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A B S T R A C T

Background: Due to media opacity, it is usually difficult to accurately evaluate the postoperative visual acuity in
cataracts patients. As a small and portable tool, the critical flicker fusion frequency (CFF) device reflects the
temporal resolution of visual function and has been widely used in clinical research. However, poor under-
standing of the technique and equipment limitations have restricted its clinical application in China.
Main text: There was a decrease in the CFF value in various ophthalmic diseases, indicating that the CFF is
sensitive to detect visual functional changes. A number of studies have shown that the CFF test can accurately
distinguish patients with simple cataracts from those with cataracts combined with fundus disease, and, as a
visual test, it can more accurately predict postoperative visual acuity without being affected by media opacity.
This study comprehensive reviews the basic principles of CFF and its application in ophthalmology, especially in
cataracts.
Conclusions: As one of the tools for dynamic visual function detection, the CFF test could help doctors to assess the
possible presence of fundus disease in cataracts patients, especially in eyes with dense cataracts, and more pre-
cisely provide a reasonable visual prognosis than other available visual tests.
From a neurophysiological perspective, the mammalian visual system
generally consists of at least two major pathways, namely the magnocel-
lular pathway and parvocellular pathway, which reflect the temporal and
spatial resolution, transmitting signals individually and in parallel. The
visual information transmission process can be briefly described as follows:
The optical signal handled by cone cells and rod cells is converted into an
electrical signal at the retina and then passes through bipolar cells to
retinal ganglion cells. Then, the axons of ganglion cells extend to the optic
tract and exchange signals with neurons at the lateral geniculate nucleus.
Subsequently, axons project via the optic radiation and eventually transmit
to the visual cortex in the occipital lobes, temporal lobes, and other higher
cortical areas. This is the direct pathway to the primary visual cortex,1,2

which centralizes information processing about static perception, depth
perception, and motor perception. The lateral geniculate nucleus is
composed of three types of cells: the magnocellular cells in the inner two
magnocellular layers (1 and 2), the parvocellular cells in the outer four
parvocellular layers (3, 4, 5, and 6), and koniocellular cells in the
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koniocellular layers ventral to each of the magnocellular and parvocellular
layers. Among them, the magnocellular pathway carries information about
large, fast things (low spatial frequency, high temporal frequency). In
contrast, the parvocellular pathway carries information about small, slow,
colorful things (high spatial frequency, low temporal frequency).2–4 These
two pathways are relatively independent and would transmit overlapping
messages only in certain circumstances.5 The neural efficiency of the
magnocellular pathway depends on the neuron recovery time after visual
stimulation.6 Animal research has shown that magnocellular cells have a
shorter neuronal refractory period and can perceive high temporal fre-
quency compared to parvocellular cells.2,3

As a sensitive indicator of temporal resolution, the critical flicker fusion
frequency (CFF) is defined as the frequency at which a flickering light is
perceived as a stable and continuous light.7 The CFF test has been widely
used in various ophthalmic diseases, including glaucoma, age-related
macular degeneration (AMD), amblyopia, retinal diseases, and optic
nerve diseases. In addition, the CFF test has been used as a potential visual
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test (PVT) to assess visual function and predict postoperative visual acuity
for cataract patients. Our article comprehensively reviews the principles of
CFF and its current application in cataracts.

1. Ferry-Porter law

The Ferry-Porter law states that the CFF value has a linear relation
with the logarithmic light luminance.8,9 The slope of the line is affected
by retinal eccentricity, target size, light wavelength, and background
luminance.10–12 Granit et al. found that the CFF value has a linear rela-
tionship with the logarithm of the area of retinal stimulation,13 which
correlated to the number of stimulated ganglion cells.14 Therefore, a
larger flicker target could have a higher CFF value, so the flicker size
should be limited to a 2�visual angle. Also, since the transmission speed
of photoreceptors in the peripheral retina is faster than that of the central
area, a higher CFF value is found in the peripheral retina within
50�retinal eccentricity.14 Hamer et al. found a steeper slope of the
Ferry-Porter equation when the flicker light was at 552 nm wavelength
than that at 642 nm, which may be attributed to faster signal trans-
mission in the M-cone pathway than that in the L-cone pathway.10

2. Factors influencing the CFF

The CFF value is affected by confounding factors of physiology, pa-
thology, and pharmacology. It decreases with age, and younger people
have a higher CFF value than older people12,15,16 as aging is associated
with decreased prefrontal cortex function resulting in poor CFF perfor-
mance.17 Moreover, the CFF value is highly associated with cortical
arousal and serves as a measurement of cognitive performance.18,19

