysis was performed as described using a P/ACE MDQ

(Beckman Coulter, Fullerton, USA) system on-line coupled to a Micro-

TOF MS (Bruker Daltonic, Bremen, Germany) [15–17].

Reproducibility and comparability
Analytical characteristics such as accuracy, mass accuracy,

traceability and repeatability of the CE-MS application were

recently described [15,27]. Thus, here we report about additional

precision tests to underline the validity of the analytical data.

Initially the sampling procedure was validated by fractionated

extraction of six aliquots of CSF from one patient. Figure S1
shows the protein contour plots of 4 different fractions.

Classification of each fraction resulted in the same and correct

classification as AD. We re-measured 10 samples twice and again

all samples were classified correctly (Table S4). We were also able

to re-puncture one patient with an AD pattern. The AD pattern

was found again and stable after one year. Finally the

reproducibility of the CE-MS approach is emphasized (Figure
S2). Distinct lines (four to six) are visible in the peptide pattern due

to the charge per peptide, which can be ascribed to the peptide

structure (number of basic amino acids) and consequently allow

the comparison of biomarker sequencing data even by use of

different mass spectrometer types coupled with CE or liquid

chromatography (LC) [19].

Data processing and cluster analysis
Mass spectral ion peaks representing identical molecules at

different charge states were deconvoluted into single masses using

MosaiquesVisu [27]. In addition the migration time and ion signal

intensity (amplitude) were normalized using internal peptide

standards [27,28]. The resulting peak list characterizes each

peptide by its molecular mass (in Dalton), normalized CE-

migration time (in minutes), and normalized signal intensity. All

detected peptides were deposited, matched, and annotated in a

Microsoft SQL database, allowing further analysis and compar-

ison of multiple samples (patient groups) (Table S5). Peptides

within different samples were considered identical if the mass

deviation was less than 100 ppm and the migration time deviation

was less than 1 min.

To define biomarker patterns we employed the following

stringent quality control and selection criteria to avoid artefacts as

well as to attain high levels in reproducibility and specificity: 1) the

MS peaks list must contain 800–1400 peptides; 2) the normalized

mean signal amplitude of each marker peptide must be .25

counts in one diagnostic group; 3) the frequency of occurrence

(FOC) of each candidate biomarker must be .40% in one of the

groups defined above; 4) the difference in the FOC between the

two groups must be either .30% or, 5) if the difference in the

FOC is less than 30%, the mean amplitude in one diagnostic

group must be .1.4-fold higher compared to the other group and

the FOC of the selected amplitude biomarker must be .70% in

the diagnostic group with the higher mean amplitude.

Employing these criteria, a list of pre-defined peptides was

obtained by the comparison of all available data sets (e.g. control

vs. AD, FTD, schizophrenia patients, respectively) with Mo-

saCluster software package [13]. The pre-defined set of peptides

was further validated by randomly excluding 30% of available

samples. This procedure was repeated 5 times to utilize markers

(preliminary biomarker pattern) with consistently high discrimi-

native value. Subsequently the preliminary biomarker patterns

were refined by employing an unadjusted p-value limit of 0.01 and

using one-out cross-validation to attain high sensitivity and

specificity. This approach resulted in the definition of biomarker

patterns consisting of 10–20 biomarkers.

Tandem sequencing
Tandem (MS/MS) sequencing was performed using Orbitrap

instruments (Thermo Finnigan, Bremen, Germany). Orbitrap

experiments were performed on a Dionex Ultimate 3000 nanoflow

system connected to an LTQ Orbitrap hybrid mass spectrometer

(Thermo Electron, Bremen, Germany) equipped with a nanoelec-

trospray ion source. Binding and chromatographic separation of

the peptides took place on a fused silica nanocolumn (10 cm; 75-

mm i.d.; C18, 5 mm; NanoSeparations, Nieuwkoop, Netherlands).

The MS was operated in data-dependent mode to automatically

switch between MS and MS/MS acquisition. Full scan MS spectra

(from m/z 300–2000) were acquired in the Orbitrap with

resolution R = 60,000 at m/z 400 (target value of 500,000 charges

in the linear ion trap).

Statistical Analysis
To verify the diagnostic value of the potential biomarkers pre-

selected by the criteria mentioned above, raw p-values (so called

unadjusted p-values) were calculated using the natural logarithm

transformed intensities and the Gaussian approximation to the t-

distribution, both implemented as macros in the commercial

statistical package SAS (SAS Institute, Cary, NC; www.sas.com).

Estimates of sensitivity and specificity were calculated based on

tabulating the number of correctly classified samples. The receiver

operating characteristic (ROC) curve was obtained by plotting all

sensitivity values (true positive fraction) on the y axis against their

equivalent (1-specificity) values (false positive fraction) for all

available thresholds on the x-axis (MedCalc Software, Mariakerke,

Belgium, www.medcalc.be). The area under the ROC curve

(AUC) was evaluated as it provides a single measure of overall

accuracy that is not dependent upon a particular threshold. After

the best suited biomarkers are selected disease specific biomarker

patterns (model) were established and the internal sensitivity and

specificity for the training set were determined by leave one-out

cross-validation analysis as described [15].

