
Exposure to the Proton Scavenger Glycine under Alkaline
Conditions Induces Escherichia coli Viability Loss
Donna Vanhauteghem1,2*, Geert Paul Jules Janssens1, Angelo Lauwaerts3, Stanislas Sys4, Filip Boyen5,

Eric Cox6, Evelyne Meyer2

1 Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 2 Department of Pharmacology, Toxicology and

Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 3 Taminco, Ghent, Belgium, 4 Department of Internal Medicine and Clinical Biology of

Large Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 5 Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary

Medicine, Ghent University, Merelbeke, Belgium, 6 Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke,

Belgium

Abstract

Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-
methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine
(betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of
real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow
cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity,
respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined.
Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of
esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure
to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant
increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an
adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when
exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.
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Introduction

We recently described a decrease in the viability of stationary

phase enterotoxigenic Escherichia coli (E. coli, ETEC) associated with

membrane damage and reduced growth capacity caused by

glycine and its N-methylated derivatives N-methylglycine (sarco-

sine), N,N-dimethylglycine (DMG) under alkaline stress conditions

[1]. In contrast, the trimethylated analogue of glycine, betaine, did

not affect bacterial viability. We now aim to investigate which

changes in viability parameters accompany this selective loss of

membrane integrity at alkaline pH, providing an indication on the

possible underlying mechanism.

Direct membrane interactions of peptides and amino acid-based

surfactants causing antibacterial effects are usually related to a net

positive charge of these compounds, enhancing their interaction

with anionic lipids and other bacterial targets [2]. However,

antibacterial effects through membrane altering actions of anionic

amino acid-based surfactants have also been described [3,4].

Besides a direct cytoplasmic membrane effect, it is also possible

that the ETEC membrane damage occurs secondary to a negative

influence on bacterial physiology [5]. Indeed, alkaline stress affects

bacterial homeostasis mechanisms [6], enhancing ETEC suscep-

tibility to a disturbance of their functional integrity by glycine,

sarcosine and DMG. Figure 1a represents the physiological

conditions (neutral, i.e. no pH stress), where the intracellular pH

is kept in a narrow range near pH 7.6 [7,8]. A shift to an alkaline

environment (Fig. 1b) is stressful for bacteria as illustrated by the

induction of major stress systems in E. coli, such as heat shock

responses [9,10], the SOS regulon [11], and the Cpx envelope

stress mechanisms [12]. pH stress also induces several physiolog-

ical changes [13] and initiates a large number of adaptive

strategies. These strategies include: (i) increased metabolic acid

production through amino acid deaminases and sugar fermenta-

tion; (ii) increased ATP synthase that couples H+ entry to ATP

generation; (iii) changes in cell surface properties; and (iv)

increased expression and activity of monovalent cation/proton

antiporters [6,7]. Interference at various levels of the compensa-

tion mechanisms may eventually lead to a loss of bacterial viability.

Different complementary approaches can be used to assess

bacterial viability/activity [14,15,16,17]. In our previous work we

established the loss of membrane integrity due to exposure to

glycine, sarcosine and DMG under alkaline conditions [1]. These

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e60328



experiments were repeated using log phase E. coli and the

occurrence of membrane damage was further assessed by

measuring the leakage of nucleic [18]. Traditional culture based

methods, minimal inhibitory concentrations (MIC) and plate

counts, were also performed. The energy status of bacteria is an

important functional indicator of bacterial viability. Bacteria use

two forms of metabolic energy: electrochemical energy provided

by ion gradients and energy-rich phosphate bonds, such as ATP

[14]. Measurements of these forms of energy, such as membrane

potential and ATP concentration can be used as indicators of cell

viability [19]. Next to ATP, the inorganic phosphate (polyP)

concentration is also related to the energetic status of bacteria as

polyP is considered to be a general source of ATP in several well-

known reactions [20]. Moreover, polyP has also been found to be

involved in several bacterial stress responses [20,21]. Closely

connected to the energy metabolism of E. coli is its respiratory

activity, as the electro-chemical gradient of protons generated by

respiration in the process of oxidative phosphorylation is used to

synthesize ATP from ADP and inorganic phosphate [22,23]. Both

the respiratory chain and Fo F1-ATP synthase have been reported

to regulate the intracellular pH in bacteria [24,25]. General

enzyme activity is another essential factor in maintaining cellular

viability. For this purpose, esterases can provide a good indication

of the bacterial metabolic activity. They demonstrate the cells’

capacity to synthesize these enzymes and maintain them in an

active form [17].

The present study performed an in-depth viability analysis

based on a combination of real-time physiological techniques

which generated novel data allowing the formulation of a clear

hypothesis on the effects of glycine, sarcosine and DMG on E. coli

under alkaline stress conditions, as illustrated in Fig. 1.

