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Toward an integrated map of genetic interactions
in cancer cells
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Abstract

Cancer genomes often harbor hundreds of molecular aberrations.
Such genetic variants can be drivers or passengers of tumorigene-
sis and create vulnerabilities for potential therapeutic exploitation.
To identify genotype-dependent vulnerabilities, forward genetic
screens in different genetic backgrounds have been conducted. We
devised MINGLE, a computational framework to integrate CRISPR/
Cas9 screens originating from different libraries building on
approaches pioneered for genetic network discovery in model
organisms. We applied this method to integrate and analyze data
from 85 CRISPR/Cas9 screens in human cancer cells combining
functional data with information on genetic variants to explore
more than 2.1 million gene-background relationships. In addition
to known dependencies, we identified new genotype-specific
vulnerabilities of cancer cells. Experimental validation of predicted
vulnerabilities identified GANAB and PRKCSH as new positive regu-
lators of Wnt/b-catenin signaling. By clustering genes with similar
genetic interaction profiles, we drew the largest genetic network
in cancer cells to date. Our scalable approach highlights how
diverse genetic screens can be integrated to systematically build
informative maps of genetic interactions in cancer, which can
grow dynamically as more data are included.
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Introduction

Genes rarely function in isolation to affect phenotypes at the cellular

or organismal level. Many studies have described how genes act in

complex networks to maintain homeostasis by fine-tuning cellular

or organismal reactions to internal or external stimuli (Bergman &

Siegal, 2003). A loss of genetic buffering can result in the emergence

of diseases such as cancer (Hartwell et al, 1997; Hartman et al,

2001). In turn, mutations can create genetic vulnerabilities in cancer

cells, for example, by deactivating one of two genetically buffered

pathways (Luo et al, 2009; Torti & Trusolino, 2011; Nagel et al,

2016). Therapeutic approaches attempt to exploit such events by

selectively inducing cell death in cancer cells while causing little

harm to normal cells (Kaelin, 2005; Nijman, 2011).

To systematically identify genetic interactions, pairwise gene

knockout or knockdown experiments can be performed (Mani et al,

2008). In cases where a measured fitness defect of the double

mutant is stronger than expected based on the two single mutant

phenotypes, the interaction is called aggravating or synthetic lethal

(Bridges, 1922). In contrast, a buffering (or alleviating) interaction

is observed when the double mutant’s measured phenotype is

weaker than expected. Arrayed screens performed by mating of

loss-of-function mutant yeast strains have pioneered combinatorial

screening (Tong et al, 2001; Davierwala et al, 2005; Baryshnikova

et al, 2010; Costanzo et al, 2010, 2016). Methods of pairwise gene

perturbation were later extended using combinatorial RNA interfer-

ence (RNAi) to map genetic interactions in cultured metazoan cells

(Byrne et al, 2007; Horn et al, 2011; Laufer et al, 2013; Snijder et al,

2013; Fischer et al, 2015; Srivas et al, 2016). However, screening of

all pairwise gene combinations scales poorly with increasing

genome size and novel approaches are necessary to facilitate the

generation of large genetic interaction maps of complex organisms

while minimizing cost and experimental effort.

Genome-scale perturbation screens can now be efficiently

performed in many cell lines using CRISPR/Cas9 (Barrangou, 2014;

Doudna & Charpentier, 2014; Wang et al, 2014; Shalem et al, 2015;

Heigwer et al, 2016; Horlbeck et al, 2016) or RNAi (Brummelkamp

et al, 2002; Sims et al, 2011; Kampmann et al, 2013) for the targeted

perturbation of genes by knockout or knockdown. Since each cell

line has a different genetic background, this enables the investiga-

tion of genotype-specific vulnerabilities (Garnett et al, 2012; Hart

et al, 2015; Iorio et al, 2016; Tzelepis et al, 2016; Martin et al, 2017;

McDonald et al, 2017; Steinhart et al, 2017; Tsherniak et al, 2017;

Wang et al, 2017). To describe a genetic interaction, previous stud-

ies have mostly relied on the definition of “statistical epistasis”

introduced by R. A. Fisher (Fisher, 1930). Here, a genetic interaction
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is defined as a statistical deviation from the additive combination of

two loci in how they affect a phenotype of interest (Phillips, 2008).

This definition does not necessarily assume a standardized genetic

background and thus provides a theoretical framework applicable to

map genetic interactions in cancer cell lines despite the presence of

additional confounding mutations. To leverage the community’s

collective effort to functionally characterize cancer cell lines, it is

desirable to combine and analyze genetic screens of different origin

in an integrated manner. This, however, is not easily put into prac-

tice as various sources of technical variation such as different

sgRNA libraries or experimental protocols can affect the data and

confound comparative analyses.

Here, we propose a computational framework that integrates

CRISPR/Cas9 screens of diverse origin to map genetic interactions in

cancer cells. We apply this approach, which we termed MINGLE, to

a curated dataset consisting of 85 genome-scale CRISPR/Cas9

screens in 60 different human cancer cell lines generated in various

different laboratories (Fig 1A). We first show that a two-step normal-

ization approach can be applied to enable quantitative comparison

of phenotypes derived from different screens (Fig EV1A). We then

demonstrate how concepts that have previously been applied to map

genetic networks in model organisms can be adapted and applied to

this dataset to score gene–gene combinations for genetic interac-

tions. Combining the intrinsic profile of genetic alterations of each

cell line present in the dataset with gene-level viability phenotypes,

we tested 2.1 million pairwise gene combinations by comparing wild

type against altered alleles in cell lines (Fig 1B and C). Using these

predictions, we were able to identify new regulators of the Wnt/b-
catenin signaling pathway. Our results suggest that the genes PRKCSH

and GANAB, which together form the glucosidase II complex, regu-

late the secretion of active Wnt ligands. Finally, we functionally

clustered genes by the similarity of their interaction profiles and

demonstrate that these profiles are informative predictors of func-

tional gene similarity (Fig 1D). We generated a map of genetic inter-

actions in cancer cells by connecting genes with similar profiles and

identified network modules with similar functional characteristics.

Results

Integrating CRISPR/Cas9 phenotypes from different studies

In order to systematically predict interactions between genes

knocked out by CRISPR/Cas9 and genes functionally impaired by

A B C D

Figure 1. An integrated analysis approach to identify genetic interactions in cancer cells.

A Data from CRISPR/Cas9 screens in 60 cancer cell lines were re-analyzed and integrated. The results were integrated into a global perturbation response profile.
B Mutation, copy number, and mRNA expression data from the COSMIC and CCLE databases were combined to create a map of genetic alterations across these cell

lines.
C To identify genetic dependencies between gene combinations that could shed light on the genetic wiring of cancer cells, perturbation response of more than