Due to the difference of the mean age between the training sets

for the control cohort and patients suffering on Alzheimer’s disease

we verified if the AD-pattern is related to age or not. For this

Biomarkers for Early Alzheimer’s Disease
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purpose the control group was divided into two subgroups,

whereas the first group consisted of controls aged 61 or younger

(n = 10; mean age 54612) and the second group of patients aged

63 or older (n = 7, mean age 6564).

Adapting the AD-biomarker pattern to these two subgroups

resulted in a misclassification rate of 43% after cross-validation.

Hence the AD-biomarker pattern used in this study is not capable

to discriminate between the two subgroups and therefore an age

related inconsistency in the pattern is unlikely.

Results

CSF-samples were investigated using CE-MS with the aim to

define a panel of disease-specific biomarkers that allow the

identification and prospective diagnostic labelling of patients with

various dementias, mild cognitive impairment (MCI) and their

separation from healthy controls (for demographic data see

Table 1).

Development of disease specific peptide patterns
In each sample we were able to tentatively identify .800

different peptides based on migration time and mass, with

molecular weights ranging from 0.8 to 20 kDa. The data from

the individual CE-MS analyses were compiled and specific

biomarker patterns for AD, FTD and schizophrenia were

developed with emphasis on a panel of biomarkers that should

enable to detect AD-cases based solely on peptides in CSF.

Figure 1A shows the compiled data of 34 measurements of

CSF from patients with sporadic Alzheimer’s disease, while

Figure 1B shows the data for the healthy controls from our

training sets.

For the identification of AD specific peptides, analyses of these

data with MosaCluster yielded 131 potentially biomarkers (Table
S1), which fulfil the defined selection criteria (see Method section

‘‘Data processing and cluster analysis’’). Given the number of cases

and controls available, the pattern of 131 potential biomarkers was

refined by statistical testing and employing an unadjusted p-value

limit of 0.01, resulting in a preliminary diagnostic pattern of 35

potential biomarkers (Table S1, see bold marked peptides).

Subsequently the preliminary pattern was iteratively refined by

eliminating one potential biomarker and utilizing leave-one-out

cross-validation for verification (while maintaining high sensitivity

and specificity). Leave-one-out cross validation uses a single

sample as the validation data and the remaining samples as the

training data. Each sample is used once as the validation data,

giving an indication of how well the training set will perform when

it is applied on unknown samples. This approach yielded a final

diagnostic pattern (‘‘AD-pattern’’) based on 12 discriminatory

peptides (Figure 1C). Utilizing support vector machines the AD-

pattern allowed correct classification of 31/34 AD and 15/17

control samples, thus a sensitivity of 91% and specificity of 88%.

The data including the AUC of the receiver operating character-

istic (ROC) for these 12 biomarkers are shown in Table 2 and

Figure 2. The overall AUC for this biomarker pattern in the

training set was calculated as 0.979 (95% CI: 0.893–0.997; p-

value = 0.0001) pointing towards the potential of this multidimen-

sional approach.

Subsequently this approach was also used to establish biomarker

patterns for FTD (14 discriminatory peptides; data not shown) and

schizophrenia (14 discriminatory peptides; data not shown). In the

case that more than one disease specific pattern scores positive the

use of differential diagnostic patterns is required for a final

classification. Thus differential diagnostic patterns for AD versus

FTD and AD versus schizophrenia based on the disease specific

biomarkers have also been established.

Blinded evaluation of prospectively collected samples
Using the defined patterns a blinded evaluation of additional

prospective collected samples of 100 individuals followed. Whereas

all non-AD samples in this study were used as disease controls, the

blinded and prospective group consisted of samples from patients

with multiple neurodegenerative disorders like MCI, vascular

dementia, Parkinson’s dementia, FTD, depression or other

dementia syndromes. Given the need to differentiate against other

forms of dementia and also other neuropsychological diseases, a

hierarchical model for the classification of the blinded and

prospectively collected samples was established. For this issue, in

a first step the biomarker patterns for AD, FTD, and schizophre-

nia are applied onto the unknown sample for classification. If more

than one disease-pattern scores positive differential diagnostic

patterns are used for final classification. By this approach we

circumvent the methodological problems of several investigations

in proteomic research, which compare only two diagnostic groups

[29,30].

Our method using the defined peptide pattern showed a

sensitivity of 87% and a specificity of 83% for the diagnosis of AD

of the prospective samples (Table S2). Using CSF measurements

of beta-amyloid1–42, total-tau and phospho181-tau, AD diagnosis

had a sensitivity of 88% and a specificity of 67% in our clinical

cohort. Interestingly, four patients diagnosed with primary

progressive aphasia were classified as positive for both FTD and

AD patterns.

Epidemiological studies have documented the accelerated rate

of progression to dementia and AD in subjects with MCI.

However, many MCI cases will never develop dementia [23]. To

date there is no accepted clinical method to classify which MCI

cases will progress to AD.

32 cases (17 male, 15 female; age: 66.166.6 years; MMSE:

27.861.9; values as mean 6 SD) in the blinded set were originally

diagnosed with MCI. After lumbar puncture the patients were

clinically followed up for a mean of 5767 months (mean 6 SD;

max 72, min 41 months). Twenty-one patients scored positive for

the AD pattern, 11 patients scored negative for the AD pattern.

