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Abstract: Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries
cause water pollution, thereby harming the environment and human health. In this study, gadolinium
oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO–Gd) was developed using a
simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was
structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects
of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by
PGO–Gd were examined. The PGO–Gd composite adsorbed both metal ions satisfactorily, with
adsorption capacities of 427.50 and 455.0 mg g−1 at pH 4.0, respectively. The adsorption properties
of both metal ions were found to be compatible with the Langmuir and pseudo–second-order kinetic
models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic
and spontaneous. Furthermore, the environmental viability of PGO–Gd and its application was
demonstrated by studying its reusability in treating spiked surface water. PGO–Gd shows promise
as an adsorbent in effectively removing both radionuclides from aqueous solutions.

Keywords: PVA-GO-Gd composite; characterization; polyvinyl alcohol polymer; graphene oxide;
gadolinium oxide; uranium; thorium; water treatment; adsorption mechanism

1. Introduction

Uranium and thorium ions pollute groundwater and cause environmental and human
health problems [1]. These radioactive wastes are produced as a result of nuclear fuel
manufacturing and a range of industrial operations, including nuclear power stations,
mining, nuclear arms, nuclear armament and laboratories dealing with radioactive ele-
ments. Radioactive ions may harm biological systems, and cause kidney damage, toxic
hepatitis, damage to the histopathological system, skin corrosion and possibly cancer [2–4].
In addition, radionuclides (nuclear fuels) must be recovered from waste, which reduces the
demand for nuclear power generation. Thus, a common and efficient method in treating
radioactive-contaminated water is adsorption.

Graphene is a one-atom thick hexagonal sheet made up of sp2 hybridized carbon
atoms tightly packed into a 2D honeycomb structure. It has great thermal conductivity,
exceptional mechanical strength, and good electrical conductivity [5,6]. Graphene oxide
(GO) is an oxidized form of graphene having a basal plane that is primarily changed with
epoxide and hydroxyl groups, with carboxyl and carbonyl groups at the edges. Moreover,
GO and GO-based materials are widely used in treating wastewater contaminated with
heavy metals, radionuclides, and organic pollutants [7–10]. However, the real applicability
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of these materials in treating specific pollutants is limited because of their low functionality,
high dispersibility, high aggregation, complex installation, and other physicochemical
factors. However, surface modification of carbon materials with other materials leads to
the enhancing of its stability feasibility for various sustainable applications [11,12]. For in-
stance, the recent research on graphene-based polymer nanocomposites has opened a new
avenue of study in the field of polymer nanocomposites [13]. Their properties are strongly
connected to their nanostructures; homogeneous dispersion of nanocomposites and the
exclusion of coalescence in the polymer matrices are critical for improving their proper-
ties [14]. Poly (vinyl alcohol) (PVA), a synthetic polymer derived from the parent polymer
poly (vinyl acetate), has good chemical, physical, mechanical and thermal characteris-
tics, as well as excellent film-forming abilities, non-toxicity and biodegradability [15–17].
PVA has been utilized in a variety of applications such as sealants, films, coatings, drug
carriers, membranes and fuel cells, as well as in the commercial industries, medical and
food industries [18–21]. PVA is a water-soluble polymer that may be combined with GO
in a homogenous manner in water. As a result, the PVA/GO preparation procedure is
reasonably easy and ecologically benign [22]. Furthermore, GO having oxygen-functional
groups can affordably and efficiently induce full exfoliation and dispersion of GO homo-
geneously into the polymer matrices, enhancing the interfacial bond between GO layers
and increasing surface sites while also being highly water dispersible. The capacity to
accomplish complete exfoliation and uniform dispersion of GO in polymer matrices is
required for the full use of GO layers in the applications of polymer nanocomposite [22,23].
Several studies have prepared PVA/GO, with a primary focus on environmental applica-
tions [24,25]. However, in these studies, the prepared PVA/GO were not used in removing
specific radionuclides and exhibited a low removal capacity. However, this study mainly
focused on enhancing the PVA/GO removal capacity targeting radionuclides, U(VI) and
Th(IV), in addition to improving its stability, water dispersibility, surface functionality and
feasibility for potential applications by functionalization with metal oxides.