2.1 million gene–gene combinations was examined to infer genetic interactions.
D Interaction profiles were calculated for gene combinations based on the correlation of their interactions as determined by interaction scores (p scores). Spatial

enrichment analysis was performed to identify functional modules in the network.
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mutations in cancer cells, we re-analyzed a set of 85 CRISPR/Cas9

viability screens in 60 cell lines (Fig 1A, Dataset EV1). These

screens were performed in different laboratories and vary in terms

of library and vector design as well as screening protocols. In order

to integrate these data (Fig EV1A), we first calculated gene-level

CRISPR scores individually for each screen (average log2 fold

change of sgRNA abundance; Wang et al, 2017). As, for example,

varying selection times can lead to differences in phenotypic

strength, we then quantile-normalized the data to correct for

systematic biases between screens. Examination of the resulting

dataset revealed considerable batch effects driven primarily by the

sgRNA library used for screening (Fig EV1B). These batch effects

appeared to be non-systematic differing from gene to gene. For

example, cyclin-dependent kinase 7 (CDK7) is a gene known to play

important roles in both, cell cycle progression and transcription

(Fisher, 2005), and is expected to be a broadly essential gene (Hart

et al, 2017). Accordingly, knockout of CDK7 consistently led to

decreased viability in the majority of experiments. The screens in

which no viability phenotype was observed upon CDK7 knockout

were all conducted using the same library (Fig EV1C). Since the cell

lines screened with this library are derived from various different

tissues and cancer types, a common resistance to CDK7 knockout

seems unlikely. A more probable explanation for the observed batch

effect might be the inability of CDK7 targeting sgRNAs in this library

to generate a knockout in the first place. If not considered and

corrected, such batch effects can introduce false predictions

(Fig EV1D), underlining the requirement of an efficient strategy for

their adjustment. To this end, we hypothesized that a gene knockout

should, on average, have the same effect across screens, regardless of

the library used. We then applied a model-based approach to system-

atically scan for potential batch effects where the phenotypes gener-

ated by one library differed significantly (FDR < 5%) from the

observed median phenotype across all libraries. In order to protect

real biological effects, we used a robust linear model for testing,

which is robust toward strong biological effects present in the data in

the form of outliers. In cases, in which a significant difference

between the phenotypes generated by one library and the median

phenotype across all libraries could be detected, we performed an

adjustment by subtracting the estimated difference between the library

affected by the batch effect and the remaining libraries (Fig EV1B). It

is important to point out, that this approach can be inappropriate

when there is a correlation between an sgRNA library and a biological

covariate, for example, if most cell lines screened with this specific

library are derived from similar tissues. This is not the case for most

libraries included in this analysis. For example, the GeCKOv2 and

TKOv1 libraries have been used to screen a wide variety of cell lines

derived from different tissues and cancer types (Hart et al, 2015;

Aguirre et al, 2016; Steinhart et al, 2017). An exception, however, is

the screens performed by Wang et al (2017) as well as Tzelepis et al

(2016). In these studies, screens were performed primarily in acute

myeloid leukemia (AML) cell lines. In order to preserve such tissue-

specific phenotypes through batch correction, our model-based

approach allows to include biological covariates such as a cell line’s

tissue or cancer type into the batch modeling, which can then distin-

guish between technical and biological variability.

In order to validate our data integration approach, we performed

a variety of quality control analyses. First, we clustered all screens

based on the normalized CRISPR scores (Figs 2A and EV1F). In

many cases, screens that were performed in different laboratories

with different libraries but using the same cell line clustered

together. Moreover, we observed a tendency for cell lines sharing

the same tissue origin to group together. For example, we could

identify distinct clusters of AML cell lines and adenocarcinoma cell

lines. These results suggest appropriate correction of technical bias,

leaving the biological variability across cell lines as the main driver

of the clustering. We next assessed whether normalized CRISPR

scores can be compared quantitatively across screens. Here, we

randomly selected nine core-essential polymerases and plotted

normalized CRISPR scores for these genes across screens (Fig 2B).

CRISPR scores for essential polymerases were negative and approxi-

mately on the same level with no noticeable differences between

screens published in different studies, suggesting that quantitative

comparison of scores is indeed feasible and that expected negative

viability phenotypes of core-essential gene knockouts are preserved

throughout normalization. We wondered if the normalization proce-

dure could potentially introduce false phenotypes. Generally, this

can be ruled out with the help of non-targeting controls, which,

however, were not available for all experiments in our dataset. As a

replacement, we therefore selected all screens performed in female

cell lines and plotted normalized CRISPR scores for nine randomly

selected genes located on the Y chromosome (Fig 2C). We observed

CRISPR scores to be approximately 0, implying that no false pheno-

types are introduced artificially by the normalization. Next, we

determined how well core-essential and non-essential reference

genes (Hart et al, 2015, 2017) could be separated based on the

normalized CRISPR scores by generating precision–recall curves

(Fig 2D), based on which we observed good performance across all

screens. We further examined if the normalized CRISPR scores could

capture well-studied examples of oncogene addiction. Oncogene

addiction describes a phenomenon where cancer cells, albeit harbor-

ing many molecular aberrations, become strongly dependent on only

a single one of them. Reversing this abnormality leads to growth

inhibition and apoptosis (Weinstein & Joe, 2006). We selected the

well-studied oncogenes KRAS, NRAS, BRAF, and PIK3CA and

compared the CRISPR scores of cell lines harboring a mutation of

these genes to the rest of the cell lines (Fig 2E–H). As expected, we

observed considerably stronger phenotypes in the mutated cells as

compared to the wild-type cells. Last, we determined whether genetic

dependencies previously identified in screens used for our analysis

could be reproduced (Fig EV1E). In all cases, we could achieve

comparable results to those previously published, corroborating the

usage of normalized CRISPR scores for valid interscreen analysis.

Interactions between gene knockouts and cancer alterations
reveal genetic wiring maps

In order to determine genetic interactions, we formed all pairwise

combinations between genes knocked out by CRISPR/Cas9 in

pooled viability screens (target genes) and genes altered in cancer

cells (query genes) (Fig 1C). We only considered genes as queries if

they contain an alteration in at least three distinct cell lines (Dataset

EV2). A cancer alteration was defined as a somatic mutation, a

somatic copy number alteration (SCNA) or differential expression of

a gene. We pooled alterations for each gene based on three assump-

tions: We assumed that (i) a loss of gene copy number behaves

similarly to a disruptive somatic mutation (e.g., a frame-shift
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mutation or a nonsense mutation), (ii) a gain of copy number

behaves similarly to a gain of gene expression, and that (iii) somatic

mutations of the same gene have, on average, a similar functional

consequence. Even though these assumptions, especially number 3,

do in reality not always hold true, we found them to be a useful

approximation judging by the results we obtained in downstream

genetic interaction analyses. In addition, we further refined some of

the pooled genetic alterations by manual curation excluding cell

lines with alterations known to be functionally dissimilar to other

alterations of the same gene. This, however, was only possible for

A

B

D E F G H

C

Figure 2. Results and quality control of data integration and normalization.

A A heat map shows a clustering of normalized CRISPR scores (average log2 fold change of sgRNAs targeting a gene) for genes present in each sgRNA library used in
screens included in the analysis. Rectangular windows highlight experiments where screens performed in the same cell line but in different laboratories cluster
together. White annotation bars indicate shared biological properties of the cell lines in each cluster. Gray bars indicate the annotated cell line does not fit to the
annotation of other cell lines in the same cluster.

B Normalized CRISPR scores across experiments are displayed for a randomly selected set of nine core-essential polymerases. Each dot corresponds to one screen,
and different colors highlight the publications that the data were derived from. More negative CRISPR scores indicate a more negative viability response upon gene
knockout.

C Normalized CRISPR scores across experiments in female cell lines are displayed for a randomly selected set of nine genes located on the Y chromosome serving as
non-targeting controls. Colors depict different publications.

D Precision–recall curves showing the performance of normalized CRISPR scores at distinguishing core-essential from non-essential genes. Each line corresponds to
one experiment. High recall while maintaining high precision indicates good performance.

E–H Comparison of normalized CRISPR scores in a different genetic background for four different control dependencies. Red lines indicate group means. Statistical
significance was determined using a two-sided Student’s t-test. Each data point represents one screening experiment. The groups consist of 12 (KRAS mut.), 44
(KRAS wt), 7 (NRAS mut.), 56 (NRAS wt), 11 (BRAF mut.), 63 (BRAF wt), 15 (PIK3CA mut.) and 59 (PIK3CA wt) data points.
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well-characterized genes. In total, we formed 3.8 million gene pairs

of 17,218 target genes and 221 query genes.