Breathing 100% oxygen can enhance neural stimulation, thus, increasing
brain blood flow and improving cerebral performance.20,21 Health volun-
teers obtained improved CFF values by breathing pure normobaric oxygen
for 10 min, but showed the inverse result in hypoxia conditions.22,23 The
CFF test has been widely used in diving field studies, especially in evalu-
ating divers’ cognitive functions regarding nitrogen narcosis and
high-pressure nervous syndrome (HPNS).22,24 An improvement in the CFF
value was observed in professional divers inhaling hyperbaric oxygen
(PPO2 of 2.8 ATA), having better attention and alertness as a result of
enhanced neuronal excitability.25 Another study showed that divers had
decreased CFF value after diving under a depth of 610 m using a
helium-oxygen mixture (PO2:0.38–0.52 ATA), simulating cerebral func-
tion declined caused by HPNS, and the CFF value variations were closely
parallel to electroencephalogram (EEG) modifications.26 In addition, the
CFF value is affected by the mental state, and decreased in a central fatigue
state,27 but not in a peripheral fatigue state, and may mildly increase after
aerobic exercise.28 Both central nervous system stimulants and depressants
affect the CFF value. For example, psychostimulants (e.g., amphetamine
sulfate)29 and selective serotonin reuptake inhibitors (SSRIs; e.g., cit-
alopram, fluoxetine, and sertraline) positively affect the CFF value.30 In
contrast, sedative-hypnotic drugs, anxiolytics, antidepressants, and small
doses of alcohol can reduce the CFF value.31,32 Besides their primary ef-
fects, they have an additional impact on CFF measurements by altering the
pupil size.33,34Mydriasis can transiently improve the CFF value.35 Also, the
CFF value could add to an average of 3.2 Hz after pupillary dilation with
1% tropicamide and 2.5% phenylephrine compared with the physiological
state in healthy subjects.36 Recent studies have shown that the concen-
trations of lutein and zeaxanthin in the macula positively correlated with
the CFF value, indicating that daily vitamin supplementation may help to
improve visual function.37

3. CFF application in ophthalmology

Poor performance in the CFF test generally occurs in many ocular
diseases, including glaucoma, diabetic retinopathy (DR), AMD, and
ischemic optic neuropathy or demyelinating optic neuritis, which can
lead to varying degrees of decline in CFF value. However, no significant
30
difference in the CFF value was found in patients with amblyopia due to
congenital cataracts.38 Yoshiyama suggested that the CFF test could
distinguish glaucoma patients from healthy subjects and detect early
visual field defects.39 Lecleire-Collet et al. found that early neurological
dysfunctions could be detectable by the CFF test prior to visible charac-
teristic DR fundus changes.40 Maier et al. reported a significant reduction
in the CFF value both in dry or wet AMD patients with a better sensitivity
of 14-Hz.41,42 Fu et al. found a decreased CFF value in patients with
demyelinating optic neuritis and ischemic optic neuropathy. The CFF
performance is highly correlated with other visual functions, including
visual acuity, visual field, and the peak time of flash visual evoked po-
tential (F-VEP).43 In addition, Young et al. suggested that the CFF test
could better distinguish severe optic neuritis and non-arteritic anterior
ischemic optic neuropathy (NAION) patients.44 Recent research has
revealed a significant decrease in patients with myopia greater than 8.0
D45, which may be related to the thinning of the retinal ganglion cell
layer due to axial growth. There are studies demonstrating the correla-
tion between the CFF and electrophysiology tests. Patients who recov-
ered from unilateral acute optic neuritis had lower CFF values but did not
have significant change in P-VEP P100 latency compared to the unaf-
fected eyes of patients and healthy volunteers. This suggested that the
CFF device is a valuable tool for evaluating long-term optic nerve
dysfunction.46 Correlations between cerebral activity and the CFF value
could be efficiently detected by an EEG, in which both CFF and alpha
wave are attenuated as individuals age.16 Furthermore, flicker positively
affects memory accuracy in older people, with flicker frequencies at
around 9.5–10.5 Hz47, and the enhanced EEG amplitude responses could
be observed between 5–15 Hz flicker frequencies simultaneously.48

4. Current research of CFF in cataracts

Patients with other eye diseases usually could not get an accurate
assessment of the visual function recovery after cataracts surgery,
particularly in patients with pre-existing fundus lesions, such as AMD,
DR, and macular edema.49,50 However, due to media opacity, patients
often cannot undergo a thorough preoperative fundus examination. Even
when the fundus is visible, further consideration is still required to assess
whether surgery will have an additional benefit. Therefore, a visual
function test independent of media opacity can be helpful for better
evaluating postoperative visual function.

Studies have shown that the CFF measurement is not affected by
media opacity in early-stage cataracts. An adequate flicker brightness can
achieve a better accuracy for late-stage cataracts.51,52 Furthermore,
Douthwaite et al. showed that the CFF measurement is not affected in
severe cataracts that were classified according to LOCS III grading
criteria.53 Besides, low variability and no statistical difference were
found in CFF values between pre-operation and post-operation for severe
cataracts, even when the logarithm of the minimum angle of resolution
(logMAR) best-corrected visual acuity was 2.20 54.

