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Abstract Thrombin is the protease involved in blood coagu-
lation. Its deregulation can lead to hemostatic abnormalities,
which range from subtle subclinical to serious life-threatening
coagulopathies, i.e., during septicemia. Additionally, throm-
bin plays important roles in many (patho)physiological con-
ditions that reach far beyond its well-established role in stem-
ming blood loss and thrombosis, including embryonic devel-
opment and angiogenesis but also extending to inflammatory
processes, complement activation, and even tumor biology. In
this review, we will address thrombin’s broad roles in diverse
(patho)physiological processes in an integrative way. We will
also discuss thrombin as an emerging major target for novel
therapies.
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Introduction

The serine protease thrombin: from blood coagulation to far
beyond

Thrombin is the key effector protease of the blood coagulation
system. Although it is best known for this role, it directly
contributes to other processes including embryonic develop-
ment, angiogenesis, organ regeneration [1, 2], innate immu-
nity, acute and chronic inflammatory processes [3], athero-
sclerosis [4], neuropathology [5], and tumor biology [6, 7]
(synopsis, Fig. 1).

The wide spectrum of thrombin functions and its role in
physiology and pathophysiology are generally explained by
its activity as a serine protease (acting both on soluble and
membrane-bound substrates, Table 1). To promote blood co-
agulation, thrombin converts circulating fibrinogen into fibrin,
but it can also serve as a signaling molecule to cells through
protease-activated receptors (PARs, Fig. 2) [11]. PARs are G
protein-coupled receptors that carry their own ligands, which
remain cryptic until unmasked by receptor cleavage. Upon
binding of thrombin, an extracellular proteolytic cleavage
event is converted into a transmembrane signal, a principle
that can account for the vast majority of known thrombin
functions on cells.

When acting on cells, thrombin triggers a wide spec-
trum of responses such as cell proliferation, cell division,
and changes of the cell morphology and motility. It in-
duces downstream signal transduction cascades thereby
affecting electrophysiology, metabolic processes, and glob-
al gene expression. In addition, thrombin has a crucial
function during acute and chronic inflammatory processes,
e.g., by activating the complement cascade, or as a mitogen
for immune effector cells [3, 11] (further detailed below).
Thrombin also plays an important role for the initiation,
formation, and propagation of atherogenesis and thereby
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collectively illustrates the whole plethora and wide
(patho)physiological relevance in many systems including
hemostasis, inflammation, proliferation, and vasomotor regu-
lation. Thrombin, however, also induces tumor growth, me-
tastasis, and angiogenesis and might serve to preserve dor-
mant tumor cells in individuals, preventing host eradication
[6]. Thus, thrombin plays an important role in an unforeseen
dimension of various (patho)physiological processes with

significant incidence, prevalence, and mortality—apart from
the well-established role in stemming blood loss and its
perturbances.

More general information concerning thrombin and its role
in blood coagulation is provided in earlier reviews [12–15].
Here, we will focus on some of the most important
(patho)physiological processes mediated by thrombin and
illustrate how recently uncovered regulatory mechanisms
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physiology, and pathophysiology
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governing thrombin gene expressionmight explain previously
enigmatic links between blood coagulation and cancer.

Thrombin in adaptive and innate immunity

Thrombin is perhaps the most effective agonist for platelet
activation; upon binding to PARs, it triggers a shape change of
platelets and the release of the platelet activators ADP, sero-
tonin, thromboxane, as well as a variety of chemokines and
growth factors. Furthermore, it liberates the major fibrinogen
receptor GPIIb-IIIa integrin complex and P-selectin, and mo-
bilizes the CD40 ligand to the platelet surface. While the first

two enhance platelet aggregation [16], CD40L induces endo-
thelial cells to secrete chemokines and to express adhesion
molecules, thereby generating signals for the recruitment and
extravasation of leukocytes [17]. Thrombin also elicits re-
sponses in the vascular endothelium including shape and
permeability changes, mobilization of adhesive molecules
such as vWF and P-selectin, and the production of various
cytokines.