Assuming that two genes do in most cases not interact with each

other, we first performed a statistical test for each gene pair,

comparing normalized CRISPR scores of cells that contain an alter-

ation of the query gene to cells that do not contain the alteration.

Here, we used a multilevel model including the cell line correspond-

ing to each data point as a random effect to account for biases that

could potentially be introduced when one cell line was screened

multiple times. In some cases, we observed high correlation between

several query genes (Fig EV2A). This observation can, for example,

be explained by a co-deletion of genes that are located close to each

other on the genome. For instance, CDKN2A, a tumor suppressor

gene (Liggett & Sidransky, 1998) located on chromosome band

9p21, is often co-deleted with its surrounding genes (Muller et al,

2015). In such cases, it is not possible to determine with which of

the two potential query genes a target gene should be predicted to

interact. We addressed this by aggregating identical query genes, as

determined by the correlation of their model coefficients, into “meta

genes” that we then used for downstream analyses (Fig EV2B). To

quantify the interaction strength of each gene pair, we calculated p-
scores (Fig 3A and B) as described previously (Horn et al, 2011;

Laufer et al, 2013; Fischer et al, 2015). Altogether, our analysis

predicted 17,545 gene–gene interactions at FDR < 20% (0.8% of

total combinations tested after meta gene aggregation).

Examining the proposed interactions, we found that our analysis

was able to recover many previously characterized dependencies

across several pathways that have been extensively studied in the

past (Figs 3 and EV2F–H). For example, we identified many positive

interactions (i.e., cells containing an alteration of the query gene are

more resistant to perturbation of the target gene) between TP53 and

several genes involved in stabilization of the p53 protein (Fig 3C).

In wild-type cells, p53 is kept at low abundance by E3/E4 ubiquitin

ligases including, for example, MDM2 and MDM4 (Fig EV2G),

which can mediate its degradation via the proteasome (Lavin &

Gueven, 2006; Frum & Grossman, 2014). Knockout of these ubiqui-

tin ligases likely leads to an accumulation of p53, which might then

mediate apoptosis and impede proliferation resulting in a negative

viability phenotype. In tumor cells, missense mutations of the TP53

gene can inhibit p53 degradation (Lavin & Gueven, 2006; Frum &

Grossman, 2014) where it can accumulate and act as an oncogene

(Oren & Rotter, 2010), which could explain the resistance of TP53-

mutated cell lines to loss of E2/E3 ubiquitin ligases. An interaction

that at first glance might seem surprising is a negative interaction of

TP53 with itself (i.e., cells with a TP53 mutation are more sensitive

to TP53 knockout). In the context of epistasis, however, this might

be explained by the fact that in TP53 wild-type cells, where TP53

acts as a tumor suppressor, its knockout leads to a gain of viability

phenotype, which is not the case for tumor cells which already

harbor mutations in TP53 (Fig EV2H). Next, we looked at predicted

interactions of the BRAF oncogene. Unsurprisingly, we found nega-

tive interactions with BRAF itself as well as MAP2K1 (MEK1) and

MAPK1 (ERK2), both of which lie downstream of BRAF in the MAPK

signaling cascade (Seger & Krebs, 1995). In contrast, no interactions

were found for upstream components of the pathway such as KRAS

or EGFR (Fig 3D), likely because the constitutive activation of BRAF

caused by its mutation confers independence on upstream pathway

components. Following previous studies (Brockmann et al, 2017),

we reasoned that genes that interact specifically with one or few

related query genes should be functionally related. We thus selected

ten query genes including their predicted interaction partners at

FDR < 20% and performed gene set overrepresentation analysis

(Kamburov et al, 2013) for groups of target genes specifically inter-

acting with one of the selected queries (Fig 3F). Looking at path-

ways over-represented within the analyzed set of genes, we found

several well-characterized relationships linking, for example, muta-

tions of KRAS, NRAS, or BRAF to MAPK signaling, BCL2 to apoptosis

or TP53 to the stabilization thereof, suggesting a high number of

true predictions. In addition, our analysis proposes genetic interac-

tions for many other less well-studied query genes (a full list of

predicted interactions can be found in Dataset EV3). To find traits

shared between query genes for which high interaction numbers

were predicted (Fig EV2E), we performed GO (Ashburner et al,

2000) molecular function enrichment analysis (Kuleshov et al,

2016). Unsurprisingly, we found that GO terms with the highest

enrichment scores were related to transcription factor activity

(Fig 3G). Other high-ranking GO terms were related to chromatin

remodeling and hormone receptor binding.

We hypothesized that it should be possible to combine function-

ally related query genes in order to improve prediction of regulators

of signaling pathways. Consequently, we combined loss of function

mutations of the genes APC and RNF43 (Dataset EV3) into a “Wnt

mutation” query metagene. Both, APC and RNF43, are frequently

mutated negative regulators of the Wnt/b-catenin signaling pathway

(Polakis, 2012; de Lau et al, 2014; Tsukiyama et al, 2015; Zhan

et al, 2017)—a pathway that is aberrantly regulated in various

cancers (Polakis, 2012; Giannakis et al, 2014; Zhan et al, 2017). In

the absence of Wnt ligands, APC regulates b-catenin activity via the

formation of a destruction complex with GSK3b and Axin1, which

mediates b-catenin phosphorylation. Phosphorylated b-catenin is

then targeted for degradation by the proteasome. Binding of canoni-

cal Wnts to Frizzled receptors and LRP5/6 co-receptors on the cell

surface inhibits the formation of the destruction complex, which

results in b-catenin stabilization and its translocation to the nucleus.

Within the nucleus, b-catenin interacts with TCF/LEF transcription

factors and activates transcription of Wnt target genes, which medi-

ate cell growth and survival (MacDonald et al, 2009). RNF43 is an

E3 ubiquitin ligase that can induce ubiquitination and subsequent

degradation of the Wnt–Frizzled complex (MacDonald et al, 2009;

Clevers & Nusse, 2012), thus inhibiting b-catenin signaling. Conse-

quently, disruptive mutations in APC or RNF43 can promote activa-

tion of the pathway. Examining genes predicted to interact with

loss-of-function mutations of either APC or RNF43, we observed

many known regulators of Wnt/b-catenin signaling (Fig 3E). Among

these, we identified, for example, regulators of Wnt ligand secretion,

TCF7L2 and CTNNB1 which together form the TCF/b-catenin tran-

scription factor complex, and other genes, which have previously

been linked to the Wnt/b-catenin pathway (Chen et al, 2014;

Ormanns et al, 2014).

Dependency analysis of Wnt pathway alterations reveals novel
regulators of Wnt/b-catenin signaling

We hypothesized that among known modulators of Wnt/b-catenin
signaling, our analysis should also identify so far uncharacterized

pathway regulators. Inactivating mutations of the RNF43 gene, for
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example, have previously been shown to confer dependency on

Wnt/b-catenin signaling (Jiang et al, 2013; Steinhart et al, 2017) so

we reasoned that negative interactions of RNF43 could point to posi-

tive pathway regulators. Besides known Wnt pathway regulators,

our analysis revealed negative interactions between RNF43 and

several in this context uncharacterized genes (Dataset EV3). We

aimed to experimentally validate these predictions and proceeded by

selecting three high-scoring candidate genes reported to be involved

in protein glycosylation (D’Alessio & Dahms, 2015) for follow-up

(Fig 4A). Two of these genes, PRKCSH and GANAB, together form

the heterodimeric glucosidase II. The third candidate, UGP2, is

involved in carbohydrate synthesis (Wang et al, 2016). We knocked

down each of the candidate genes using at least three different

siRNAs (Figs 4B and EV3B, Materials and Methods) or a pool

consisting of the same reagents in HEK293T cells (Fig 4B) (Thomas

& Smart, 2005). HEK293T cells were chosen as a well-established

A

C

D

E

B F

G

Figure 3. Results of predicted genetic interactions.