Nowadays, due to their unique characteristics such as semiconductivity, paramagnetic
nature, thermal stability and fluorescence, lanthanide series materials are increasingly used
by several researchers in many applications, such as catalysis [26], adsorption [27] and en-
ergy storage [28]. Among the lanthanide elements, gadolinium oxide (Gd2O3) is regarded
as an important compound in chemical and physical investigations; they are extremely
effective supercapacitor catalysts [29], electrochemical sensors [30] and photodegrada-
tors [31] and adsorbers [32,33] due to their useful features and special properties, such as
semi conductivity, thermal capacity, and low toxicity. These features of Gd2O3 enable its
use as a good candidate for wastewater treatment.

In this work, we developed a simple, effective, and ecofriendly hydrothermal method
to produce PVA/GO gadolinium oxide (PGO–Gd). The produced PGO–Gd composites
were characterized by Fourier-transform infrared (FTIR) spectroscopy, thermal gravimetric
analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-Raman
spectrum analysis, transmission electron microscopy (TEM), X-ray photoelectron spec-
troscopy (XPS) and Brunauer, Emmett and Teller (BET) analyses. Other essential parts
of the adsorption mechanism, such as equilibrium, kinetics, pH, and thermodynamics,
were also investigated, and the information gained from this research will enhance the
adsorption process. This investigation clearly demonstrated the adsorption process in-
volving radionuclides. This is the first report of a PVA-GO-modified adsorbent used for
radioactive sequestration that we are aware of. Additionally, the prospective applicability
and commercial viability of PGO–Gd were investigated by applying it to actual surface
water and assessing its reusability. Moreover, the present material shows high removal
capacity for radionuclides, and it can be re-used for up to four cycles without losing its
removal efficacy of less than 60%.
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2. Materials and Methods
2.1. PGO–Gd Preparation

GO was developed using a slightly modified Hummer’s technique [34]; 100 mg GO
were dispersed in 100 mL water by ultrasonication and 100 mg PVA were dissolved in
50 mL water while stirring. The mixed GO and PVA solution was then heated to 120 ◦C for
5 h and cooled to 25 ◦C, and subsequently centrifuged (8000 rpm for 1 h). The collected
sample was washed with water before drying at 60 ◦C, and named PGO.

PGO powder (100 mg) was dissolved in NaOH solution (6 g NaOH in 100 mL water)
and ultrasonicated for 1 h to produce a clear mixture. Gd(NO2)3 (500 mg) was dissolved
in 100 mL of water. The resulting gadolinium salt solution was dropped into the PGO
solution while stirring. The reaction mixture was autoclaved at 120 ◦C. The final product
was filtered and washed with water and ethanol before drying at 60 ◦C for 12 h. The
product was labeled PGO–Gd. The method is schematically shown in Figure 1.
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Figure 1. Schematic illustration of the method producing PGO–Gd.

2.2. Removal Studies

The prepared PGO–Gd was used to sequestration of U(VI) and Th(IV) from water
under batch studies. The impact of pH, contact duration, dosage, and metal concentration
on U(VI) and Th(IV) adsorption was deliberated. For each batch study, 50 mL of a known
concentration metal solution was placed in a 50 mL falcon tube and its pH was regulated
to 4.0 before adding 0.1 g L−1 PGO–Gd. These tubes were subsequently agitated using a
mechanical shaker at room temperature (25 ± 1 ◦C) for the prescribed equilibration period.
The samples collected from the supernatant solution were separated from the PGO–Gd
using 0.45 µm filters before being evaluated the concentration of U(VI) and Th(IV) using
ICP-OES. At time intervals ranging from 5 to 400 min, the kinetics and effect of contact
duration on metal ion sorption were investigated. The sorption isotherms and the impact
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of the metal concentration were studied by changing the initial metal ion concentration
from 5 to 100 mg L−1. The pH impact was examined by changing the solution pH from
2.0 to 8.0 with a dilute HCl and NaOH solutions. All batch studies were conducted in
duplicate, and the results shown are the averages of two measurements. The adsorption
capacity and % removal can be calculated based on Equations (1) and (2):

Adsorption capacity, qe = (Co − Ce)× v/m (1)

Adsorption removal % =

(
Co − Ce

Co

)
× 100 (2)

here showing the metal sorption capacity (qe, mg g−1), metal initial and equilibrium
concentrations (Co and Ce, mg L−1), volume of solution (v, L) and adsorbent mass (m, g).