Materials and Methods

Test Compounds
Glycine ($99% purity), sarcosine ($99% purity) and betaine

($99% purity) were obtained from Sigma Aldrich (St. Louis, MO),

DMG ($97% purity) was obtained from Taminco (Taminco

B.V.B.A., Ghent, Belgium). All compounds were stored to

manufacturers’ guidelines until use. Compound characteristics

are described by Vanhauteghem et al. [1].

Figure 1. Maintaining E. coli pH homeostasis at physiological
pH (a). During respiration, protons (H+) are pumped extracellularly,
while ATP synthesis via the FoF1-ATP synthase complex moves protons
intracellularly. FoF1-ATP synthase converts the free energy of the proton
motive force (PMF) into the chemical energy source ATP. Under
physiological conditions, the extracellular pH is more acid than the
intracellular pH. The cytoplasmic membrane is negatively charged on
the inside, and positively charged on the outside. (1) represents the
cytoplasmic membrane, (2) represents the outer membrane. Main-
taining E. coli pH homeostasis under alkaline stress conditions
(b). To prevent cytosolic alkalinisation under extracellular alkaline
conditions, the cytoplasmic pH is-next to other mechanism - also
regulated by the import of protons by the upregulated ATP synthase
and by a multitude of cation antiport systems, pumping in protons. The
membrane potential (nY) is relatively increased (i.e. more negative) to
compensate for the inverted proton concentration gradient (npH).
Exposure of alkaline stressed E. coli to proton scavenging
amines such as glycine (c). When unprotonated glycine enters the
neutral cytosol under extracellular alkaline conditions it becomes
protonated. This causes membrane hyperpolarisation (1) by proton
consumption and a higher ATP consumption in an effort to sustain pH
homeostasis (2). These effects induced by proton scavenging lead to a
loss of membrane integrity (3).
doi:10.1371/journal.pone.0060328.g001
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Bacterial strain, culture and exposure conditions
The haemolytic ETEC strain GIS26, serotype 0149:F4ac,

positive for heat labile (LT) and heat stabile (STa and STb)

enterotoxins [26], was grown overnight at 37uC in brain heart

infusion medium (BHI, Oxoid Limited, Hampshire, United

Kingdom) to stationary phase. This overnight culture was

inoculated 1:100 into fresh BHI broth and grown for 3 h to the

exponential phase at 37uC. Log phase bacteria were collected by

centrifugation (10.0006 g, 2 minutes, room temperature) of 1 ml

of the bacterial culture and then resuspended in each of the

appropriate test compound solutions in sterile PBS.

A 50 mM solution of each test compound was prepared in

sterile PBS. The pH of these solutions was adjusted to pH 9.5 by

either HCl or NaOH addition. Log phase ETEC were dispersed in

1 ml of each test sample. As a control, pH-adjusted sterile PBS was

used. The bacterial suspensions were incubated shaking for 5, 15,

30, 90 and 180 minutes at 37uC. After incubation, analysis of the

different viability parameters was performed as described for each

parameter below. Proper positive and negative controls were

included for each analysis.

Minimum inhibitory concentration (MIC)
Determination of the minimum inhibitory concentration (MIC)

for the test compounds was performed using the broth microdilu-

tion assay, using Mueller-Hinton agar at a pH of 6.5, 8.5, 9.0, 9.5

and 10.0. Inoculated microwells free of the test substance, but

adjusted to the respective pH values, were included as growth

controls, uninoculated microwells were used as sterility controls.

Results were recorded after 20 h incubation of the microwell

plates in an aerobic atmosphere at 35uC (+/22uC).

Plate counts
The number CFU per ml was assessed by conventional plate

count, which is based on CFU values obtained from a 10-fold

serial dilution of each sample plated on Tryptone Soy Agar (Oxoid

Limited, Hampshire, United Kingdom) and incubated overnight

at 37uC. These plate counts determine the number of culturable

bacteria in each sample. All data are the result of triplicate

experiments.

Leakage of 260-nm-absorbing material
After incubation samples were centrifuged at 10.000 g for 2 min

at 4uC, and 750 ml of the supernatant for each treatment was

added to quartz cuvettes and absorbance values at 260 nm were

recorded using a spectrophotometer (Genesys 10UVn Thermo

Electron Company, Cambridge, UK). All experiments were

performed in triplicate.

Flow cytometric parameters
All data were obtained using a FACSCanto flow cytometer

(Becton, Dickinson and Company, Erembodegem, Belgium), and

acquired and processed using FacsDiva software (Becton, Dick-

inson and Company, Franklin Lakes, NJ, USA). All experiments

were performed in triplicate.