Crucially, PAR expression is found on many immune cells,
including macrophages, monocytes, dendritic cells, lympho-
cytes, and mast cells. Thus, is it not surprising that thrombin
influences many cellular functions with important roles in
immunity; thrombin is chemotactic for monocytes, regulates

Table 1 Thrombin actions and its regulation in the hemostatic system

Thrombin function in hemostasis Natural inhibitors of thrombin

Procoagulant Antithrombin (AT III, SERPINC1)

•Conversion of fibrinogen to fibrin
•Activation of F XIII
•Activation of F VII
•Activation of F Activation of F VIII
•Activation of F V
•Activation of thrombocytes (via PARs)

Plasma inhibitor, produced in the liver, causes proteolytic inactivation of thrombin, and activates
fibrinolysis (via induction of the tissue type plasminogen activator in endothelial cells). Most
important physiological inhibitor of the coagulation system (inhibits also activated F IX, X, XI,
and XII), anticoagulant activity of
AT III is dependent on its cofactor, heparin [8].

Anticoagulant Thrombomodulin (TM, THBD)

• Binding to thrombomodulin
(TM) and activation of
protein C

Integral membrane-bound protein expressed on endothelial cells, thrombin binding turns it
into an anticoagulant enzyme (by activation of the protein C pathway, Fig. 2) [9].

Antifibrinolytic Heparin cofactor (HCII, SERPIND1)

• Binding to thrombomodulin (TM)
and activation of TAFI (Thrombin-
activatable fibrinolysis inhibitor).

Second plasma inhibitor, shares homology with ATIII. Produced in the liver, it specifically inhibits
thrombin in the presence of many polyanionic molecules including glycosaminoglycans, heparin,
or dermatan sulfate (the latter of which originates from intact endothelial cells), contributes 20–30 %
to thrombin inhibition in blood coagulation [8].

Alpha-2-Macroglobulin (A2M)

Nonspecific plasma serine protease inhibitor, produced in the liver. Inhibits coagulation by inactivating
thrombin and kallikrein, proposed to act as a backup inhibitor of thrombin in adults, represents an
important progressive inhibitor of thrombin in young infants [10].

Alpha-1-Antitrypsin (SERPINA1)

Nonspecific plasma serine protease inhibitor, produced in the liver. Inhibits primarily activated F XI,
but also thrombin, kallikrein, plasmin, and the tissue type plasminogen activator [8].

Protein C inhibitor (PCI, SERPINA5)

Nonspecific plasma serine protease inhibitor, produced in the liver. In the presence of heparin, PCI is
anticoagulant, inhibiting proteolytic cleavage of fibrinogen by thrombin. In the presence of TM,
PCI is procoagulant, inhibiting the activation of protein C by thrombin [8].

Plasminogen activator inhibitor-1 (PAI-1, SERPINE1)

Nonspecific serine protease inhibitor, synthesized in endothelial cells, platelets, and other mesenchymal
cells surrounding the vasculature. Acts primarily to inhibit premature fibrinolysis after release from
activated platelets and disintegrating endothelia; inhibits also thrombin and APC in the presence of
vibronectin and/or heparin, contribution to blood coagulation in this context unknown [8].
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cytokine production in fibroblasts, and is mitogenic for lym-
phocytes and mesenchymal cells [11]. However, it also regu-
lates a plethora of further responses in immune cells via
activation of PAR signaling [18, 19]. In the complement
system, activated thrombin can directly generate C5a and
thereby bypass the classical, the alternative, and the lectin
pathway to trigger complement activation [20]. Yet, this is
not limited to thrombin—almost all serine proteases in the
coagulation system signal into the complement system, and
vice versa, as descendants of a common ancestral pathway,
proteolytic components from the complement system feed
into the blood coagulation system [3] (Fig. 3). Thus, thrombin
belongs to a complex network in which mutual connections
between these two pathways dictate the activity of the entire
“coagulo-complementome”. Finally, thrombin promotes the
activation of various pro-inflammatory pathways including
the production of pro-inflammatory cytokines (such as TNF,
IL-1β, and IL-6)—and cytokines, in turn, can stimulate coag-
ulation [3, 20–22].