The clinical outcome is shown in Table 3. In summary, the MCI

cases with a positive AD pattern did clinically worse and showed a

high conversion rate to AD. Furthermore, from 16 patients with a

multi-domain or amnestic MCI, a diagnosis related to a higher risk

of developing AD, 14 patients displayed a positive AD pattern in

CSF. From the remaining 16 other MCI cases, only 7 patients

showed a positive AD pattern. Using the Chi square test this

difference is significant (p = 0.0255; p-value with continuity

correction) pointing to an association of the former MCI subtypes

with an AD pattern in CSF in our cohort.

Identification of biomarkers
In Table 4 the identified peptide sequences out of the initial list

of 131 potential AD biomarkers are shown: So far we identified 57

sequences deriving from 24 different protein precursors. We

identified 2 fragments of amyloid beta A4 protein, 1 fragment of

apolipoprotein E, 1 fragment of apolipoprotein J or clusterin, 6

fragments of amyloid-like protein 1 (APLP1), 1 fragment of

amyloid-like protein 2 (APLP2), 1 fragment of collagen alpha 1(l)

chain, 2 fragments of fibrinogen alpha chain, 1 fragment of

complement C4-A, 1 fragment of son of sevenless homolog 2, 1

fragment of cystatin C, 1 fragment of cholecystokinin, 7 fragments

of neurosecretory protein VGF, 7 fragments of proSAAS, 5

fragments of neuroendocrin protein 7B2, 7 fragments of

Biomarkers for Early Alzheimer’s Disease

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26540



chromogranin A, 3 fragments of secretogranin I, and 1 fragment

each of segretogranin II–III. We found 1 fragment of integral

membrane protein 2B, 1 fragment of osteopontin, 2 fragments of

testican-1, and 2 fragments of brevican core protein. Finally, we

also identified 1 fragment of phospholemman (FXYD1) and

FXYD6.

We have satisfactory mass spectra of all 12 AD biomarkers,

which were used in the AD pattern (see Figure S3). However, we

are not able to identify all peptides. The greater challenge of

peptide identification in comparison to protein identification of

classical proteomic studies is the missing availability of peptide

mass fingerprint information. Sequencing is hindered by several

obstacles associated with MS sequencing of naturally occurring

peptides (tryptic digests cannot be utilized because of a loss of

connectivity to the original identification parameters [31]). Major

obstacles are suboptimal use of proteomics search machines (like

MASCOT or OMSSA) for naturally occurring peptides [32,33] as

well as the chemical nature (e.g. post-translational modifications)

of the peptides that prevents successful sequencing [19]. To date,

sequences could be obtained from 5 of the final 12 best-of-selection

of AD biomarkers with the ID 78842: AADHDVGSELPPEGVL-

GALLRV, ProSAAS precursor [217–242]; ID 77519: SGELE-

QEEERLSKEWEDS, chromogranin A [322–339], ID 86638:

ESPKEHDPFTYDYQSLQIGGL, phospholemman (FXYD1)

[21–41]; ID 102634: DQTVSDNELQEMSNQGSKYVN-

KEIQNA, clusterin/apolipoprotein J [22–49]; and ID 110596:

Figure 1. Contour-plots of the training set. A) Compiled 3-D protein contour plot from CSF samples of 34 patients with Alzheimer’s disease. The
normalized CE-migration time (in min) is plotted on the x-axis and the relative molecular mass (in kDa) on the y-axis. As a third dimension, the signal
intensity is colour coded (blue lowest and white highest signal intensity). Each dot represents one peptide. B) Compiled 3-D protein contour plot for
healthy controls (n = 17). C) Discriminative biomarker pattern for subjects suffering from Alzheimer’s disease (n = 34). Depicted is a 3-D plot of 12
peptides that serve as specific biomarkers for AD brain damage. The normalized CE-migration time (in min) is plotted on the x-axis and the relative
molecular mass (in Da) on the y-axis. As a third dimension, the signal intensity is colour coded.
doi:10.1371/journal.pone.0026540.g001
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GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEV, neurose-

cretory protein VGF [26–59] (Table 2). Annotated mass spectra

of these peptides are shown in Figure S3. Uniformly AD patients

showed higher detection frequencies and amplitudes for most of

these synaptic marker peptides in CSF that point toward

alterations in vesicle maturation and transport in AD (Table 4).

However, fragments of VGF, a peptide also found in synaptic

vesicles, were detected with lower signal amplitude in AD patients.

A subset of the patient cohort (n = 61) could be screened for

their apolipoprotein E (ApoE) allelic composition. About 50%

carried an ApoE4 allele. The ApoE4 allele variant is a known risk

factor for AD found in about 40–50% of all AD cases, while the

ApoE4 allele frequency in a normal population is about 10% [34].

Although it is commonly not recommended as a screening test, a

positive ApoE4 status predicts AD with a sensitivity of 80% when

clinical symptoms of a dementia are present [34]. The allelic status

of 27 from 34 patients with clinical AD from our training set could

be determined to investigate if the discriminative value of the AD-

specific biomarkers changes in relationship to the ApoE4 status. 18

of 27 genotyped AD-patients were showing a positive ApoE4

status with at least one copy. The discriminative value of the 12

biomarkers in the final panel for AD (Figure 2) does not change

significantly in view to a positive ApoE4 status. In contrast the N-

terminal apolipoprotein E fragment ([19–32]; KVEQAVETEPE-

PEL) originally included in the primary candidate list or the

testican-1 fragments (Table 4) showed significantly better AUC

values if patients carried the ApoE4 allele. We excluded affected

biomarkers from the final list to avoid contamination with the

already known risk factor due to the different allele frequencies in

the diagnosis groups.