Membrane integrity was assessed using the LIVE/DEAD

BacLightTM kit (Molecular Probes Eugene, OR, USA) as

described by the manufacturer. This bacterial viability kit is

widely used in flow cytometry and consists of two nucleic acid

stains: green fluorescent SYTO 9 is cell-permeable and freely

enters all ETEC, either live or dead, while red fluorescent

propidium iodide (PI) can only enter membrane-comprised cells

[27]. In our set-up, 10 ml of the treated bacterial cell suspension

was added to 987 ml of sterile saline. These samples were

immediately stained with 3 ml of a mixture of SYTO 9 (5 mM

final concentration) and PI (30 mM final concentration) and

incubated for 15 minutes in the dark at room temperature. Flow

cytometric measurements were performed immediately thereafter.

Membrane potential was assessed using the BacLightTM

Membrane Potential kit (Molecular Probes Eugene, OR, USA) as

described by the manufacturer. The kit contains DiCO2 which

exhibits green fluorescence in all bacterial cells, but the

fluorescence shifts toward red emission as the dye molecules self-

associate at the higher cytosolic concentrations caused by larger

membrane potentials. The red to green fluorescence ratio is used

as a size-independent indicator for membrane potential. The

proton ionophore carbonyl cyanide m-chlorophenylhydrazone

(CCCP) was used to provide a depolarized control as it destroys

membrane potential by eliminating the proton gradient. In our

set-up, 10 ml of the treated bacterial cell suspension was added to

980 ml of sterile PBS. These samples were immediately stained

with 10 ml of a DiOC2 (30 mM final concentration) and incubated

for 30 minutes at 37uC in the dark. Flow cytometric measurements

were performed immediately thereafter.

Esterase activity was assessed using 5(6)-carboxyfluorescein

diacetate (cFDA, Molecular Probes, Eugene, OR, USA). cFDA is

an esterified fluorogenic substrate widely used for assessing esterase

activity in bacteria. It is cell permeant and once inside the cell, the

non-fluorescent cFDA is enzymatically cleaved via hydrolysis of

the diacetate groups by nonspecific esterases into fluorescent

carboxyfluorescein (cF), which is accumulated cytosolically [28].

Esterified fluorogenic substrates offer a means of rapid detection of

metabolically active bacteria when used in combination with

techniques that measure fluorescence at the single cell level, such

as flow cytometry. Prior to use, concentrated stock solutions of

21.7 mM cFDA were prepared in DMSO, and further diluted to a

final concentration of 10 mM in sterile PBS. Samples of 1 ml of

the treated bacterial suspensions were centrifuged (10.0006 g, 2

minutes) and the supernatant was discarded. Cell pellets of ETEC

were resuspended in 20 ml of 10 mM cFDA and incubated for

30 min at 37uC in the dark. Following incubation, cells were

washed and resuspended in 1 ml sterile PBS and then analyzed by

flow cytometry.

Respiratory activity was assessed using 5-cyano-2,3-ditolyl

tetrazolium chloride (CTC). CTC is a colourless, membrane-

permeable compound that produces a red fluorescing precipitate

in the cell when it is reduced to its formazan by the electron

transport system of bacterial cells [29]. In our set-up, 20 ml of the

treated bacterial cell suspension was added to 880 ml of sterile

PBS. These samples were immediately stained with 100 ml of a

CTC (5 mM final concentration) and incubated for 30 minutes at

37uC in the dark. Flow cytometric measurements were performed

immediately thereafter.

ATP measurement
For the determination of total ATP, the BacTiter-GloTM

System (Promega, Madison, WI, USA) was used as described by

the manufacturer. The BacTiter-GloTM Buffer was mixed with the

lyophilized BacTiter-GloTM Substrate and equilibrated at room

temperature. The mixture was stored for 3 h at room temperature

to ensure that all ATP was hydrolysed (‘‘burned off’’) and the

background signal had decreased. A test sample of 100 ml i.e. both

the bacterial population and the incubation medium, was taken

from the exposed resuspended bacterial populations and mixed

with an equal volume of BacTiter-GloTM Reagent. Luminescence

was measured with a multiplate luminometer (Fluoroscan Ascent

FI, Thermo Labsystems, Helsinki, Finland). A calibration curve

with adequate dilutions of pure rATP (Promega, Madison, WI,
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USA) was measured for each buffer prepared. All data are the

result of triplicate experiments.

Inorganic phosphate (polyP) measurement
Intracellular polyP was measured in cell suspension using the

DAPI-based fluorescence approach [30]. Cells were washed and

resuspended in buffer T (100 mM Tris HCl, pH 7.5) and DAPI

(496-diamidino-2-phenylindole) (Sigma Aldrich, St. Louis, MO)

was added to a final concentration of 10 mM. After 5 min agitation

at 37uC, the DAPI fluorescence spectra (excitation 420 nm with a

bandwith of 8 nm, emission 535 nm with a bandwith of 25 nm)

were recorded using a Perkin Elmer Envision Xcite spectrofluo-

rometer. The fluorescence of the DAPI-polyP complex was used as

a measure of intracellular poly P because fluorescence emissions

from free DAPI and DAPI-DNA are minimal at this wavelength

[30]. All data are the result of triplicate experiments.