In summary, apart from generating fibrin to promote he-
mostasis, thrombin has a host of direct actions on different cell

types including platelets and endothelial cells and also various
effector cells of the immune system. Moreover, thrombin
belongs to the “plasma serine protease system” in which the
coagulation and complement systems are tightly connected
through multiple direct interactions of serine proteases. In the
setting of sepsis, for instance, the extensive cross talk between
the coagulation pathways and the complement system is of
particular importance, as their uncontrolled activation essen-
tially contributes to and further perpetuates the detrimental
pathogenesis of the disease (see for further details [3]).

Thrombin in acute and chronic inflammatory processes

As thrombin acts both on cellular and soluble effectors of the
immune system, it has pivotal roles in acute and chronic
inflammatory processes [23, 24, 166], many of which are
regulated by activation of PARs on respective effector cells
[18, 19]. Thus, apart from physiological wound healing where
thrombin helps attracting effector cells to organize and repair
damaged tissues [25], overwhelming inflammatory responses

Fig. 2 Mechanisms of thrombin action. Thrombin is a multifunctional
serine protease involved in blood coagulation, complement activation,
and numerous cellular functions mediated via G protein-coupled
prote'ase-activated receptor (PAR) signaling pathways (for further details,
see [11]). Thrombin is antagonized by binding to thrombomodulin, a
multi-domain proteoglycan found primarily on endothelial cells (see
natural inhibitors of thrombin, Table 1). However, thrombin bound to

thrombomodulin augments the ability to activate protein C, a natural
anticoagulant, which in a negative feedback loop represses the generation
of thrombin (protein C itself also has antiapoptotic and anti-inflammatory
activity and increases activation of thrombin-activatable fibrinolysis in-
hibitor (TAFI), an enzyme which blocks the activation of plasminogen
and inactivates vasoactive peptides like complement C5a, not shown)
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triggered by thrombin can also cause detrimental responses
involved in the pathophysiology of rheumatoid arthritis [26].
Accordingly, thrombin inhibition down-modulates synovial
inflammation and has been shown to ameliorate even
established arthritis [27]. Interestingly, in the pathogenesis of
arthritis, thrombin activation (induced by collagen) exerts a
dual function: it leads to an increased expression of PAR-1 in
the inflamed joint and it serves, at the same time, as “ligand”
for PAR-1-mediated activation of synovial hyperproliferation
and an inflammatory destruction [28, 29]. Furthermore,
thrombin is implicated in the pathogenesis of inflammatory
brain diseases such as multiple sclerosis [30] and possibly
Alzheimer’s disease [31–33]. In both cases, uncontrolled in-
flammatory processes that are triggered by thrombin (predom-
inantly via activation of PARs) are suspected to contribute to
the progression of inflammatory brain diseases and neuronal
tissue damage by NMDA receptor response potentiation,
apoptosis, and inappropriate glial proliferation. Aberrant
induction of thrombin can also compromise neuronal
function by disturbing the electrophysiology resulting
in conduction blocks or seizures [30, 34]. Despite its detrimental

role also in edema formation (as a result of thrombin-mediated
permeability changes of endothelia) following intracerebral
hemorrhage [35] or in vascular dementia [36] and memory
impairment [37], thrombin has a neuroprotective function, es-
pecially at lower concentrations [38, 39]. Although cell death
and a protective function of thrombin share initial signaling
components, differences in the amplitude as well as the duration
of the signal may result in different final pathways thus
explaining the functional dichotomy of thrombin at different
concentrations. Finally, rather reflecting its direct function in
blood coagulation, the generation of thrombin resulting in local
thrombosis and/or fibrin deposition limits the survival and dis-
semination of some microbial pathogens (by generating a “me-
chanical” barrier) and might thereby affect host susceptibility to
a variety of infectious diseases [40, 41] (for review, [167]).
However, although thrombin is also known to be upregulated
in various chronic disease entities, the underlying mechanism
and exact pathogenetic relevance, whether or not thrombin
functions as a driver or passenger in these disease processes, is
still poorly understood [31, 32, 42]. Yet, it needs to be noted that
(selective) PAR-1 expression and activation, i.e., on dendritic