A Distribution of p-scores calculated for each pairwise interaction. Negative values indicate negative (aggravating interactions), and positive values indicate positive
(buffering) interactions. Values > 0.2 and < �0.2 are colored yellow and blue, respectively.

B The number of positive and negative interactions per gene. Interactions with a p-score > 0.2 are considered positive, and interactions with a p-score of < �0.2 are
considered negative.

C–E Volcano plots showing genes interacting with TP53 loss-of-function mutations (C), BRAF V600E mutations (D), and APC or RNF43 loss-of-function mutations (E).
Each dot corresponds to one gene. Interactions that are significant at FDR < 0.2 are colored in blue in case the interaction is negative or yellow if it is positive.
Selected genes are highlighted and labeled.

F A network graph showing gene set enrichment results for sets of interaction partners. Each of the colored diamonds corresponds to one of 10 selected query
alterations. The color of each diamond indicates the type of alteration as described in the legend at the bottom. Each gray dot connected to one or more query
gene nodes represents a target gene that interacts (FDR < 0.2) with the query. Gene set enrichment analysis was performed for genes that fall in the same
compartment as indicated by the dashed line. Genes in compartments toward the edge interact with one specific query. Genes positioned in the center of the circle
have a more promiscuous interaction profile. Selected enriched pathway terms are used to label the query gene nodes.

G GO terms enriched among 40 query genes with the most interactions (|p| > 0.2, FDR < 0.2).
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model for canonical Wnt signaling activation, which harbor no

known mutations in the Wnt pathway. Furthermore, HEK293T cells

feature an inactive state of canonical Wnt signaling, which is why

the pathway can be activated by overexpression of several key

components (Wnt3, Dvl3, and b-catenin).
Overexpression of Wnt3 mimics auto- and paracrine activation of

canonical Wnt signaling at the level of the Wnt secreting cell which

has been shown to be dependent on the Wnt-secretory components

Porcn and Evi/Wls (Bänziger et al, 2006; Bartscherer et al, 2006;

Bartscherer & Boutros, 2008; Herr & Basler, 2012). In contrast, over-

expression of Dvl3 induces the pathway downstream of the receptor

complex in the receiving cells. Overexpression of b-catenin leads to

pathway activation downstream of APC (Figs 4B and EV3A). We

observed that knockdown of each of the tested candidate genes

followed by pathway activation induced by Wnt3 expression

resulted in strongly reduced activation of a TCF4/Wnt reporter,

A B

C D

Figure 4. Candidate genes GANAB and PRKCSH regulate Wnt secretion.

A Three candidate genes (dark gray circles) interact with the RNF43 query gene (rectangle), similar to well-characterized pathway components (light gray circles).
B HEK293T cells were reverse transfected with siRNA pools targeting genes labeled on the x-axis. 24 hours after transfection, Wnt signaling was activated by

overexpression of Wnt3, Dvl3, or b-catenin plasmids. The TCF4/Wnt Firefly luciferase signal was normalized to the actin-Renilla signal. Results are shown as averages
of 3–4 independent experiments � s.e.m.

C HEK293T cells were reverse transfected with pooled siRNAs targeting GANAB or PRKCSH. After 24 h, the indicated Wnt3 NanoLuciferase constructs were transfected
together with a CMV Firefly luciferase reporter. 48 hours later, luciferase signals were measured in the medium and lysate. % reporter activity denotes the Wnt3
NanoLuciferase signal in the medium normalized to NanoLuciferase and Firefly luciferase signals in the lysate. Results are shown as averages of three independent
experiments � s.e.m.

D Schematic depiction of a hypothetical mechanism where Wnt3 secretion is controlled by glucosidase II.
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which mimics transcription activation of genes regulated by b-
catenin (Fig 4B). Interestingly, knockdown of GANAB, PRKCSH, or

UGP2 did not show a strong effect on reporter activity or even

enhanced induction upon transfection with Dvl3 or b-catenin
expression plasmids (Fig 4B). These results allow to conclude an

interference of the candidates investigated at the level of Wnt secre-

tion or at the receptor level, since the negative effect on Wnt activity

is abolished upon further downstream pathway activation by Dvl3

or b-catenin.
To further investigate the role of the glucosidase II complex and

by this protein glycosylation, secretion and quality control of glyco-

protein folding in the ER in the context of Wnt signaling, we

performed a Wnt secretion assay upon knockdown of PRKCSH and

GANAB (Fig 4D; D’Alessio & Dahms, 2015). For this, we coupled

Wnt3 to a NanoLuciferase (Hall et al, 2012) sequence within a

Wnt3 expression plasmid. The NanoLuciferase sequence was

integrated either after the signal peptide (NLucWnt3) or at the

C-terminus of Wnt3 (Wnt3NLuc) to exclude an effect of NanoLuci-

ferase coupling on Wnt3 secretion. A NanoLuciferase readout

subsequently allowed to detect secreted Wnt3 proteins in the cell

culture supernatant and to normalize it to the amount of Wnt3 in

the cell lysate. Upon knockdown of either GANAB or PRKCSH,

Wnt3 secretion was reduced about 40–50% using either the

NLucWnt3 or Wnt3NLuc constructs (Figs 4C and EV3C). These data

substantiate an already published necessity of Wnt ligand glycosyla-

tion for successful secretion of Wnt proteins (Fig 4D; Komekado

et al, 2007).

Similarity of interaction profiles predicts functional relationships
of genes

Several studies have previously shown that functionally similar

genes can be identified by comparing their interaction profiles. Here,

the vectors of interaction scores across query genes are compared

for all possible pairs of target genes using a measure of similarity—

most commonly their correlation. Two target genes with highly

correlating interaction profiles are then predicted to share biological

function through guilt by association (Fig 1D). Encouraged by the

observation of pathway enrichment among target genes predicted to

interact with the same query, we reasoned that an analysis of inter-

action profile similarity should also be possible based on our results

despite a relatively low number of query genes (167 after aggrega-

tion of highly similar query genes). Consequently, we correlated

Pearson’s correlation coefficients of p-score interaction profiles for

all pairwise combinations of target genes. We reasoned that data

about known protein complex co-membership should be able to

serve as a reference to estimate the predictive power of our

approach. Hence, we downloaded all human protein complex data

from the CORUM (Ruepp et al, 2010) database and compared our

predicted associations to the known protein complex data by

receiver operator characteristic (ROC) analysis. Initially, this analy-

sis revealed our predictions of protein complex co-membership to

be unsatisfactory. After careful inspection of the predicted relation-

ships, we noticed that the correlation coefficient was in most cases

influenced considerably by very small p-scores. Such data points do

not hold much biological information as they merely indicate that

there might be no connection between a target and a query gene

based on a viability phenotype. Hence, we hypothesized that

excluding interactions with very low p-scores should shift more

weight onto more informative data points and should therefore lead

to more meaningful predictions of co-functionality. We conse-

quently excluded all interactions with p-score < 0.2 and repeated

the above analysis. As excluding interactions with a low p-score
violates the Pearson’s correlation’s assumption of normality, we

used the nonparametric Spearman’s correlation instead. We calcu-

lated this correlation for all pairs of target genes where at least five

pairwise complete data points were available. Repeating the ROC

analysis as described above revealed a considerable improvement of

the resulting predictions leading to results superior to random

assignment (Fig 5A). In order to identify the most suitable

parameter thresholds, we systematically repeated this analysis using

different combinations of the pmin (minimum p-score to be consid-

ered) and nmin (minimal number of pairwise complete data points)

parameters. We noticed that more conservative parameter thresh-

olds lead to higher performance at predicting protein complexes.