Statistical analysis
Flow cytometric data of the percentages of live, intermediate

and dead bacteria were arcsine-transformed to obtain normal

distributions. The CFU counts were logarithmically transformed.

ATP, polyp, membrane potential, respiratory activity and leakage

at 206 nm data were not transformed. In order to compare the

effects of the compounds with the control condition, the Welch’

robust variation of ANOVA was used and followed by Dunnett’s

T3 multiple comparisons. Covariance analysis was performed to

compare linear regression slopes of the time course of CFU counts,

ATP concentration and flow cytometric based membrane integrity

analysis for the different compounds versus control conditions.

Results

MIC determination
Concentrations ranging from 25 mM up to 200 mM of each

test compound were investigated for their antibacterial potential

against ETEC at a pH ranging from 6.5 to 10.0. None of the

tested compounds inhibited visible bacterial growth at pH 6.5 to

pH 9.0. In contrast, at pH 10.0 all bacterial growth was inhibited

due to the highly alkaline pH, as no bacterial growth was observed

in the control sample either. At pH 9.5 compound- and

concentration-dependent effects occurred. While no inhibition of

bacterial growth was yet seen due to exposure to sarcosine, DMG

or betaine, glycine inhibited the ETEC growth at a concentration

of 200 mM. This indicates that the MIC for glycine on the ETEC

at pH 9.5 lies between 100 and 200 mM, while it exceeds

200 mM for the N-methylated analogues tested. The MIC data

are presented in Table 1.

Plate counts
Complementary to the standard evaluation method of bacterial

growth inhibition via the above-described MIC, the bacterial

culturability was also assessed through plate counts. Mean values

6 SD of log phase ETEC are presented in Fig. 2. Covariance

analysis showed a significant difference in linear regression of the

control versus glycine, sarcosine and betaine. The slope of the time

course of the glycine- and sarcosine-exposed samples was

significantly more negative than the slope of the control sample

(p = 0.002 and 0.003, respectively). In contrast, the slope of the

betaine-exposed sample was more positive compared to the

control sample (p,0.0005).

Leakage of 260-nm-absorbing material
The presence of nucleic acids and its related compounds, such

as pyrimidines and purines, are used as an indicator of cell

membrane damage. Absorbance was measured for up to 180 min

of ETEC exposure to each of the four test compounds (50 mM,

pH 9.5), and compared to the control. Mean optical density (OD)

values 6 SD are presented in Fig. 3. After 30 min of incubation

there was a significant loss of 260-nm-absorbing material when

incubated with glycine (p = 0.003) and DMG (p = 0.006). Expo-

sure to sarcosine also led to a significant increased leakage albeit

only after 90 min of incubation (p = 0.001). In contrast, betaine

did not show any influence on membrane permeability under

these incubation conditions. These results confirm a loss of

membrane integrity due to exposure to glycine, and to a lesser and

slower extent sarcosine and DMG under alkaline conditions.

Flow cytometric assessment of membrane permeability
As previously shown for stationary phase ETEC [1], flow

cytometric analysis of membrane integrity of log phase ETEC with

SYTO 9/PI dual staining revealed a unique fluorescence pattern,

directly related to the degree of membrane damage. Three

bacterial subpopulations could thus be identified: membrane-

intact live bacteria (A), membrane-damaged ‘‘intermediates’’ (B)

and dead bacteria (C). Percentages of these bacterial subpopula-

Table 1. Overview of the MIC determination data for glycine,
sarcosine, DMG and betaine.

Concentration

pH treatment 25 mM 50 mM 100 mM 200 mM

6.5 glycine + + + +

sarcosine + + + +

DMG + + + +

betaine + + + +

control + + + +

8.5 glycine + + + +

sarcosine + + + +

DMG + + + +

betaine + + + +

control + + + +

9.0 glycine + + + +

sarcosine + + + +

DMG + + + +

betaine + + + +

control + + + +

9.5 glycine + + + 2

sarcosine + + + +

DMG + + + +

betaine + + + +

control + + + +

10.0 glycine 2 2 2 2

sarcosine 2 2 2 2

DMG 2 2 2 2

betaine 2 2 2 2

control 2 2 2 2

The inhibition of visible bacterial growth by concentrations ranging from
25 mM up to 200 mM of each test compound was investigated at a pH ranging
from 6.5 to 10.0. The symbol (+) represents visible bacterial growth, while the
symbol (2) represents no visible growth.
doi:10.1371/journal.pone.0060328.t001
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tions are presented in Fig. 4. Data showed a significant (p = 0.001)

decrease in the mean percentage of live bacteria already after an

exposure time of 5 min to glycine (50 mM, pH 9.5) compared to

the control. A significant decrease in the percentage of live

bacteria after exposure to sarcosine or DMG was observed only

after 90 min of incubation (p = 0.003 and 0.005, respectively).