Fig. 3 Cross talk between the coagulation and complement system. The
coagulation cascade, the complement system, and fibrinolysis (simpli-
fied) communicate through many direct and bidirectional interactions
(indicated). Activated clotting Factor XII can activate the classical com-
plement pathway through cleavage of the complement component C1.
Similarly, thrombin, kallikrein, and plasmin directly cleave complement
componentC3, as well as its activation fragments (not shown). Moreover,
thrombin can cleave C5 into C5a, which occurs independently of C3 and
therefore represents a bypass of the three traditional complement

activation pathways (the classical, the lectin, and alternative pathways)
[3]. Thrombin-activatable fibrinolysis inhibitor (TAFI) inactivates C3a
and C5a in a negative feedback loop. The complement system also
amplifies coagulation through the C5a-mediated induction of expression
of tissue factor (TF) and plasminogen activator inhibitor 1 by leukocytes
(not shown), the latter of which inhibits fibrinolysis. In addition, mannan-
binding lectin serine protease 2 (MASP2) of the lectin complement
activation pathway triggers coagulation by converting prothrombin to
thrombin. MAC, membrane attack complex (C5b–C9); see also [3, 161]
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cells, play a critical role in both chronic and acute lethal inflam-
matory processes [43, 44], putting blood coagulation (and
thrombin specifically) also on center stage for an active immune
modulatory cellular function.

Thrombin and atherosclerosis

Thrombin is generated at the site of vascular injury and has
been proposed to play a crucial role in the pathogenesis of
atherosclerosis by activating platelets and promoting a pro-
inflammatory response [4, 25, 45]. This is characterized by an
increased production of diverse chemokines and cytokines, cell
adhesion molecules, enhanced vascular permeability, migration
and proliferation of vascular smooth muscle cells, wall thick-
ening, and vasoconstriction. Thus, thrombin is considered to
contribute to both the initiation and also the propagation of
atherosclerotic lesions. This eventually results in a vicious
circle, where progressing endothelial injuries cause further
thrombin conversion with detrimental self-sustaining qualities.
These findings are further corroborated by mouse models,
where the deletion of the natural thrombin inhibitor (heparin
cofactor II, see Table 1) promotes an accelerated atherogenic
state. In contrast, reduction of thrombin activity attenuates
plaque progression and promotes stability in advanced athero-
sclerotic lesions [46]. Thus, with the advent of novel selective
anticoagulants such as direct thrombin inhibitors [47] or PAR
inhibition [48], great hope accompanies basic research to find
potentially new therapeutic strategies to interfere with throm-
bin’s role in atherosclerosis. In preclinical models, selective
PAR-1 blockade resulted in potent inhibition of thrombin-
induced platelet aggregation but appeared to preserve pri-
mary hemostatic function [49]. These findings clearly put
selective PAR-1 inhibition on center stage as a promising
target to interfere with atherosclerosis. Interestingly, while
PAR-1 inhibition reduces the risk of cardiovascular death or
ischemic events with stable atherosclerosis [50], such ef-
fects have not been witnessed so far for acute coronary
syndromes [51]. Both studies revealed that PAR-1 inhibi-
tion leads to an increased risk of moderate and severe
bleeding, including intracranial hemorrhage, thus highlighting
the need to optimize the therapeutic regimen to specifically
interfere with thrombin’s contribution to the initiation, forma-
tion, progression, and destabilization of atherosclerotic
plaques. Possibly, key to that might be that thrombin itself
has earlier been observed to be regulated in response to
(chronic) inflammatory events [42] (further detailed below).