However, the more conservative these thresholds become the more

genes have to be excluded from the analysis due to insufficient data.

Therefore, we decided to select pmin = 0.2 and nmin = 15 as parame-

ters for downstream analyses, assuming these cutoffs to present a

good compromise between the predictive power of the analysis and

the number of genes that can be considered. Based on these parame-

ters, we found that our analysis holds power to correctly associate

many closely interacting genes, such as CTNNB1 and TCF7L2, which

together form the TCF/b-catenin transcription factor complex

(Morin et al, 1997) or the WNT10A/FZD5 ligand receptor complex

(Voloshanenko et al, 2017; Fig 5B). Similar interaction profiles

could also be found for several members of the mediator complex, a

multisubunit complex important for the transcriptional regulation of

RNA polymerase II (Fig 5C).

We used a strict cutoff to select all target gene pairs for which

the adjusted asymptotic P-value of their profile similarity (Spear-

man’s correlation) was smaller than 1.5e-05 and connected them to

a network. The resulting network showed an edge-to-node ratio

comparable to previously reported yeast networks (Costanzo et al,

2016) with an edge representing on average an interaction profile

correlation of 0.85 (Fig EV4D). We visualized the network applying

a force-directed spring-embedded layout that can position highly

similar genes proximal to each other (Fig 5D). We next used spatial

analysis of functional enrichment (SAFE; Baryshnikova, 2016a,b) to

identify regions in the network enriched for specific biological

processes as annotated by Gene Ontology (GO; Ashburner et al,

2000; Fig 5E). SAFE analysis revealed clustering of 19 subnetworks,

which were associated with 217 different GO terms and comprised

in total 2,479 genes.

In order to ensure that the observed modules do in fact resemble

biologically meaningful functional clusters and are not just random

artifacts of the analysis, we performed a random permutation analy-

sis (Fig EV4A–C). As expected, we observed that upon random

reshuffling of links while keeping the genes and edge number the

same, the network loses its modular structure, resulting in one big

cluster of genes in the center of the network. SAFE analysis reveals

that this cluster enriches for metabolism genes, indicating that there

is a general overrepresentation of metabolism genes among genes

found to behave differentially in cancer cells.

Functionally enriched clusters not only cover biological

processes commonly found to be implicated in cancer (e.g., “cell
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division”, “Wnt & EGFR signaling”, or “cell differentiation”) but

also processes of general importance in cellular development and

behavior (e.g., “cilium morphogenesis”, “intra cellular transport”,

and “macro autophagy”). This implicates that the approach

presented here is indeed capable of identifying novel regulators of

known pathway assemblies and previously uncharacterized

members of known functional biological processes. This way, we

created an unprecedented resource of functional gene clusters to be

exploited by future studies for deeper understanding of novel mech-

anisms influencing known bioprocesses, not only important in

cancer but covering a wide range of biology. This resource can also

be used to validate prior assumption of gene functions in any func-

tional study. We anticipate that as data in more cell lines and

phenotypes become available this functional map of a cell will

continue to grow and improve.

Discussion

To identify novel functions of known genes or to assign cellular

function to unknown genes, forward genetic screens have been

conducted in many model systems ranging from bacteria to human

A

D E

B C

Figure 5. Highly correlating interaction profiles can predict functional similarity.

A ROC curve displaying the performance of interaction profile similarity at predicting protein complex co-membership. Curves are shown for different filtering
parameter combinations. The curve corresponding to the parameter combination used for downstream analysis (pmin = 0.2; nmin = 15) is highlighted in red. A gray
dashed line indicates the performance expected by random assignment.

B, C Examples of protein complexes where complex members display highly correlated interaction profiles (rSCC = Spearman’s correlation coefficient).
D Network of genes with highly correlated interaction profiles. In total, 2,497 nodes (genes) are connected by 19,044 links (FDR of individual links < 1.5e-05). An edge-

weighted spring-embedded layout was used to position the nodes.
E Spatial enrichment analysis with the SAFE algorithm highlights network modules consisting of genes with similar functional annotations based on Gene Ontology

biological processes. The labels in the figure summarize the GO terms associated with each module.

Source data are available online for this figure.
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cells (Boutros & Ahringer, 2008). Combining high-throughput

screening methods with the ability to reliably knock out every gene

in the human genome by programmable nucleases now opens up

the possibility of studying the consequences of complete or partial

loss-of-function mutations with unprecedented accuracy in various

mutational backgrounds. Genome-wide screens, predominantly for

gene essentiality, have been performed and have identified a large

number of known, new and context-specific essential genes (Wang

et al, 2014, 2015; Hart et al, 2015; Evers et al, 2016; Morgens et al,

2016; Zhan & Boutros, 2016; Rauscher et al, 2017). We developed a

computational approach to integrate dozens of high-throughput

CRISPR/Cas9 viability screens independent of screen size, library,

Cas9 type, and screening protocol. Because, compared to other tech-

niques, CRISPR/Cas9 screens have shown to be a more sensitive

method by which perturbation-induced phenotypes can be discov-

ered in human cells (Hart et al, 2015; Wang et al, 2015), such an

approach shows great promise for the systematic discovery of

cancer vulnerabilities. We developed MINGLE, a computational

framework that integrates CRISPR/Cas9 screens of diverse origin to

map genetic interactions in cancer cells. We applied this approach

to integrate data from 85 screens in human cancer cell lines and

analyzed the viability effects of CRISPR/Cas9 perturbations in the

context of the cell lines’ genetic backgrounds. By systematically

evaluating 2.1 million combinations of genes, we uncovered genetic

wiring maps including many known and novel dependencies

between genes implicated in tumorigenesis and resistance to ther-

apy. We further show that these maps can identify new regulators

of pathways that play important roles in specific cancer types, for

example, b-catenin-dependent Wnt signaling.

Here, we demonstrate that members of the glucosidase II

complex control signaling activity by regulation of Wnt3 ligand

secretion, probably mediated by protein N-glycosylation. N-linked

glycosylation is an ER-based process essential for protein secretion

and folding (Xu & Ng, 2015; Fig 4D). Whereas N-linked glycosyla-

tion of Wnt3a has already been described in the past (Smolich et al,

1993), the importance of Wnt ligand glycosylation for secretion and

pathway activation is controversially discussed. While some authors

state a clear correlation between Wnt ligand glycosylation and

secretion in a human cell line (Komekado et al, 2007), others could

not observe loss of protein secretion upon suppressing protein N-

glycosylation in Drosophila (Herr & Basler, 2012; Tang et al, 2012).

Our results support a role of three genes involved in protein glycosy-

lation on Wnt pathway activation, which could be further supported

by a reduction of Wnt ligand secretion upon knockdown of GANAB

and PRKCSH.