Covariance analysis showed a significant difference in linear

regression of the control versus glycine, sarcosine and DMG. The

slope of the time course of the percentages of membrane-intact live

bacteria exposed to the latter 3 compounds was significantly more

negative than the slope of the control sample (all p,0.0005).

Complementary, the slopes of the membrane-damaged interme-

diate and dead bacteria were significantly more positive compared

to the control sample (all p,0.0005). Illustrative flow cytometric

dot plots of ETEC samples incubated with glycine (50 mM,

pH 9.5) are presented in Fig. 5.

Overall, these results suggest a compound- and time-dependent

onset of membrane damage by glycine versus sarcosine and DMG.

In marked contrast, no significant differences in ETEC membrane

Figure 2. Culturability of E. coli. ETEC were exposed to glycine, sarcosine, DMG, betaine (50 mM, pH 9.5) and sterile PBS (control, pH 9.5) for up to
90 minutes. The slope of the time course of the glycine-, sarcosine- and DMG-exposed samples is significantly more negative than the slope of the
control sample. In contrast, the slope of the betaine exposed sample is more positive compared to the control sample. Data are expressed as means
6 SD of triplicate experiments.
doi:10.1371/journal.pone.0060328.g002

Figure 3. Leakage of 260-nm-absorbing material from E. coli. ETEC were exposed to glycine, sarcosine, DMG, betaine (50 mM, pH 9.5) and
sterile PBS (control, pH 9.5) for up to 180 minutes. After 30 min of incubation there is a significant loss of 260-nm-absorbing material when incubated
with glycine (p = 0.003) and DMG (p = 0.006). Exposure to sarcosine leads to a significant increased leakage after 90 min of incubation (p = 0.001).
Data are expressed as means 6 SD of triplicate experiments.
doi:10.1371/journal.pone.0060328.g003

Glycine Decreases Escherichia coli Viability

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e60328



integrity were observed between betaine and the control sample

for any of the incubation times measured.

Flow cytometric assessment of membrane potential
Ratiometric MFI determination of the membrane potential

showed a significant hyperpolarization of the ETEC membrane

after exposure to glycine, sarcosine and DMG (50 mM, pH 9.5)

after 90 min of incubation, compared to the control (p,0.0005,

p = 0.002 and p,0.0005, respectively). In contrast, a time-

dependent depolarization of ETEC occurred in the betaine-

exposed and control samples. Mean ratiometric MFI values 6 SD

are presented in Fig. 6.

Flow cytometric measurement of esterase activity
Esterase activity was measured as a marker for the ETEC

metabolic activity. Fig. 7 shows the representative fluorescence

pattern of active and inactive control samples. Inactive cells do not

stain (cF2) because they either lack enzyme activity and/or cF

diffuses freely through the membrane. Metabolically active cells

are green fluorescent (cF+). Compared to the active control, ETEC

exposed to only pH 9.5 (control) or to each of the test compounds

(50 mM, pH 9.5) showed no decrease in the percentage of

metabolically active bacteria for up to 30 min. Overall, these

results do not allow to demonstrate a metabolic impairment at the

level of enzymatic activity.

Flow cytometric assessment of respiratory activity
Dehydrogenase activity was measured as a marker for the

ETEC respiratory activity. Fig. 8A shows the representative

fluorescence pattern of active and inactive control samples.

Inactive cells (a) do not stain because they lack respiratory

dehydrogenase activity. Actively respiring cells (b) become red

fluorescent. Fig. 8B presents the MFI of the bacterial populations

after exposure to the compounds. Compared to the active control,

ETEC exposed to glycine and sarcosine (50 mM, pH 9.5) showed

a significant decrease in MFI already at 15 min of incubation

(p = 0.017 and p = 0.008, respectively). This indicates that there is

a significant but transient decrease in respiratory activity of the

ETEC after 15 min of exposure to glycine and sarcosine at

pH 9.5. No significant differences were observed between DMG,

betaine and the control sample for any of the incubation times

measured.

ATP Measurement
Intracellular ATP levels were examined for up to 30 min of

ETEC exposure to each of the four test compounds (50 mM,

Figure 4. Percentage of membrane-intact live (A), membrane-damaged ‘‘intermediates’’ (B) and irreversibly membrane-damaged
dead (C) E. coli subpopulations. ETEC were exposed to glycine, sarcosine, DMG, betaine (50 mM, pH 9.5) and sterile PBS (control, pH 9.5) for up to
180 minutes Data are expressed as means 6 SD of triplicate experiments.
doi:10.1371/journal.pone.0060328.g004

Figure 5. Flow cytometric SYTO 9 (FL1)/PI (FL3) dot plots presenting pH-dependent E. coli membrane damage. Data obtained for a
representative ETEC sample incubated with glycine (50 mM, pH 9.5) for up to 3 hours. The A region corresponds to the subpopulation of live cells
with an intact plasma membrane, the B region corresponds to the subpopulation of bacteria in an intermediate injured state with different degrees
of comprised membranes, the C region corresponds to the subpopulation of dead cells with irreversibly damaged membranes.
doi:10.1371/journal.pone.0060328.g005
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pH 9.5), and compared to the control. Mean values 6 SD are

presented in are presented in Fig. 9.