Figure 2. Peptide pattern identifying AD. Shown are the ROC analyses of all biomarkers. In the table unique internal protein-ID, mass, CE-
migration time, observed frequency of occurrence, the corresponding mean amplitudes, and AUC values (as a biomarker quality measure) in the
different groups for the final peptide panels. Five peptides, which are marked in yellow, are already identified (Table 4).
doi:10.1371/journal.pone.0026540.g002

Table 2. Peptide pattern identifying AD.

Peptide identification Frequency by group [%] Mean amplitude

Protein ID Mass [Da] CE-time [min] AD Control AD Control AUC

11229 1196.36 36.37 0.32 0.71 46658 49517 0.70

35146 1387.07 20.42 0.18 0.47 144 119 0.65

35998 1390.49 36.26 0.50 0.12 298 88 0.71

77519 2179.03 25.31 0.76 0.35 85 32 0.83

78842 2214.22 26.48 0.85 0.29 149 83 0.84

86638 2423.19 27.03 0.62 0.18 48 47 0.72

95324 2706.37 28.30 0.74 0.24 130 120 0.75

102634 3068.46 30.03 0.76 0.29 185 84 0.81

110596 3401.73 23.48 1.00 1.00 2557 4518 0.82

130889 4005.54 22.57 0.71 0.41 582 400 0.69

131863 4036.30 24.92 0.71 0.24 373 250 0.75

160599 5582.16 24.30 0.41 0 283 0 0.71

Shown are unique internal protein-IDs, mass, CE-migration time, observed frequency of occurrence, the corresponding mean amplitudes, and AUC values (as a
biomarker quality measure) for the final peptide panel. Five peptides, which are marked in bold, are already identified (see Table 4).
doi:10.1371/journal.pone.0026540.t002
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Discussion

The urgent need of earlier and more precise diagnosis arises

with the advent of first treatments [3]. Current treatments of AD

may in some cases reduce disease progression, but certainly do not

reverse the disease process. In addition, cholinesterase inhibitors or

glutamate antagonists are currently applied to only a small fraction

of patients [35].

The study focused on the analysis of proteins/peptides in CSF

obtained from patients presenting to a memory clinic and suffering

from various dementias. CE-MS does not require specific

antibodies or specific knowledge about the peptides (e.g. solubility,

binding or modifications) and yields a comprehensive display of

the peptide populations present in CSF without being subject to

selection-biases inherent to alternative proteomic methods like

matrix-assisted techniques. The high sensitivity (detection limit in

the low fmol to amol range) and reproducibility of the CE-MS

technology enables the reliable analysis of .800 different peptides

in CSF with molecular weights ranging from 0.8 kDa to about

20 kDa.

Disease specific peptide pattern
From the vast pool of peptides present in CSF, specific

biomarkers and subsequent diagnostic models for AD and FTD

could be established. The availability of proteome data from

patient samples with clear clinical diagnoses enabled the definition

of peptides that apparently allow the differentiation of dementias

from healthy controls and the differentiation between dementias

like AD and FTD in the blinded dataset with high sensitivity and

specificity. The MCI data indicate that CE-MS can be utilized to

identify incipient AD cases in MCI. Hence this approach may be

used for stratification of patients in therapeutic intervention trials.

Currently, clinical MCI trials of antidementiva are impaired due

to low conversion rates and the inclusion of many patients that will

not develop AD in the clinical course. In consequence many MCI

trials fail or long term follow up of large patient cohorts are

required to reach an acceptable statistical power, making such

trials expensive and difficult in design [36].

As expected from earlier attempts to define biomarkers for AD

[3,37,38], and as evident from the AUC values shown in Table 2,

single biomarkers are often of limited diagnostic value. However,

the classification model based on a combination of distinct and

clearly defined single biomarkers shows a high discriminatory

value that cannot be reached when using single biomarkers alone.

Already our first attempt to use peptide patterns for diagnostic

purposes in a prospective natural clinical sample yielded sensitivity

and specificity for AD diagnosis in the range that established

methods like the measurement of T-tau, P-tau181, and beta-

amyloid1–42 can reach only when combined. Fully developed, the

new method should show its strength especially in the differential

diagnosis of unclear cases. Having the potential to gather the

information included in a multitude of peptides instead of

detecting a single marker only, valuable and limited CSF samples

can be analyzed more efficient and in-depth. This is in line with

other studies, where e.g. levels of CSF beta-amyloid1–42 were

lower in AD patients and levels of CSF tau were elevated in AD

patients [39] and only the combination of these biomarkers

allowed the detection and differentiation of AD from healthy

controls with a sensitivity and specificity of greater than 80%. To

date, the specificity to differentiate AD from other dementias

especially in naturalistic samples, like in our prospective sample, is

often considerably lower [3,4]. Similar approaches like the

combination of classical AD markers were recently reported with

the aim to identify incipient AD cases in patients suffering from

MCI [38] or to predict cognitive decline in nondemented older

adults [40]. In addition, Hansson et al. described that concentra-

tions of T-tau, P-tau181, and beta-amyloid1–42 in CSF are

associated with future development of AD in patients with MCI

[41]. The application of CE-MS allowed the definition of a

broader array of yet partially unknown biomarkers, which may

have the potential of a more refined and earlier detection of the

onset of AD. Interestingly our data also indicate an overlap in

FTD and AD pathology especially in patients with primary

progressive aphasia, which is line with recent observations made in

brain biopsies [42]. This finding could have direct therapeutic

impact. While there is currently no treatment option for FTD

patients, the presence of AD pathology in this FTD subtype could

justify the use of the available AD treatments.