2.3. PGO–Gd Regeneration and Application to Surface Water Samples

The PGO–Gd stability and re-usable feasibility were evaluated through approximately
five cycles of reuse. The metal sorption capacity (qe, mg g−1), as shown in Equation (1),
was evaluated batch-wise at pH 4.0, 298 K, and 0.1 g L−1 adsorbent to assess the stability
of the adsorbent across the cycles.

Surface water was obtained from Seongu-ri, Onjeong-myeon, Uljin-gun and
Gyeongsangbuk-do (Republic of Korea) was used for evaluation of prepared material
feasible applicability in real system. The specifics are provided in the supplementary
material (Supplementary Materials, Table S1). The pH, cations (Ca2+ and Na+) and anions
(PO4

3−, SO4
2−, NO3

−, Cl− and HCO3
−) of the surface water were all measured.

3. Results and Discussions
3.1. PGO–Gd Structural Chracterization

XPS analysis was used to determine the surface electronic states and compositions of
GO and PGO–Gd (Figure 2a). The examined XPS peaks clearly shows C, O and Gd element
signal, which are compatible with the EDX findings (Supplementary Materials, Figure S1).
In Figure 2a, the peak of C 1s signal is observed at 283.49 eV, and the signal at 529.37 eV is
attributed to O2−, which corresponds to GO [35]. The Gd 4d XPS plot indicates that the
signal at 141.4 eV is attributed with Gd3+ [36,37]. Hence, the XPS analysis confirmed the
formation of PGO–Gd.
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The XRD patterns of GO and the PGO–Gd composite are given in Figure 2b. GO shows
strong peaks at 2θ ≈ 11.3◦, which corresponds to the (002) planes. The peaks labeled by
triangles can be directly indexed to the cubic phase structure of Gd2O3 (JCPDS no. 12-0797).
This indicates the successful integration of Gd2O3 into PGO [38]. The TGA approach was
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used to measure the amount of oxygenated functionals on the surface of GO and PGO–Gd
by oxidative decomposition from 25 ◦C to 1200 ◦C at a rate of 10 ◦C min−1, as illustrated in
Figure S1. The resultant TGA plots shows the three phases of the weight decrease in the
TGA curves of GO. First, a little mass reduction at below 100 ◦C can be due to adsorbed
water molecules evaporating. Second, a substantial mass loss from 100 to 350 ◦C can be
ascribed to the elimination of labile oxygenated functional groups of GO including epoxy,
carboxyl, and hydroxyl vapors. Finally, the decomposition of GO caused a modest loss of
weight from 350 to 1200 ◦C. Furthermore, when the GO and PGO–Gd of TGA curves were
compared, the weight loss of GO and PGO–Gd at 0–350 ◦C were approximately 37% and
16%, respectively. Hence, both GO and PGO–Gd are presumed to contain an abundance
of oxygenated surface functional groups, and that PGO–Gd, some of oxygen-containing
groups replaced with Gd2O3 nanoparticles. At 1200 ◦C, weight loss for GO was ~67%, and
PGO–Gd was observed 26%, which was related to the formation of cubic Gd2O3 by the
phase transition from hexagonal Gd(OH)3 of PGO–Gd [38]. These results suggest a higher
stability and surface functionality of PGO–Gd than that of GO.

Figure S2a indicates the FTIR spectra of GO and PGO–Gd. The stretching vibrations
of –OH (3339 cm−1), C=C (1634 cm−1), C–O (1217 cm−1) and C–O–C (1054 cm−1) were
discovered by an FTIR scan of GO. The PGO–Gd spectra displayed stretching vibrations
at 3617 cm−1 (–OH), 1515 cm−1 (C=C), 1380 cm−1 (C–OH), and 1217 cm−1 (C–O–H) and
Gd2O3 spectra observed Gd–O stretching (514 cm−1), and this is consistent with prior
results [36]. Furthermore, the strong stretching peak at 710 cm−1 indicates Gd(OH)3 [39].
Raman investigation confirmed the existence of substantial GO in the PGO–Gd composite.
The Raman spectra of PGO–Gd were compared with those of GO for this purpose, as
illustrated in Figure S2b. In general, GO has two major signals in the Raman spectra: the
G and D bands at 1598 and 1353 cm−1, respectively. Chemically decorated Gd2O3 on the
GO lattice surface exhibited a peak shift and appeared in the D-band at 1347 cm−1, and an
expanded G–band at 1590 cm−1. A minor difference in the I(D)/I(G) (are the peak intensity
ratio of the D– and G–bond) of PGO–Gd (0.93) comparing with that of GO (0.96) suggested
that gadolinium oxide particle surface modification changed the in-plane sp2 graphitic
domains of GO. These results are comparable to those obtained with GO coupled with
metal oxide nanoparticles and biomolecules [40].