Cellular ATP depletion started immediately during the incuba-

tion with either glycine, sarcosine or DMG. Already after 5 min of

incubation a significant (all p,0.0005) loss of ATP was observed in

these samples, compared to the control. A time-dependent

decrease in the ATP concentration occurred also in the control

and betaine samples. However, after 30 min of incubation, the

ATP level of the bacterial populations exposed to betaine

remained significantly (p = 0.001) higher than the ATP level of

the control samples.

Inorganic phosphate (polyP) measurement
The fluorescence (in arbitrary units) of the DAPI-polyP complex

is used as a measure of intracellular polyP. Inorganic phosphate

levels were measured for up to 90 min of ETEC exposure to each

of the four test compounds (50 mM, pH 9.5), and compared to the

control. Mean values 6 SD are presented in Fig. 10. After 30 min

of incubation there was a significant increase in DAPI-polyP

fluorescence when incubated with glycine (p = 0.009) compared to

the control. Exposure to sarcosine and DMG also led to a

significant increase in fluorescence albeit only after 90 min of

incubation (p = 0.03 and p = 0.007, respectively), and not to a level

as high as seen after exposure to glycine. In contrast, betaine did

not show any influence on polyP concentration under these

alkaline incubation conditions.

Discussion

Bacterial viability can be assessed at different levels: growth

capacity, structural integrity and physiological integrity. Culture-

based methods, such as the MIC and plate count methods

represent the original concept of bacterial viability, solely based on

their growth capacity [16]. Our plate count results show a

significant linear regression of the CFU after exposure to glycine,

sarcosine and DMG (but not betaine), compared to the control

(PBS, pH 9.5). This observation, together with the results obtained

in previous work [1], indicates that a prolonged exposure to these

former compounds induces a progressive loss of ETEC growth

Figure 6. Ratiometric red/green fluorescence presenting E. coli membrane potential. Ratiometric membrane potential measurements
showed a significant hyperpolarization of the ETEC membrane following exposure to glycine, sarcosine and DMG (50 mM, pH 9.5) after 90 min of
incubation, compared to the control (p,0.0005, p = 0.002 and p,0.0005, respectively). In the betaine-exposed and control samples there is a time-
dependent depolarization of ETEC. Data are expressed as means 6 SD of triplicate experiments.
doi:10.1371/journal.pone.0060328.g006

Figure 7. Overlay diagram of the flow cytometric histograms
representing metabolically active and inactive E. coli subpopu-
lations. Inactive (cF2) (1) and active (cF+) (2) ETEC population are
determined by cFDA staining. Inactive cells do not stain because they
either lack the enzyme activity to metabolize cFDA to cF and/or cF
diffuses freely through the membrane, while metabolically active cells
are green fluorescent (cF+). Both populations are separated by the black
line. The overall mean of triplicates and range are provided.
doi:10.1371/journal.pone.0060328.g007
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capacity under alkaline conditions. Our MIC data only confirmed

a growth inhibiting effect for glycine at pH 9.5. However, this

latter approach does not provide detailed information on the

effects of the compounds at the single cell level, nor on the

structural and physiological state of the bacteria.

Essential in bacterial structural integrity is an intact cytoplasmic

membrane. We previously described a membrane-damaging effect

of glycine, sarcosine and DMG (but not betaine) on stationary

phase E. coli under alkaline conditions [1]. To ensure on optimal

evaluation of the physiological viability parameters described in

the present study, we needed to investigate all potential effects on

log phase E. coli, rather than stationary phase E. coli. Our results

confirm the loss of membrane integrity, through a nucleic acid

flow cytometric staining protocol, and measuring leakage of 260-

nm-absorbing material. Both datasets show a significant loss of

membrane integrity after 30 min when exposed to glycine, and

Figure 8. Overlay diagram of the flow cytometric histograms representing respiratory active and inactive E. coli subpopulations (a).
Inactive (1) and active (2) ETEC subpopulation are determined by CTC staining. Inactive cells do not stain because they lack respiratory
dehydrogenase activity. Actively respiring cells are red fluorescent. Both populations are separated by the black line. Mean fluorescence intensity
(MFI) presenting E. coli respiratory activity (b). Compared to the active control, ETEC exposed to glycine and sarcosine (50 mM, pH 9.5) showed a
significant decrease in MFI after 15 min of incubation (p = 0.017 and p = 0.008, respectively). Data are expressed as means 6 SD of triplicate
experiments.
doi:10.1371/journal.pone.0060328.g008