A related approach using several unspecific blood plasma

markers for inflammation and apoptosis processes in an ELISA

array to identify AD claimed worldwide attention [43], but failed

to work [44].

Identification of new AD-biomarkers using CE-MS
To date, we were able to sequence 279 from the 1104 reliable

measured peptides and identified 57 peptides of the primary list of

131 potential AD-biomarkers (Table 4) present in cerebrospinal

fluid of AD patients. The prevalence of sequences among these

potential AD markers related to bioactive peptides derived from

prohormones normally stored in neuronal dense-core vesicles is

striking. In general, AD patients show higher detection frequencies

and amplitudes for these synaptic marker peptides in CSF that

could point toward alterations in vesicle maturation and transport

in AD.

Cognitive decline in dementias is due to loss of synapses or

synaptic functionality meaning loss of neurones, loss of synapses on

still functioning neurones, or loss of function on still available

synapses. Therefore biomarkers of synaptic function and/or

damage or complementary changes in the brain, e.g. immuno-

logical responses or cellular stress may be especially suited as AD

biomarkers with face validity [45]. Our method identified a set of

AD biomarkers that are of synaptic origin: Long known suspects

like chromogranin A [37] and some newer like neurosecretory

protein VGF (VGF), clusterin (apolipoprotein J), ProSAAS,

testican-1, and neuroendocrine protein 7B2. We also found

fragments of proteins well known to be associated with AD like

the amyloid beta peptides, one fragment of beta-amyloid1–42 and

one fragment of a soluble form of APP, one fragment of APLP2

and apolipoprotein E [6,32]. Maybe most interestingly, we found 6

APLP1-derived ‘A-beta-like peptide’ species [46] among them

Table 3. Clinical outcome of MCI cases by peptide pattern.

Number AD OD MCI Remitter

Positve AD-Score 21 14 0 7 0

Negative AD-score 11 2 1 5 3

Clinical outcome of MCI cases (n = 32) followed up for a mean of 57 months.
MCI cases with a positive score for the AD-pattern (n = 21) or a negative score
for the AD-pattern (n = 11) according to our peptide panel. From 21 MCI
patients originally identified as having a positive score for the AD pattern in
CSF, only 7 patients are still clinically diagnosed with MCI, while 14 progressed
into clinical AD. The other MCI group with negative score for the AD pattern
showed a different outcome. Here only 2 patients progressed into AD so far,
while 5 patients are still diagnosed with a stable MCI, one patient progressed
into a vascular dementia (other dementia, OD), and 3 patients developed a
complete remission of cognitive symptoms.
doi:10.1371/journal.pone.0026540.t003

Biomarkers for Early Alzheimer’s Disease

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26540



Table 4. Sequence analysis.

Pr ID
Mass
[Da]

CE-time
[min] Sequence Protein name start stop

calc. mass
[Da]

2065 1013.43 25.18 FMSDTREE Secretogranin-1 430 437 1013.4124

3251 1083.55 25.61 FENKFAVET Integral membrane protein 2B 254 262 1083.5237

7029 1158.62 27.02 EDVGSNKGAIIG Amyloid beta A4 protein 693 704 1158.5881

9404 1183.66 27.49 DPPAIPPRQPP Son of sevenless homolog 2 1171 1181 1183.6350

9730 1186.56 27.21 HELDSASSEVN Osteopontin 273 287 1186.5102

17258 1250.61 27.59 DHDVGSELPPEG ProSAAS 223 234 1250.5415

19245 1265.63 27.22 SpGPDGKTGPpGPA Collagen alpha-1(I) chain 546 559 1265.5888

24081 1300.67 29.70 DELAPAGTGVSRE Amyloid-like protein 1 568 580 1300.6259

24573 1306.74 22.16 VSPAAGSSPGKPPR Cystatin C 21 34 1306.6993

30960 1349.67 28.25 SGEGDFLAEGGGVR Fibrinogen alpha chain 22 35 1349.6212

37415 1404.73 29.49 HDVGSELPPEGVLG ProSAAS 224 237 1404.6885

41974 1448.69 29.41 EAVEEPSSKDVME Chromogranin-A 119 131 1448.6341

44123 1475.77 30.05 HDVGSELPPEGVLGA ProSAAS 224 238 1475.7256

45572 1499.74 29.89 LDDLQPWHSFGAD Amyloid beta A4 protein 615 627 1499.6681

45788 1500.71 22.99 SVPHFSDEDKDPE Neuroendocrine protein 7B2 200 212 1500.6369

47143 1519.76 31.87 DHDVGSELPPEGVLG ProSAAS 223 237 1519.7155

48140 1535.74 30.00 ADSGEGDFLAEGGGVR Fibrinogen alpha chain 20 35 1535.6852

49413 1552.61 30.78 VTEDDEDEDDDKE Testican-1 420 432 1552.5537

51940 1596.83 30.32 KVEQAVETEPEPEL Apolipoprotein E 19 32 1596.7883

53060 1614.84 31.54 DELAPAGTGVSREAVSG Amyloid-like protein 1 568 584 1614.7849

58375 1727.92 32.13 DELAPAGTGVSREAVSGL Amyloid-like protein 1 568 585 1727.8690

60472 1771.97 30.02 SVNPYLQGQRLDNVVA Neuroendocrine protein 7B2 182 197 1771.9217