Traditionally, genetic interactions have been examined by simul-

taneous perturbation of two genes. Our analysis is based on the idea

that one of these perturbations can be mimicked by genetic alter-

ations that naturally occur in cancer cells. Even though we find that

this concept can indeed be applied to efficiently identify true interac-

tions, it poses a number of challenges. First of all, genetic alterations

of each gene have to be pooled demanding certain assumptions

about the similarity of their functional consequences. In nature,

however, these assumptions do not always hold true which can

confound the analysis. In this study, we have attempted to address

this issue by dividing alterations into logical groups, for example, by

pooling nonsense mutations and frame-shift mutations as loss-of-

function variants. We have further refined these annotations by

manual curation excluding cell lines with variants known to be

functionally distinct from others. Although this is currently only

possible for well-characterized genes, we are confident that future

advances regarding the functional characterization of cancer vari-

ants will greatly benefit our approach. It is important to point out

that although absence of gene expression should be functionally

similar to a complete loss of gene function due to mutation, we have

not taken information about non-expressed genes into account. This

is due to the fact that transcriptomic profiles of cancer cell lines

have mostly been derived from microarray experiments so far.

Therefore, it is challenging to distinguish between non-expressed

genes and genes that are expressed at a low level (Mirnics et al,

2001). We believe that once RNA-seq data become broadly available

for cancer cell lines, this issue can be overcome. Another challenge

is posed by the fact that some genetic alterations are correlated

because they co-occur in the same cell lines or cancer types. An

example is the deletion of the chromosome 9p21 locus where the

tumor suppressor CDKN2A is located. CDKN2A is often co-deleted

with its neighboring genes (Muller et al, 2015), and it is thus not

easily possible to understand which of them is the true driver

behind a proposed interaction. This can further introduce a bias into

the genetic similarity network. In our study, we address this by

aggregating fully correlated query genes into “meta genes” that we

then proceed to use to calculate interactions and generate the

genetic similarity network. To avoid bias, we further calculate corre-

lations of genetic interaction profiles based on only a subset of

query genes such that no two query genes are more similar than

70% in terms of their cell line composition.

In this study we have required a gene to be altered in at least

three different cell lines for it to be considered as a query gene for

interaction analysis. As more data become available, however, we

expect the number of possible query genes at this threshold to grow

rapidly, which can impose a considerable multiple testing burden

on our approach. Hence, we believe that this cutoff should be re-

evaluated when the analysis is repeated with a larger dataset in

order to find the best compromise between gene coverage and statis-

tical power.

It has previously been demonstrated that profiles of synthetic

genetic interactions can group functionally related genes through

“guilt by association”. Studies in human cells have formerly relied

on RNA interference. However, it has been shown that this method

has limitations, such as off-targeting and dosage compensation

effects, that can be overcome by CRISPR/Cas9. Our approaches

allowed us to analyze interaction profiles using data from many

high-throughput CRISPR/Cas9 experiments. These profiles hold

power to predict functional relationships of genes as we show by

benchmarking against the CORUM protein complex database. Since

physical protein interactions as they occur in protein complexes

represent only a subset of possible functional relationships, we

believe that this benchmarking can be interpreted as a lower bound

for the predictive power of the analysis. We created a network that

groups genes into clusters with enriched functional profiles. Find-

ings from this analysis may be important for two reasons: First,

hypotheses about the function of weakly characterized genes that

are frequently deleted in cancer cells can be generated by looking at

the common interaction partners within functional network

modules; and second, such a network may serve as a powerful tool

to infer the function of entirely uncharacterized genes based on the
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function of connected genes. For example, over 10% of the genes in

our network are not annotated with GO biological processes.

In its current state, a limiting factor of this type of analysis is the

amount of available data. At present, there are approximately 200

genes that have been found to be frequently altered in the cell lines

included in our data and for which synthetic genetic interactions

can be tested. Therefore, only genes that interact with these genes

can be examined currently. Nevertheless, this number will increase

rapidly as new data are published, which will then allow for the

creation of increasingly complex interaction networks. Pooling func-

tionally related alterations of different genes as we demonstrate at

the example of RNF43 and APC can further expand the set of possi-

ble query genes. All in all, we believe that the presented approach

can be a powerful way to systematically discover synthetic genetic

interactions that may be of clinical interest. Furthermore, we believe

that it can serve as an important asset to the quest toward more

complete understanding of how human genes function. The

presented workflow scales well as increasing amounts of data are

becoming available.

We expect many more CRISPR/Cas9 screens in various cell lines

to be carried out in the future. We will expand our analysis once

these data become available to improve and diversify our findings.

Finally, we aim to extend our analysis to also include data from

other experiment types such as physical interactions derived from

protein–protein interaction studies. Most synthetic genetic interac-

tions, for example, do not link genes that are members of the same

pathways but instead they connect members of two interacting path-

ways (Kelley & Ideker, 2005). Therefore, integrating synthetic inter-

actions and physical interactions derived from protein-protein-

interaction experiments might provide important new insights into

how biological pathways interact with each other.

We further aim to make the predicted interactions available for

browsing and download through the GenomeCRISPR database, as

we believe that they can be a useful resource to inform candidate

gene selection for experiments that cannot be carried out at a

genome-wide scale. These include, for example, in vivo screens in

genetically engineered mouse models that are often limited by the

number of cells that can be transfected or pairwise perturbation

experiments as they are now conducted in human cells using

CRISPR/Cas9 (Du et al, 2017; Shen et al, 2017), which are limited,

by the number of possible gene combinations.

Materials and Methods

Genetic profiles of cancer cell lines

To generate profiles of genetic alterations in GenomeCRISPR

(Rauscher et al, 2017) cancer cell lines, we relied on data publicly

available in the COSMIC Cell Lines Project (Forbes et al, 2017), the

Cancer Cell Line Encyclopedia (CCLE; Barretina et al, 2012), and

additional data published previously by Bürckstümmer et al (2013)

for the KBM7 cell line and Klijn et al (2014) (Fig 1B). Taken

together, these data can characterize all except for two (a patient

derived glioblastoma cell line and the RPE1 cell line) cell lines

currently included in GenomeCRISPR. In total, 60 different cell lines

were included in the analysis. For each of these cell lines, a list of

altered genes was generated, taking into consideration the following

types of alterations: (i) gain of copy number events, (ii) loss of copy

number events, (iii) somatic mutations, excluding silent mutations

and in-frame insertions or deletions, and (iv) mRNA overexpression.

Selection of copy number alterations

First, copy number data were downloaded from the COSMIC Cell

Lines Project v81, the CCLE (file dated 27-May-2017) and the Klijn

et al (2014) publication. Gain and loss of copy number status was

determined for each gene as follows: COSMIC provides a label for

each copy number event that indicates whether the event can be

classified as a gain or loss of copy number event. We adopted this

classification for our analysis. In the paper by Klijn and colleagues,

amplification and deletion of a gene were defined as > 1 or < �0.75

of the ploidy corrected copy number (Mermel et al, 2011; Klijn et al,

2014). Consequently, the same thresholds were used in our

approach. Finally, CCLE provides log2-transformed copy number

fold changes between healthy samples and cancer cell lines at the

gene level. The absolute copy number of each gene per cell line was

estimated from the fold change data as

C ¼ ½2x � 2�

where C is the absolute copy number and x is the log2 fold change

between cell line and healthy sample. In order to assess whether

this provides a realistic estimate of the total copy number, we

analyzed the derived copy number for all Y chromosome genes in

female cell lines where copy numbers of 0 were robustly estimated.

Finally, we downloaded pre-processed gene-level copy number

data from COSMIC. All genes where a copy number of 0 was esti-

mated in a cell line were marked as loss-of-function genes. Copy

number alteration events that were observed robustly across at

least 2 different data sources were kept for downstream analysis

after excluding alterations on the X and Y chromosomes.