Figure 9. Total ATP concentration of E. coli. ETEC were exposed to glycine, sarcosine, DMG, betaine (50 mM, pH 9.5) and sterile PBS (control,
pH 9.5) for up to 30 min. Already after 5 min of incubation, a significant (p,0.0005) loss of ATP occurs in the bacterial populations exposed to
glycine, sarcosine and DMG, compared to the control and betaine sample. Data are expressed as means 6 SD of triplicate experiments.
doi:10.1371/journal.pone.0060328.g009
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after 90 min when exposed to sarcosine and DMG. These

bacterial populations are still able to grow, as demonstrated by

the culture-dependent data. We therefore presume that the initial

membrane damage is still reversible, but will progress to

irreversible membrane integrity loss upon prolonged exposure

(fig. 1c). This leads to a certain heterogeneity in the bacterial

population and a final loss of culturability as demonstrated in our

previous work [1]. To provide a detailed assessment of bacterial

viability and identify any underlying effects of the compounds, a

combination of several viability parameters was further examined.

In metabolically active bacteria with intact cytoplasmic mem-

branes, there is typically a difference of electrical potential across

the membrane, with a relatively negative intracellular environ-

ment compared to the extracellular environment [31]. Changes in

membrane potential are considered an early indicator of injury in

bacteria [32]. Although a depolarization effect was expected,

hyperpolarization has also been reported as an effect associated

with bacterial viability loss [5,19,33]. Recent studies on this

phenomenon suggest that hyperpolarization can occur due to an

increase in pH or due to increased movement of ions [34]. More

specifically K+ diffuses outside the cell through K+-channels

affecting cellular homeostasis [34]. Spindler et al. [5] state that a

non-lethal destabilization of the cytoplasmic membrane can

disrupt normal electron flow, resulting in at least a transient

hyperpolarization of the cytoplasmic membrane. Hyperpolariza-

tion is also defined as a higher negative charge at the intracellular

side of the cytoplasmic membrane [35], as shown in fig. 1b. When

we consider our compounds in this context, it should be noted that

the amine group of glycine, sarcosine and DMG is unprotonated

at highly alkaline pH (extracellular) and protonated at a pH near

neutrality (intracellular), while the carboxylate group remains

negatively charged within this pH range (fig. 1c) [1]. Thus, once

intracellular, the amine group becomes protonated at the near

neutral cytoplasmic pH. This causes an alkalinization of the

cytoplasm and a more negative charge by proton consumption. Of

relevance, hyperpolarization can directly comprise membrane

integrity [36]. Hyperpolarization has also been associated with the

formation of superoxide radicals [5], which are implicated in

bacterial killing [37].

The E. coli metabolic activity was further evaluated by two

complementary parameters: the esterase activity and the total ATP

concentration of the bacterial population. Bacterial physiology can

only be maintained if the cell is metabolically active and enzymatic

reactions, such as those catalyzed by esterases, reflect this activity

[38]. No loss of bacterial esterase activity occurred either after

exposure to each of the compounds or to alkaline stress alone

(control, PBS pH 9.5). Therefore, under these conditions E. coli

could be considered metabolically viable. Nevertheless, it should

be emphasized that while enzyme synthesis requires energy, the

esterase enzyme-substrate reaction does not, and this enzymatic

process can be considered energy-independent [39]. True

assessment of the energetic state of bacteria is possible by the

determination of their ATP level. ATP is the universal energy

currency of living cells and as such drives numerous energy-

consuming reactions e.g. biosyntheses, mechanical motility,

transport through membranes and regulatory networks [40].

Indeed, ATP is the most important indicator of the metabolic state

and health of cells, including bacteria [40,41]. The ATP

concentration of the bacterial population decreased significantly

and very rapidly after exposure to glycine, sarcosine and DMG

(but not betaine) at pH 9.5, compared to the alkaline stress control

(fig. 1c). This instant depletion cannot be attributed to an

extracellular leakage of ATP, as our data present both the

intracellular and extracellular ATP concentration.