62126 1816.98 33.53 DHDVGSELPPEGVLGALL ProSAAS 219 240 1816.9207

62500 1820.06 32.23 DVGSELPPEGVLGALLRV ProSAAS 221 242 1820.0044

64448 1867.72 33.07 AVTEDDEDEDDDKEDE Testican-1 419 434 1867.6603

64930 1873.00 21.26 ALHPEEDPEGRQGRLLG Brevican core protein 879 895 1872.9442

66400 1900.07 24.19 SVNPYLQGQRLDNVVAK Neuroendocrine protein 7B2 182 198 1900.0167

66858 1907.99 21.60 ADPAGSGLQRAEEAPRRQ Cholecystokinin 26 43 1907.9562

67973 1927.02 21.00 VAKKSVPHFSDEDKDPE Neuroendocrine protein 7B2 196 212 1926.9323

71613 2028.17 21.62 SVNPYLQGQRLDNVVAKK Neuroendocrine protein 7B2 182 199 2028.1116

71707 2029.13 20.15 ALHPEEDPEGRQGRLLGR Brevican core protein 879 896 2029.0453

72233 2041.99 32.56 ELSAERPLNEQIAEAEED Secretogranin-3 35 52 2041.9440

74137 2085.12 33.75 DELAPAGTGVSREAVSGLLIM Amyloid-like protein 1 568 588 2085.0776

75685 2128.97 26.03 EGQEEEEDNRDSSMKLSF Chromogranin-A 359 376 2128.8855

77519 2179.03 25.31 SGELEQEEERLSKEWEDS Chromogranin-A 322 339 2178.9553

78842 2214.22 26.48 AADHDVGSELPPEGVLGALLRV ProSAAS 217 242 2214.1644

79150 2222.16 26.60 STKLHLPADDVVSIIEEVEE Neurosecretory protein VGF 459 478 2222.1318

84897 2377.25 28.07 DDPDAPLQPVTPLQLFEGRRN Complement C4-A 1429 1449 2377.2026

86638 2423.19 27.03 ESPKEHDPFTYDYQSLQIGGL Phospholemman 21 41 2423.1281

86817 2428.11 27.16 SSQGGSLPSEEKGHPQEESEESN Secretogranin-1 293 315 2428.0262

88199 2471.30 35.56 DELAPAGTGVSREAVSGLLIMGAGGGS Amyloid-like protein 1 568 593 2471.2326

88418 2475.21 27.09 HSGFEDELSEVLENQSSQAELK Chromogranin-A 97 118 2475.1401

90848 2549.29 27.66 VGGLEEERESVGPLREDFSLSSSA Amyloid-like protein 2 671 694 2549.2244

91583 2584.37 35.60 DELAPAGTGVSREAVSGLLIMGAGGGSL Amyloid-like protein 1 568 595 2584.3167

94378 2684.32 21.38 SAAEKEKEMDPFHYDYQTLRIGG FXYD6 19 41 2684.2541

102634 3068.46 30.03 DQTVSDNELQEMSNQGSKYVNKEIQNA Clusterin 22 49 3068.3993

104636 3173.68 22.95 GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAP Neurosecretory protein VGF 26 57 3173.5742

108011 3302.68 23.31 GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPE Neurosecretory protein VGF 26 58 3302.6044
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APL1b28, as putative AD biomarkers with our approach. This

non-amyloidogenic peptide fragment is proposed to be a CSF

surrogate marker of beta-amyloid production [47,48] and we also

identify them as potential AD biomarkers using a different

methodology.

So far we were able to identify 5 biomarkers of our diagnostic

AD panel of 12 peptides used in this study:

A fragment of neurosecretory protein VGF was identified. For

VGF a role in the regulation of energy balance is currently

discussed and knockout mice are thin and hypermetabolic [49].

One may speculate whether there is a connection with the heavy

weight losses observed in some AD patients. Furthermore, other

proteomic approaches have also found decreased VGF as potential

biomarker in CSF of AD patients [9].

Phospholemman (FXYD1) is a 72-residue protein, which is

expressed in the CNS, e. g. in the choroid plexus and cerebellum.

It is a homolog of the Na+/,K+-ATPase y subunit (FXYD2), a

small accessory protein that modulates ATPase activity. It forms

ion channels selective for K+, Cl2, and taurine in lipid bilayers

and colocalizes with the Na+/K+-ATPase and the Na+/Ca2+-

exchanger, which may suggest a role in the regulation of cell

volume [50,51]. Na+/K+-ATPase activity might be altered by

amyloid in AD [52]. Interestingly, we also found a fragment of

FXYD6 (Phosphohippolin).