The SEM picture of PGO–Gd in Figure 3a,b indicates that the severely aggregated
Gd2O3 nanoparticles are well dispersed over the PGO surface. A strong electrostatic attrac-
tion between the PGO and the Gd2O3 nanoparticles may help to maintain the composite
form. This might be due to the PGO’s active surface area and oxygen moieties being
drawn to the Gd2O3 nanoparticles. The TEM image of PGO–Gd is presented in Figure 3c,d,
wherein the aggregated Gd2O3 particles are distributed on the corrugated thin sheet-like
membranous layer of the PGO surface because of the paramagnetic nature of gadolinium.
Further the TEM results suggest rod chape cubic crystalline with an average diameter of
30–40 nm and a nearly uniform distribution with less aggregation. As a consequence, the
TEM results are compatible with the SEM findings and showed the composite’s formation
at nano level crystals with rod shape. BET analysis provides further information on the
surface area and pore structure, wherein the surface area of PGO–Gd was 85.30 m2 g−1,
and the pore diameter and pore volume were 21.37 nm and 0.18 cm3 g−1, respectively. The
BET results suggest the prepared crystalline PGO–Gd possesses a mesoporous
surface morphology.
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3.2. pH Impact on Adsorption

As given in Figure 4a, the pH of the aqueous solution considerably affected both
radionuclides sorption on to PGO–Gd surface. The adsorption percentages of U(VI) and
Th(IV) progressively rose in the pH range of 2.0–4.0, reaching 99% at pH 4.0. Upon further
increasing the pH from 4.0–8.0, the removal percentage remained constant at high values.
The increased sequestration of both radionuclides by PGO–Gd with solution pH increases
may be ascribed to the PGO–Gd surface charges and dissociation of surface functional
groups as well as the dispersion of U(VI) and Th(IV) species in solution. At pH < pH pzc
(5.75), PGO–Gd surface pronated (i.e., ≡SOH + H+ → ≡SOH2

+) and produce positive
surface charge. Thus, the small adsorptive efficiency of PGO–Gd is ascribed to the electro-
static repulsion between U(VI) and Th(IV) at pH 0.5–3.5, and UO2OH+, (UO2)2(OH)2

2+,
(UO2)3(OH)5

+, (UO2)4(OH)7
+, Th(OH)3

+, and Th2(OH)2
6+ at pH > 4.0 [4,9], and the pos-

itively charged edge functional groups (SOH2
+) on the surface of PGO–Gd. However,

due to the deprotonation process (i.e., ≡SOH → ≡SO− + H+) the PGO–Gd surface be-
comes negatively charged at pH > pHpzc, which enhances the electrostatic attraction
between positive charge ions (U(VI) and Th(IV): UO2OH+, (UO2)2(OH)2

2+, (UO2)3(OH)5
+,

(UO2)4(OH)7
+, Th(OH)3+, and Th2(OH)2

6+ at pH > 4.0) and negatively charged SO− groups
on PGO–Gd, increasing the proportion of both radionuclides adsorption [4]. This result is
further supported by examining the pH of the treated solution; under acidic conditions,
protonation reaction on the surfaces of PGO–Gd slightly increased the solution pH values,
whereas under alkaline conditions, deprotonation reaction on PGO–Gd surface decreased
the solution pH values. Furthermore, at high pH, the dissociation of surface functional
groups of PGO–Gd leads to the formation of more negatively charged surface sites that
facilitate the binding of U(VI) and Th(IV) ions. The features of U(VI) and Th(IV) species that
predominate at a given solution pH may have a significant impact on PGO–Gd removal
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effectiveness for U(VI) and Th(IV). The relative distribution of U(VI) and Th(IV) species
according to hydrolysis constants from prior literature can fairly explain the sorption
behavior of U(VI) and Th(IV) [9]. From the results of the overall pH effect, a pH of 4.0 was
chosen as the optimum condition in the present study.
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3.3. Kinetics of Adsorption