Two pathways exist in E. coli for ATP synthesis: glycolysis and

oxidative phosphorylation. The Fo F1-ATP synthase complex

catalyzes the synthesis of ATP from ADP and inorganic phosphate

using the electro-chemical gradient of protons generated by

Figure 10. DAPI-polyP fluorescence presenting polyP concentration of E. coli. Inorganic phosphate levels were measured for up to 90 min
of ETEC exposure to glycine, sarcosine, DMG or betaine (50 mM, pH 9.5), and compared to the control. After 30 min of incubation there is a
significant increase in DAPI-polyP fluorescence when incubated with glycine (p = 0.009), compared to the control sample. Exposure to sarcosine and
DMG leads to a significant increase of fluorescence after 90 min of incubation (p = 0.03 and p = 0.007, respectively), but not to a level as high as seen
after glycine exposure. Betaine exposure had no significant influence compared to the control. Data are expressed as means 6 SD of triplicate
experiments.
doi:10.1371/journal.pone.0060328.g010
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respiration during oxidative phosphorylation (fig. 1a) [23]. In

addition to ATP synthesis, the respiratory chain has been reported

to regulate the cytoplasmic pH in E. coli [24]. Krullwich et al. [42]

state that when bacterial cells are exposed to conditions which

require proton influx into the cytoplasm, such as alkaline stress, the

expression of the proton pumping Fo F1-ATP synthase is elevated

in E. coli, along with a repression of proton extruding respiratory

chain complexes. In line with the latter, our results show a minor,

but significant decrease in respiratory activity when the bacteria

are exposed to glycine and sarcosine for 15 min. However, this

appears to be a transient effect, as respiratory function is already

regained at 30 min of incubation.

The Fo F1-ATP synthase complex is located in the bacterial

cytoplasmic membrane and converts the free energy of the proton

motive force (PMF) into the universal chemical energy source ATP

[43]. Under physiological conditions (i.e. in the absence of alkaline

pH stress), protons move from extracellular to the intracellular,

allowing ATP generation (Fig. 1a). In E. coli, the PMF driving this

synthesis consists of both a transmembrane proton concentration

gradient (npH) and an electrical membrane potential (nY)

component [44]. Both npH and nY are influenced by the

extracellular pH [22], while the nY is additionally modified by

several ion membrane transporters (Fig. 1a) [45]. As stated above,

the extracellular environment is relatively more acid than the

intracellular environment at physiological pH. Under alkaline

stress conditions, the situation is reversed which severely influences

the PMF [46]. The nY increases to compensate for this inverted

npH (fig 1b). Intracellular pH homeostasis in an alkaline

environment places a high energy demand on the cell. While

numerous responses to pH stress are described, the mechanism by

which E. coli maintains its cytoplasmic pH near neutrality is very

complex and remains only partially understood [42,46]. It is

however generally accepted that sustaining this pH homeostasis

presents bacteria with a severe bioenergetic challenge. Besides a

major influence on bacterial homeostasis, the alkaline conditions

also have an important influence the ionization state of glycine,

sarcosine and DMG, but not on that of betaine. The ionization

state of the trimethylated analogue betaine remains unaffected. In

contrast, the amine group of glycine, sarcosine and DMG is

protonated at the near neutral cytoplasmic pH, causing an

alkalinization of the cytoplasm by proton consumption (fig. 1c). A

relevant illustration of this proton scavenging mechanism is

provided by Yohannes et al. [47], who report that alkaline pH

plays a critical role in polyamine stress. These authors state that

the accumulation of polyamines is favored when the cytoplasmic

pH is lower than the external pH. Under such conditions, the

uncharged base entering the cell is protonated in the cytoplasm

and its consumption of protons can impair the ongoing pH

homeostasis process [7]. This implies that glycine, sarcosine and

DMG, but not betaine, could also have the potential to amplify

pH stress by scavenging protons within the cytoplasm, thus

requiring the cell to spend more ATP to support pH homeostasis

(Fig. 1c). This increased metabolic energy requirement could

explain the very rapid ATP depletion observed in E. coli at alkaline

pH after incubation with the presumed proton scavengers glycine,

sarcosine and DMG in our in vitro model. A depletion of the ATP

pool has many detrimental consequences, as energy is required for

numerous cellular reactions [39] and can lead to significant

membrane damage [19].

Additionally, our results also show an increase in the inorganic

polyphosphate pool (polyP) when the bacteria are exposed to

glycine, sarcosine and DMG under alkaline conditions. PolyP can

be used in response to a wide variety of metabolic needs and plays

central roles in many general physiological processes and even as a

buffer against alkaline conditions [48]. It is also involved in the

response to several different stress situations and is involved in the

SOS response, as well as in the stringent response and in RpoS

activation [20,21]. Although the importance of polyP has been

reported for various bacterial species, the precise molecular

mechanism by which it enacts specific functions, as well as the

primary and secondary effects of polyP accumulation, are still not

fully understood in even the best characterized bacterial species

[49].

In conclusion, we state that exposure to glycine, sarcosine and

DMG rapidly induces a marked decrease in ETEC viability under

alkaline stress conditions. As to the possible mechanism behind this

striking viability loss, several assumptions can be made, which all

lead to a final loss of membrane integrity. Our data have shown

that E. coli ATP depletion and membrane hyperpolarization are

the major processes preceding severe membrane damage. We

provide strong indications that these can be linked to the

intracellular proton scavenging effects of glycine, sarcosine and

DMG under alkaline conditions.
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