Clusterin (also called apolipoprotein J) is a secreted glycopro-

tein. In the central nervous system, clusterin expression is elevated

in neuropathological conditions such as AD, where it is found

associated with amyloid-beta (Ab) plaques. Clusterin also copre-

cipitates with Ab from CSF, suggesting a physiological interaction

with Ab and can be found in Lewy Bodies [53]. A recent study

using an ELISA found that clusterin is significantly increased in

cerebrospinal fluid from Alzheimer patients, but concluded that

due to individual overlap between the two groups cerebrospinal

fluid clusterin measurement is not suitable as a biochemical

marker in the diagnosis of AD [54]. With an AUC value of 0.81

derived from the ROC curve our findings suggest that maybe

depending from the technique used clusterin fragments might be

useful as AD marker. Two recent studies using 2D gel

electrophoresis also found increased levels of clusterin in patients

with AD [55,56]. A genome wide association study also identified

clusterin as a risk gen for AD [57].

Chromogranin A, a prohormone that is a major ingredient of

large dense core vesicles in neurones, is proteolytically processed

into low molecular weight peptides in neurons prior to axonal

transport and released into the synaptic cleft where they may act as

neurotransmitters. Up-regulation of chromogranin A was reported

in AD, it is found in beta-amyloid plaques in AD brain biopsies

[58,59] and was proposed to be a marker for synaptic

degeneration [37]. Chromogranins are soluble glycophosphopro-

teins capable of activating microglial cells and metabotropic

glutamate receptors [60]. Chromogranin A might synergistically

enhance with beta-amyloid peptides the microglial neurotoxic

effect and diminish microglial phagocytic activity in senile plaques

[61]. Chromogranin A was recently discovered to bind to mutant

superoxid dismutase activity in amyotrophic lateral sclerosis

increasing neurotoxicity [62]. Furthermore, chromogranin A

fragments may be therefore stimulators of senile plaque develop-

ment and neuronal toxicity and their concentration changes

during AD-treatments could be used as surrogate markers.

Compared to initial findings [37] chromogranin A fragments

maybe contain more information about the disease process than

the intact prohormone and may yield better AD biomarkers.

Interestingly, beside 7 chromogranin A fragments, we also found

fragments of secretogranin I–III.

Proprotein convertase subtilisin/kexin type 1 inhibitor (pro-

SAAS) a recently discovered prohormone is found in synaptic

vesicles [63]. N-terminal proSAAS fragments are found in the Tau

inclusion bodies of Pick disease and other tauopathies [64,65].

ProSAAS is distributed abundantly in neuroendocrine tissues like

pituitary and hypothalamus and other brain regions and is co-

localised with prohormone convertase 1 (PC-1). The C-terminal

fragments are potent inhibitors of PC-1 belonging to a family of

calcium-dependent serin proteases, the major endoproteolytic

processing enzymes of the secretory pathway which are respon-

sible for the proteolytic cleavage of a wide variety of peptide

precursors including proinsulin [63,66]. Endogenous binding and

inhibiting proteins for PC-1 and PC-2 have been identified as

proSAAS and neuroendocrine peptide 7B2, respectively. A recent

study using the iTRAQ technique identified proSAAS and

chromogranin A fragments as putative AD markers [67].

ProSAAS was also identified as potential AD marker in the study

of Finehout and colleagues [55]. So far we identified 7 fragments

of proSAAS to be putative AD biomarkers in our approach.

Pr ID
Mass
[Da]

CE-time
[min] Sequence Protein name start stop

calc. mass
[Da]

110596 3401.73 23.48 GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEV Neurosecretory protein VGF 26 59 3401.6852

115988 3595.77 23.89 PPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEV Neurosecretory protein VGF 24 59 3595.7907

116478 3614.82 22.01 GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVRG Neurosecretory protein VGF 26 61 3614.8077

119503 3685.86 22.21 GRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVRGA Neurosecretory protein VGF 26 62 3685.8449

121774 3768.77 31.84 SGFEDELSEVLENQSSQAELKEAVEEPSSKDVME Chromogranin-A 98 131 3768.7048

122653 3792.76 27.25 HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVm Chromogranin-A 97 130 3792.7160

126695 3921.82 27.74 HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVmE Chromogranin-A 97 131 3921.7586

139272 4319.85 23.64 DPADASEAHESSSRGEAGAPGEEDIQGPTKADTEKWAEGGGHS Secretogranin-1 88 130 4319.8711

140319 4349.06 28.17 VPGQGSSEDDLQEEEQIEQAIKEHLNQGSSQETDKLAPVS Secretogranin-2 527 566 4349.0419

Identified sequences of 57 out of the initial set of 131 putative AD biomarkers are listed. Shown are unique internal protein ID (Pr ID), molecular mass (in Dalton), CE-
migration time (in minutes), sequence, originating protein name, and calculated mass (in Dalton). Peptides that are utilized in the final AD pattern are highlighted in
bold letters.
doi:10.1371/journal.pone.0026540.t004