Selection of somatic mutations

Somatic mutation data were downloaded from COSMIC Cell Lines

Project (version 81), the CCLE (Oncomap3 mutations dated April

10, 2012, and Hybrid Capture mutations dated May 05, 2015), and

the Klijn et al and Bürckstümmer publications. Missense mutations

and frame-shift mutations were selected, and mutations reported in

disagreement between individual data sources were excluded. Next,

missense mutations were classified into driver and passenger and

driver as proposed by Anoosha et al (2016). Putative passenger

mutations were excluded, and the remaining mutations were kept

for downstream analysis. After pooling copy number alterations and

somatic mutations, we kept all genes as query genes where an alter-

ation was observed in at least three different GenomeCRISPR cell

lines.

Selection of overexpressed genes

In order to define genes that are overexpressed in cell lines included

in GenomeCRISPR, RMA (Irizarry et al, 2003) normalized micro-

array mRNA expression data were downloaded from CCLE

(CCLE_Expression_2012-09-29.res dated October 17, 2012) and the

COSMIC Cell Lines Project (v81). ComBat (Leek et al, 2012) was
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used to remove batch effects between the two different data sources,

and expression levels for cell lines featured in both sources were

aggregated by computing the mean. Next, gene expression Z-scores

were computed for each gene in each cell line. Genes on the

COSMIC list of cancer census genes for which a Z-score > 2 was

observed in at least five different GenomeCRISPR cell lines were

kept for downstream analysis.

Analysis of CRISPR/Cas9 screens

To compare viability phenotypes of high-throughput CRISPR/Cas9

screens, aggregated gene-level CRISPR scores were calculated for

each experiment. First, all negative selection screens for cell viability

were downloaded from the GenomeCRISPR database (Rauscher

et al, 2017). First, all genes targeted by less than three sgRNAs and

all sgRNA where < 30 counts were observed in the time point 0 (T0)

sample, were removed from each screen individually. In addition,

we excluded all sgRNAs in the GeCKOv2 library (Sanjana et al,

2014) that were flagged as “isUsed = FALSE” in the “Achilles_

v3.3.8.reagent.table.txt” (https://portals.broadinstitute.org/achilles/

datasets/7/download) on the Project Achilles (Aguirre et al, 2016)

website. After filtering, raw read counts were corrected for dif-

ferences in sequencing depth by dividing the each read count by the

median of all read counts of samples at both T0 and the final time

point. Based on these values, fold changes were calculated for tech-

nical replicates, after adding 1 to each count to avoid logs of 0, as

fcsgRNA ¼ log2
rcsample

rcT0

� �

where rcsample is the normalized read count measured in the

sample cell population and rcT0 is the normalized read count

measured at time point 0. In some cases, the read count abundance

in the plasmid DNA pool was given instead of time point 0

sequencing data of cells. In these cases, the plasmid DNA read

counts were used to calculate the fold changes for all sample repli-

cates of those screens. Furthermore, in two cases (Doench et al,

2016; Munoz et al, 2016), no read count data were available. Here,

we used the original fold change values provided by the authors of

the experiments.

In order to assess the quality of each screen, Bayesian Analysis of

Gene Essentiality (BAGEL; Hart & Moffat, 2016) was used to predict

gene essentiality. Using precision–recall curves the ability to sepa-

rate core-essential and non-essential genes based on the fold change

data was examined. All screens where an area under the precision-

recall-curve of less than 0.85 was observed were excluded from

further analysis. After selecting screens for downstream analysis

(Dataset EV4), gene-level CRISPR scores were calculated as the aver-

age fold change of all sgRNAs targeting a gene. We then used quan-

tile normalization to normalize CRISPR scores across experiments.

Gene-level correction of library batch effect

In order to estimate batch effects introduced by the use of different

libraries, a robust linear model of the form yi = b0 +
b1xi1 + . . .+bnxin + ei with b0 = 0 and yi = yCRISPR,i–Median(yCRISPR)

was fitted for each gene individually where n is the number of

libraries including the gene, i is the index of a data point, and

yCRISPR are quantile-normalized CRISPR scores. The coefficients

b1. . .bn are then the estimated difference between the CRISPR scores

screened in a library to the median CRISPR scores across all

libraries. A robust F-test as implemented in the R package “sfsmisc”

was used to test the null hypothesis that the median CRISPR score

observed for a gene is the same across all libraries. The Benjamini–

Hochberg method (Benjamini & Hochberg, 1995) was used to esti-

mate the false discovery rate (FDR) for each test. In case the null

hypothesis could be rejected at 5% FDR, a library specific batch

effect was assumed and CRISPR scores observed using that library

were centered by subtracting its distance to the median of CRISPR

scores across all libraries. A library was flagged from batch correc-

tion in cases where a similar (same sign of the model coefficients)

batch effect was predicted for the libraries used in the screens of

Wang et al (2017) and Tzelepis et al (2016). Both of these libraries

were used to screen primarily acute myeloid leukemia (AML) cell

lines, and thus, the null hypothesis described above might not hold

true in the case of AML-specific genes. Therefore, in such cases, no

batch adjustment was performed.

Quality control of normalized CRISPR scores

To assess the appropriateness of the normalization steps described

above, quality control was performed examining several different

properties of the normalized data. First of all, samples were clus-

tered to evaluate whether biologically related samples clustered

more closely than more biologically distant samples. Here, the set of

genes shared across all libraries was determined and Ward cluster-

ing (as implemented in R’s “ward.D2” method for hierarchical clus-

tering) was performed. The “pheatmap” R package was used to

visualize the heat map shown in Fig 2A. Next, differences in

normalized CRISPR scores across samples were observed at the

examples of nine core-essential polymerases, and nine genes situ-

ated on the Y chromosome, all of which were sampled randomly

from the set of core-essential polymerase genes (Hart et al, 2017)

and the set of Y chromosome genes, respectively. Only screens in

female cell lines were plotted in Fig 2C. To examine whether

normalized CRISPR scores could distinguish core-essential genes

(Hart et al, 2017) from non-essential genes (Hart et al, 2015),

precision–recall curves were generated for each screen using the

ROCR R/Bioconductor package (Gentleman et al, 2004; Sing et al,

2005). Further, a number of control oncogenes (KRAS, NRAS, BRAF

and PIK3CA) were selected to see whether an expected difference in

response to gene knockout depending on the mutation status of the

gene could be observed. P-values shown in Fig 2E–H were calcu-

lated using a two-sided Student’s t-test as implemented in R. Finally

we checked that potential unwanted effects introduced by the batch

correction did not distort findings published in the papers where

data were included in our pipeline. For these comparisons, normal-

ized CRISPR scores were used for the cell lines featured in the origi-

nal publications.

Combinatorial testing of gene–gene interactions

To test for differences in fitness response based on loss-of-function

genotypes, fitness scores for all CRISPR/Cas9 screens in cell lines

where genotype information was available were selected. We

selected all genes that were marked as altered by somatic mutations
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or copy number changes in at least three or marked as overex-

pressed in at least five distinct cell lines as query genes. In total, 221

genes were selected. Consequently, we identified all combinations

between these query genes and genes perturbed in screens (target

genes). Target genes were selected such that fitness scores were

available for at least three distinct cell lines with and without a

query loss-of-function. Overall, we identified ~3.8 million such

combinations. As input data for the test, we used normalized

CRISPR scores as described above. We fitted a linear mixed-effects

model for each combination, modeling the loss-of-function genotype

as fixed effect and the cell line as random effect to account for cell

line-specific biases. For modeling, the R package “lme4” (Bates

et al, 2014) was used. The R package “lmerTest” (Kuznetsova et al,

2016) was used to calculate an estimation of significance (P-value)

for the coefficients of each model. After testing, similar queries were

identified by calculating the Pearson’s correlation of the estimated

model coefficients for each pair of query genes. Pairs of query genes

with a 100% correlation were merged together into a “meta” query

gene. To control the expected fraction of false discoveries made

during multiple testing, independent hypothesis testing (IHW; Igna-

tiadis et al, 2016) was used using the variance of the normalized

CRIPSR scores of the altered (mutated or overexpressed) group as a

covariate for hypothesis weighting (Fig EV2C and D).