Usually, the media opacity leads to degradation of the quality of
fundus imaging, which is thought to affect spatial resolution rather than
temporal resolution,55 and thus the CFF value should be relatively stable
theoretically. Lachenmayr et al. simulated the media opacity caused by
cataracts using several diopter spherical lenses and ointment with
different densities. They confirmed that retinal image degradation
caused by media opacity has a limited effect on the CFF value.56 More-
over, Ikeda et al. reported that the magnocellular pathway could still
respond to defocused image attenuation, which gives a plausible expla-
nation for the independence of CFF tests from the image degradation
caused by media opacity.57

Previous studies have found a decrease in the CFF value in patients
with macular diseases, including AMD and DR.40–42,58 This decrease may
be attributed to the loss of retinal ganglion cells. Other studies have
found alterations in CFF values in high myopia eyes,45,59 indicating that
CFF tests were sensitive enough to discern macular diseases and struc-
tural changes in the retina. Shankar et al. showed that the area under the
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curve (AUC) was 0.93 with 88% sensitivity and 90% specificity in
discriminating between healthy control and patients with fundus disease
under a 1.5�flicker source, and larger flicker sources were less affected by
the defocus caused by media opacity.36,60 There were no significant
differences in CFF values between patients with cataracts and patients
with intraocular lenses (IOLs) under 1.5�visual angle and 38.2 cm
observation distance. In contrast, a significant difference was found in
macular disease patients with cataracts under the same conditions. There
appears to be a significant correlation between the CFF value and log-
MAR visual acuity in macular disease eyes.36

5. Clinical studies of CFF as a potential vision test

A series of PVTs have been developed and used in various clinical
studies. Besides CFF, potential acuity meter (PAM), laser interferometer
(LI), super-illuminated pinhole (SPH), and optimal reading speed (ORS)
have been used to predict post-cataracts visual acuity.

Romo et al. evaluated the postoperative visual acuity of 26 patients
with cataracts and 26 cataract patients combined with ocular comor-
bidity. They found that the lower the CFF value recorded, the poorer the
postoperative visual acuity might be. More importantly, there was a high
correlation between the CFF value and visual acuity in patients with
macular degeneration.54 With cataracts progression, it is difficult to
perform most PVTs, especially for PAM and LI measurements, both of
which require visual acuity� 20/40, whereas the CFF test is not affected
under this condition.61 PAM, LI, and ORS tend to underestimate the
postoperative visual acuity to predict visual outcomes in patients with
moderate and dense cataracts. On the other hand, CFF is better at pre-
dicting postoperative visual acuity, with 77% postoperative visual acuity
within two lines in patients with moderate cataracts and 80% post-
operative visual acuity within three lines in patients with dense cata-
racts.54 In patients with moderate cataracts and healthy fundus,
ophthalmologist judgment is superior to most PVTs for predicting post-
operative visual acuity. However, in patients with dense cataracts or
cataracts combined with fundus disease, the CFF test is more accurate
than the ophthalmologist's judgement.54 Therefore, these findings sug-
gest that the CFF examination could provide more valuable information
for patients with fundus disease.

Douthwaite et al. studied 88 cataracts patients divided into the
following groups according to whether they present combined with
fundus lesions, including 22 dry AMD, 11 glaucoma, 3 macular epiretinal
membranes, 3 amblyopia, 2 wet AMD, and 1 macular hole. They found
that both the CFF test and other PVTs tended to underestimate post-
operative logMAR visual acuity in cataract patients combinedwith ocular
disease. However, the CFF test had a minor mean bias with a prediction
error ranging between three to five letters.53

In theory, the CFF value represents the limit of temporal resolution, and
the best-corrected visual acuity represents the ability of spatial resolution.
Thus, using the CFF test to assess postoperative visual acuity appears to be
an indirect approach. However, retinal and optic nerve diseases usually
adversely affect spatial and temporal visual functions. The CFF examina-
tion could help doctors to assess the possibility of fundus disease, espe-
cially in eyes with dense cataracts, and guide patients with a reasonable
visual prognosis. Few studies have been reported in China on this topic,
and the correlation between the CFF value and postoperative visual acuity
and other visual functions needs further study.

6. Conclusions

As a small, portable tool, the CFF device does not require dilated
pupils, and patients themselves can complete the measurement with
simple training. It is easy to assess visual function by comparing it with
the average age group. A standardized procedure can reduce measure-
ment error and facilitate follow-up. The application of the CFF test in
ophthalmology needs further research for early diagnosis and prognostic
assessment.
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Abbreviations

CFF critical flicker fusion frequency
AMD age-related macular degeneration
PVT potential visual test
SSRIs selective serotonin reuptake inhibitors
DR diabetic retinopathy
F-VEP flash visual evoked potential
NAION non-arteritic anterior ischemic optic neuropathy
EGG electroencephalogram
logMAR logarithm of the minimum angle of resolution
AUC area under the curve
IOLs intraocular lenses
PAM potential acuity meter
LI laser interferometer
SPH super-illuminated pinhole
ORS optimal reading speed
HPNS high-pressure nervous syndrome
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