The adsorption features of the PGO–Gd adsorbent for radionuclide ions was evalu-
ated by varying the adsorption rate of U(VI) and Th(IV) with time. Figure 4b presents the
results of the kinetic adsorption of U(VI) and Th(IV) by PGO–Gd. The adsorption rate of
U(VI) ions on PGO–Gd increased rapidly during the initial stages of adsorption, reaching
approximately 94% within 60 min and attained equilibrium within 120 min. Th(IV) ad-
sorptive removal by PGO–Gd was rapid, and 99% removal occurred within 5 min. The
kinetics for the adsorption of U(VI) and Th(IV) ions were determined using the following
pseudo–first-order (PFO) (Equation (3)) and pseudo–second-order (PSO) (Equation (4))
models:

PFO kinetic equation : qe = qe

(
1− 10−k1·t/2.303

)
(3)

PSO kinetic equation : qe = (k2 t q2
e )/(1 + k2 t qe) (4)

Table 1 lists the adsorbed quantities derived from the kinetic models (qe,model), experi-
mental (qe,exp.), and other kinetic parameters. The significance of the correlation coefficients
(R2) was close to 1, and the closeness of the qe,model and qe,exp. values indicate that the
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adsorption kinetic data of U(VI) were well explained by PSO model. This results suggest
that the U(VI) sorption was rate limits PSO kinetics, whereas, Th(IV) was rapid and was
time-independent and have 100% removal within 5 min.

Table 1. Parameters of PFO and PSO kinetic models for U(VI) sequestration onto PGO–Gd.

PFO PSO
qe,exp., mg g−1

qe,model, mg g−1 K1 R2 qe,model, mg g−1 K2 R2

38.56 0.063 0.937 44.46 0.0019 0.991 43.25

3.4. Equilibrium Isotherms

The maximum adsorption capacity of PGO–Gd for U(VI) and Th(IV) was determined
by changing metal ion starting concentrations from 10 to 100 mg L−1 while keeping all
other parameters constant (0.1 g L−1 adsorbents, 50 mL U (VI) and Th(IV) solution, PGO–
Gd pH at 4.0 and temperature at 25 ◦C). The equilibrium isotherm data of both metal
ions were plotted in Figure 4c, and the resultant data were simulated using the Langmuir,
Freundlich and Temkin isotherm models (Figure S3) to elucidate the adsorption process.
The Langmuir, Freundlich and Temkin isotherm models are expressed in Equation (5), (6)
and (7), respectively.

Ce

qe
=

1
qmKL

+
Ce

qm
(5)

logqe = log KF + n−1 logCe (6)

qe = B log KT + B log Ce (7)

Table 2 lists the Langmuir, Freundlich and Temkin isotherm parameters determined
through the fitting procedure. The Langmuir equation, with a higher correlation coefficient
(R2) of 0.998, fits the experimental data better than the Freundlich and Temkin models,
signifying that the adsorption process was the monolayer on the homogeneous surface of
PGO–Gd for both metal ions. The resultant maximal removal capacity of PGO–Gd was
found to be 427.50 and 455.0 mg g−1 for U(VI) and Th(IV), respectively. This high adsorp-
tion capacity indicates that PGO–Gd is an effective sorbent in removing U(VI) and Th(IV).
The results suggest that the surface functional groups are presumed to play significant roles
in the efficient exclusion of U(VI) and Th(IV). However, the higher adsorption capacity of
Th(VI) than U(VI) is may be due to a difference in the ionic radius, in the pKas and in the
speciation’s. With increasing ionic radius, the steric crowding on the adsorption surface
will also increase; thus, a saturation limit of adsorption is rapidly attained.

Table 2. Parameters of the Langmuir and Freundlich isotherms for U (VI) and Th(IV) removal by PGO–Gd.