Table 4. Cont.
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Most interestingly some of the identified potential AD markers

like testican-1 and proSAAS are inhibitors of proteases or like

neuroendocrine protein 7B2 are required for the function of

prohormone convertases. Recent research has demonstrated the

critical importance of such protease inhibitors and their neuro-

proteases for the regulation of specific peptide neurotransmitters

and for the production of toxic peptides in major neurodegener-

ative diseases like AD [68]. Several of the identified biomarkers are

involved in vesicular transport and processing of synaptic

neuropeptides. A disturbance in maturation and degradation

processes of synaptic neuropeptides may be one reason for the

cognitive malfunction and subsequent neuronal loss. One may

speculate whether abnormal proteolysis caused by enhanced

protease inhibitor activities due to the synaptic peptides identified

in this study in AD patients might play a role in cognitive

impairment and AD pathology well before tangle and plaque

formation occur [69]. Hence, proteases like prohormone con-

vertases could become new drug targets in the development of AD

treatments. That we do not only identify new biomarkers but also

established markers of AD like fragments of amyloid-beta peptides

or currently discussed AD-markers like the APLP1 fragments

points to the validity and high potential of our method. A

limitation of our study is surely the lack of any neuropathological

confirmation of our clinical diagnoses that could help to improve

the specificity and sensitivity of our pure clinical approach. When

fully developed and validated, this powerful new technique, CE-

MS, may be especially suited to monitor drug effects on a synaptic

level. To date the method already allows the early diagnosis of AD

and differential diagnosis of other dementias showing promising

practical advantages in respect to current diagnostic approaches

like e. g. ELISAs and PET. New analytical proteomic technologies

like ours are now becoming mature and can be applied to clinical

problems in dementia research like diagnostic and therapeutic

biomarker discovery as more and more studies prove [7,43,55,67].

Supporting Information

Figure S1 Reproducibility of the CE-MS measurements.
Protein contour plots of 4 CSF-samples obtained by fractionated

extraction of six aliquots of cerebrospinal fluid from one patient.

The molecular mass (in kDa, logarithmic scale) on the y-axis is

plotted against CE-migration time (in min) on the x-axis.

(TIFF)

Figure S2 Comparability of the CE-MS measurements.
(A) Contour plot of the entire cerebrospinal fluid proteome. The

molecular mass (in kDa, logarithmic scale) on the y-axis is plotted

against CE-migration time (in min) on the x-axis. The arrange-

ment of the peptides in distinct lines is obvious. (B) Contour plot of

279 identified peptides. The lines already observed in (A) could be

comprehended as a result of the number of positive charges z (at

pH 2). (C) By means of several examples for determined peptide

sequences the correlation between the effective netto-charge,

molecular mass and the CE-migration time is demonstrated. Basic

amino acids are colored in red.

(TIFF)

Figure S3 Tandem mass spectra of the AD biomarkers.
The mass spectra of all 12 AD biomarkers (see Protein ID) are

shown in the following figures. Spectra of the identified peptides

are annotated with fragment assignments from the OMSSA (Open

Mass Spectrometry Search Algorithm; http://pubchem.ncbi.nlm.

nih.gov/omssa) searches. The corresponding sequence is displayed

above each spectrum. Identified b-ions are marked in blue and y-

ions in red color.

(PDF)

Table S1 AD marker list. Initial set of 131 putative AD

biomarkers present with high frequency in CSF of AD are listed.

Shown are unique internal protein ID, molecular mass (in Dalton),

CE-migration time (in minutes), observed frequency of occurrence

and the corresponding mean amplitudes in AD and controls, and

unadjusted p-values. Peptides that have an unadjusted p-value

limit of 0.01 are highlighted in bold letters.

(XLS)

Table S2 Prospective sample data. Patients (n = 100): Final

diagnoses (clinical outcome) before unblinding: AD (52), still MCI

(14), mixed dementia (6), vascular dementia (5), FTD (6),

depression (6), schizophrenia (3), delusional disorder (1), enceph-

alitis (2), Parkinson dementia (2), alcohol psychosis (1), amyotropic

lateral sclerosis (1), Chorea Huntington (1). Scores: cut-off for

AD.0, FTD.20.1, schizophrenia.0.1. Row AD-MS and AD-

IM contains the values for AD diagnosis for mass spectrometry

and immunochemistry: tp, true positiv; tn, true negative, fp, false

positive, fn, false negative for diagnosis AD. File further includes

data for gender, age, diagnoses for the prospective patient sample,

scores for peptide patterns and the values for the biomarker total

tau, phospho181-tau, and beta-amyloid1–42 if available.

(XLS)

Table S3 Neuropsychological tests used to classify MCI
according to Petersen et al. [70] and dementia cases.
Mini-Mental State Examination (MMSE) [71], Clinical Dementia

Rating (CDR) [72], CERAD test battery [73], WMS-R Logical

Memory [74], Trail Making Test (TMT) [75], and Clock Drawing

Test (CDT) [76].

(XLS)

Table S4 Precision data examples. Precision study for ten

cerebrospinal fluid samples which are measured twice.

(XLS)

Table S5 CE-MS raw data of the 176 samples used in
the study. Only data that were actually utilized (that are present

in at least 40% of the samples of one of the diagnostic groups, see

section ‘‘Methods’’) are shown. The protein IDs of all peptides are

given in the first column named ‘‘protein ID’’, the unique sample

IDs constitute the first row. The MS data from each sample are

reflected in one column. The number in each cell represents the

normalized signal intensity of the mass spectrometric signal of each

peptide detected in the sample.

(XLS)
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