Quantification of genetic interactions

Interactions between genes were quantified using the p-score
statistic (Horn et al, 2011; Laufer et al, 2013; Fischer et al, 2015).

p-scores were calculated using the “HD2013SGImaineffects” func-

tion implemented in the R/Bioconductor package “HD2013SGI”

(Laufer et al, 2013). To generate the input for the “HD2013SGImain-

effects” function, normalized CRISPR scores were entered by

subtracting column means and scaled by dividing columns by their

standard deviation.

Gene set enrichment network

To generate the gene set enrichment network shown in Fig 3F, we

selected 10 query genes and all target genes interacting with these

queries at FDR < 20%. The resulting list of edges was visualized in

Cytoscape (Shannon et al, 2003) using a force-directed spring-

embedded network algorithm. Query gene nodes were arranged

manually. ConsensusPathDB (Kamburov et al, 2013) was used to

perform gene set overrepresentation analysis, and for each query

gene, a pathway term was selected from the list of results. The

q-values displayed in Fig 3F are as provided by ConsensusPathDB.

We would like to mention that Fig 3F was inspired by a previous

study by M. Brockmann and colleagues (Brockmann et al, 2017).

TCF4/Wnt-luciferase reporter assay

HEK293T cells were cultured in Dulbecco’s MEM (GIBCO) supple-

mented with 10% fetal bovine serum (Biochrom GmbH, Berlin,

Germany) without antibiotics. Experiments were performed in a

384-well format using white, flat-bottom polystyrene plates

(Greiner, Mannheim, Germany). HEK293T cells were reverse trans-

fected with 20 nM indicated siRNAs with the help of 1% of Lipofec-

tamine RNAiMAX Transfection Reagent (#13778150; Thermo Fisher

Scientific Waltham, MA, USA). 24 hours later, cells were transfected

with 0.2% of TransIT-LT1 transfection reagent (731-0029; Mirus/

VWR, Madison, USA), 20 ng of TCF4/Wnt Firefly luciferase reporter

(Demir et al, 2013), and 10 ng of actin-Renilla luciferase reporter

(Nickles et al, 2012), and the canonical Wnt signaling was induced

by addition of the Wnt3(20 ng)-, b-catenin (20 ng)-, or Dvl3 (5 ng)-

expressing plasmids or left without induction by addition of the Ctrl

plasmid pcDNA3. Luminescence was measured with the Mithras

LB940 plate reader (Berthold Technologies, Bad Wildbad,

Germany). TCF4/Wnt-luciferase signal was normalized to the actin-

Renilla luciferase reporter signal. All siRNA sequences and

constructs used for the TCF4/Wnt-luciferase reporter assay are

listed in Dataset EV5.

NanoLuciferase Wnt3 secretion assay

Similar to the TCF4/Wnt-luciferase reporter assay, HEK293T cells

were reverse transfected with indicated siRNAs and seeded into

384-well format white, flat-bottom polystyrene plates (Greiner,

Mannheim, Germany). 24 hours later, cells were transfected with 20

ng of NLucWnt3 or Wnt3NLuc expression constructs, together with

5 ng of CMV Firefly luciferase reporter plasmids (Campeau et al,

2009). The construct NLucWnt3 was generated by cloning the Nano-

Luciferase sequence (Hall et al, 2012) after the signal peptide of

Wnt3 into the pcDNA Wnt3 expression plasmid (Najdi et al, 2012),

while it was cloned at the C-terminus of Wnt3 for the construct

Wnt3NLuc. 48 hours later, the plates were centrifuged and 20 ll of
culture medium was transferred to a new plate. NanoLuciferase

signal in the lysate and medium was detected with the help of a

Nano-Glo Luciferase Assay (#N1110) from Promega (USA) accord-

ing to the manufacturer’s instructions. Luminescence was measured

with the Mithras LB940 plate reader (Berthold Technologies, Bad

Wildbad, Germany). In the case of the lysate, first the signal for

Firefly luciferase and then for NanoLuciferase was measured. The

NanoLuciferase signal in the culture medium was normalized to the

NanoLuciferase signal in lysate normalized to the Firefly luciferase

signal. All siRNA sequences and constructs used for the Wnt3 secre-

tion assay are listed in Dataset EV5.

Gene similarity network benchmarking and modeling

In order to assess whether interaction similarity networks can

predict protein complex co-membership, protein complex annota-

tions were downloaded from the CORUM databases (Ruepp et al,

2010) and target genes included in the CORUM data were selected.

We removed all pairwise interactions ptq with |ptq| < pmin where ptq
is the interaction score between target gene t and query gene q and

pmin is a chosen threshold. Subsequently, the Spearman’s correla-

tion was calculated as implemented in the “Hmisc” R package for

each possible pair of target genes using pairwise complete observa-

tions. Target gene pairs where less than nmin data points were used

to calculate the correlation were excluded. This analysis was

performed for six different combinations of the parameters pmin and

nmin, and ROC curves were drawn to visualize how well the result-

ing correlations could predict protein complex co-membership as

annotated in CORUM. Based on these results, and pmin = 0.2 and

nmin = 15 were selected as thresholds to calculate Spearman’s corre-

lations between all possible target gene pairs as described above. To
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take into account that each correlation is based on a different

number of data points, gene pairs were ranked by P-value instead of

raw Spearman’s correlations. Hence, for each correlation, the

asymptotic P-value was computed using the “Hmisc” R package test-

ing the null hypothesis that the correlation between a pair of genes

is 0. To select gene pairs as edges for the gene similarity network

shown in Fig 5D, the false discovery rate (FDR) was controlled

using the Benjamini–Hochberg method at the strict threshold of

FDR < 1.5e-05. The network was visualized using Cytoscape

(Shannon et al, 2003). A force-directed spring-embedded layout was

used to position the nodes of the network without edge weighting.

The visual representation of the network was inspired by previous

studies in yeast (Costanzo et al, 2010, 2016). The spatial analysis of

functional enrichment (SAFE; Baryshnikova, 2016a,b) Cytoscape

plugin was used to identify functional modules in the network. For

SAFE analysis, the map-based distance metric was chosen with a

maximum distance threshold of 0.6 (percentile). To build the

composite map, a minimal landscape size of 7 was chosen and the

Jaccard distance was used as a similarity metric for group attributes

with a similarity threshold of 0.75. As background for the enrich-

ment, all nodes in the annotation standard were chosen. In SAFE,

the annotation standard is a binary matrix of genes (rows) and

annotation terms (columns). A value of 1 indicates that a gene is

annotated with a specific annotation term. For our analysis, we

generated such an annotation standard containing Gene Ontology

(GO; Ashburner et al, 2000) Biological process annotations for all

target genes tested. GO annotations were downloaded from the

example data section of the SAFE algorithm’s GitHub page (https://

github.com/baryshnikova-lab/safe-data/blob/master/attributes/go_

Hs_P_160509.txt.gz; accessed 09/13/2017) and filtered to contain

only genes tested in our interaction analysis.

Data and software availability

Documented computer code to reproduce the analyses described in

this study can be downloaded as an R package from GitHub at

https://github.com/boutroslab/Supplemental-Material/tree/master/

Rauscher_2017.

Expanded View for this article is available online.
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