Temperature,
K Metal Ion

Langmuir Frendlich Temkin

qmax„
mg g−1

KL, L
mg−1 R2 Kf, mg g−1

(L mg−1)1/n n R2 B, g L−1 Kt, L
mg−1 R2

298
U(VI) 427.50 0.22 0.999 132.56 3.02 0.902 188.11 5.26 0.955

Th(IV) 455.00 0.24 0.998 154.25 3.25 0.896 219.04 1.77 0.971

313
U(VI) 465.23 0.35 0.999 141.56 2.89 0.845 199.45 4.49 0.925

Th(IV) 469.67 0.38 0.997 163.25 3.12 0.912 259.58 2.18 0.976

333
U(VI) 479.20 0.56 0.997 150.23 2.75 0.897 205.27 5.04 0.964

Th(IV) 487.56 0.49 0.995 174.36 2.95 0.876 287.80 3.76 0.965

The effect of temperature on U(VI) and Th(IV) adsorption by PGO–Gd was determined
by conducting adsorption experiments at 298, 313, and 333 K. With increasing temperature,
the sorption efficiency of both metal ions increased, suggesting that the adsorption process
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is endothermic. The slope and intercept of the plot of lnKc vs. T (Figure 4d) revealed the
standard enthalpy change (∆H0) and entropy change (∆S0), respectively, and the Van’t
Hoff equation revealed the Gibbs free energy change (∆G0) and was listed in Table S2. The
resultant negative ∆G0, and positive ∆H0 and ∆S0 indicate the feasibility of adsorption.
However, the fact that adsorption capacities increase with temperature suggests that
chemical interactions between the metal ions and PGO–Gd are the primary determinant of
both radionuclide adsorptive removal [4,41].

3.5. Comparison of Adsorption Capacities and Cost

Table 3 compares the Langmuir qmax of PGO–Gd for U(VI) (427.50 mg g−1) and Th(IV)
(455.0 mg g−1) removal with those of other possible adsorbents described in the literature.
The qmax of PGO–Gd for both metal ions were equivalent to and somewhat higher than that
of numerous other adsorbents described in the literature, according to Table 3. In addition,
the adsorbent PGO–Gd was produced in this work using a simple hydrothermal technique
and was recyclable or reusable for more than four cycles (Figure S4) without reducing its
original efficacy and stability. As a result, when compared with other adsorbents reported
in the literature, the PGO–Gd cost is expected to be low. Furthermore, the cost, stability,
and adaptability of the adsorbent employed determine the effectiveness of any adsorption
method in water treatment. As a result, the material developed in this work has the ability
to effectively treat water polluted with U(VI) and Th(IV).

Table 3. Comparison of removal of efficacy of PGO–Gd for U(VI) and Th(IV) using materials reported in the previous literature.

Absorbent

Experimental Conditions qmax
mg g−1

Ref.
Initial Con mg L−1,

Dosage mg L−1 and pH U(VI) Th(IV)

Reduced graphene oxide based
inverse spinel nickel ferrite

(rGONF)
2–30, 0.3 and 3.5 200 126.58 [4]

Magnetized watermelon rind
biochar (MWBC) 10–200, 0.2 and 4 233.56 - [42]

Sugar-based magnetic graphene
oxide (SMGO) 2–30, 1.0 and 4 28.2 - [43]

Three-dimensional layered double
hydroxide/graphene hybrid

material
20–130, 0.01 and 4 277.8 - [44]

Gum-g-poly(AAm) composite 25–1000, 0.05 and 6 367.65 125.95 [45]

PVA/Fe3O4/SiO2/APTES
nanohybrid 30–500, 1.0 and 5 - 112.4 [46]

PVA/TiO2/TMPTMS nanofiber 30–500, 1.0 and 5 187.6 222.2 [47]

PGO–Gd 10–100, 0.1 and 4 427.50 455.0 This work

PGO 10–100, 0.1 and 4 105.65 125.00 This work

3.6. Adsorption Mechanism

The use of XPS characterizations aids in understanding the roles of different surface
functional groups of PGO–Gd in the adsorption of U(VI) and Th(IV). As shown in Figure 5a–c,
the characteristic peaks of the XPS full survey, C 1s and O 1s, respectively, can be observed
in PGO–Gd before and after adsorption. After U(VI) adsorption, the double characteristic
peaks of U 4f and Th 4f appeared in the sample spectra, suggesting effective immobilization
of U(VI) and Th(IV) on the adsorbent. The high resolution C1s spectra (Figure 5b) was well
resolved by three peaks located at 283.31 eV (C=C or C–C), 284.96 eV (C–OH), and 287.35 eV
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(C=O). The high resolution O1s spectra (Figure 5c) was fully resolved into three separate
component peaks located at 531.49 (C=O) and 529.87(O=C–OH). Adsorption of metal ions
altered the C1s (C=C, C–OH, and C=O) and O1s (C=O and O=C–OH) peak positions,
suggesting that U(VI) was predominantly adsorbed by interacting with PGO–Gd surface
functional groups such as C=C, C–OH, and C=O. Moreover, Th(IV) was predominantly
adsorbed by interacting with PGO–Gd surface functional groups, such as C=C, C–OH, O=C–
OH, and C=O, which probably contributes to the rapid adsorption of Th(IV). Furthermore,
the adsorption studies, such as pH, kinetics, and isotherms, suggest that both metal ions
were adsorbed via electrostatic interactions and surface chemical complexation. However,
chemical complexation predominantly influenced the sorption process for both U(VI) and
Th(IV). The plausible sorption mechanism is illustrated in Figure 6.
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3.7. Studying Environmental Relevance by Treating Metal Spiked Real Surface Water

Additional studies were performed for evaluating the adsorption stability of PGO–Gd
via kinetic experiments to investigate the in-situ applicability for surface water remedia-
tion. The stability experiments were performed by adding 0.005 g of adsorbent to 50 mL
of 10 mg L−1 U(VI) and Th(IV)-spiked groundwater, and 5 mL of each supernatant was
collected at varying time intervals, filtered, and the residual concentration was estimated
by ICP-OES analysis. Compared with U(VI), Th(IV) removal reached the EPA standard
level within 5 min (Figure 7), whereas the U(VI) residual concentration in treated water
did not reach the EPA standards, indicating the influence of other associate ions, causing
lower U(VI) adsorption than that of Th(IV). Moreover, Th(IV) adsorption was unaffected
by U(VI) and vice versa, when the groundwater was spiked with mixed metals (Th(IV) and
U(VI)) (each contaminated at 10 mg L−1). These results suggest the selective sorption of
both metal ions under the present experimental conditions.
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4. Conclusions

In this work, we focused on the facile preparation of PGO–Gd, and studied their
sorption mechanism for U(VI) and Th(IV) in ground water. Prepared PGO–Gd samples
were well characterized by XRD, XPS, FT-IR, Raman and SEM-EDX, which revealed their
structure and purity. The sorption characteristics of both metal ions from aqueous solutions
were observed under numerous experimental conditions that included pH, kinetic dosage,
isotherms, and temperature techniques.

The results are concluded in the following remarks.

(1) Th(IV) and U(VI) absorption was comparably high in PGO–Gd, although Th(IV)
adsorption was somewhat greater than U(VI) (VI).

(2) The effect of varied pH values on metal intake revealed that increasing the pH
enhanced metal ion absorption by PGO–Gd, reaching a maximum at pH 4.0. This
finding also suggests that the surface charge and metal ion species have a significant
impact on the adsorbent’s sorption capacity.

(3) The qmax of PGO–Gd for U(VI) and Th(IV) was comparable and higher than those of
the other absorbents.

(4) The adsorption process is endothermic and thermodynamically favorable.
(5) The PSO kinetic model and the Langmuir isotherm accurately explain the sequestra-

tion of U(VI) and Th(IV) by PGO–Gd, suggesting that the rate-limiting monolayer
sorption process happened on the PGO–Gd homogeneous surface.

(6) The characterization and adsorption studies concluded that the ions were adsorbed
predominantly by surface complexation along with electrostatic interactions through
adsorbent surface functionality.

(7) The adsorbent can be reused up to four times without losing its original efficacy or
stability. Hence, the use of PGO–Gd to remove radioactive waste from surface water
is strongly recommended in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13213835/s1: Materials and methods, including 1.1. Analytical methods 1.2. Chemicals,
and Table S1: Physical and chemical properties of surface water, Figure S1: EDX Spectra of the
bare PGO–Gd, Figure S2: Isotherms of U(VI) and Th(IV) onto PGO–Gd (0.1 gL−1, pH-4 and initial
concentration 10–100 mg L−1), Table S2: Thermodynamic parameters for the U (VI) and Th (IV) on
GO-Gd and PGO–Gd at pH 4, Figure S3. Recyclable studies U(VI) and Th(IV) onto PGO–Gd.
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