Thrombin in embryonic development and angiogenesis

One of the most striking observations regarding “non-classi-
cal” thrombin functions has been made in knockout animals:

Predictably, a functional null allele results in severe coagula-
tion abnormalities leading to embryonic and neonatal lethality
[52, 53]. However, thrombin is also implicated in maintaining
vascular integrity during development as well as postnatal life
[41, 52, 53], which is mainly driven by the activation of PARs
[11]. Interestingly, thrombin expression at levels of as little as
5–10% of the norm is still compatible with normal embryonic
development, but the resulting animals are hemophilic with-
out showing spontaneous bleeding [54]. This indicates that
low levels of thrombin expression are indispensible for normal
embryonic development and higher levels are required to
control bleeding. Ultimately, thrombin is highly expressed
and extensively regulated in muscles during (neonatal) syn-
apse remodeling [55], after muscle denervation, and during
brain development [56, 57], suggesting a role of thrombin in
neuronal plasticity. This is highlighted by findings of throm-
bin being produced in the brain either immediately after
cerebral hemorrhage or after breakdown of the blood–brain
barrier, which occurs in response tomany kinds of brain injury
[58]. Furthermore, transient global ischemia up-modulates
thrombin gene expression in the brain [59].

Thrombin in tissue and organ regeneration
and differentiation

The importance of thrombin in tissue regeneration is highlight-
ed by studies of the vertebrate lens [1, 2]. Here, selective
thrombin activation has been discovered to control the cell
cycle reentry at the site of tissue injury and thereby initiates
the process of vertebrate lens regeneration. Thrombin also
counteracts the postmitotic arrest in newt myotubes and there-
by plays an important role in plasticity and reprogramming of
differentiated cells in amphibian regeneration [60]. Yet, also in
humans, it regulates (hematopoietic) stem and progenitor cell
functions [61], it stimulates various differentiation processes
[62, 63], and it has been reported to be up-modulated after
spinal cord injuries [64] and other neurotraumas [56]. On the
other hand, elevated thrombin production is associated with
aging [65] and has been reported to contribute to the develop-
ment of age-related (neuronal) deficits [37] or an increased
propensity for developing blood clots at old age [65].

Thrombin in cancer and tumor biology

Blood coagulation factors in general and thrombin in particular
have recently been found to play an important role in cancer
biology [6, 7, 66–70]: In tumor patients, increased pro-
coagulatory activities are almost inevitably seen at some point
during tumor progression, where tumor procoagulants are
released into the blood stream and thus give rise to the devel-
opment of thrombosis with serious—often life-threatening—
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consequences. However, thrombosis can also represent a fore-
warning of an as yet undiagnosed “occult” malignancy (so
called Trousseau’s syndrome) [71]. Thus, hypercoagulabilities
have not only serious therapeutic but also important diagnostic
implications. Although considered to be the consequence of an
underlying tumor disease for almost 150 years, recent evidence
suggests that this syndrome is not a mere paraneoplastic effect,
but the result of mechanisms that provide a selective advantage
to cancer cells [72–77]—with a striking impact on tumor
initiation, tumor progression, and patient prognosis [72, 74,
75, 77–79]. In line with these findings, hyperactivation of
blood coagulation is associated with more rapid tumor pro-
gression [72–74]. Conversely, impaired blood coagulation re-
duces the incidence of cancer [75] and inhibits the invasive
growth of tumor cells and metastasis in patients treated with
anticoagulants [77, 78] or in mice defective for coagulation
factors such as fibrinogen [80] or thrombin [81].

How does thrombin influence tumor biology?

In 1986, Harold Dvorak described parallels between wound
healing and tumor disease, where hemostasis (local fibrin
deposition) is an inherent part of physiological regeneration
processes, which are also engaged during tumorigenesis [82].
This includes almost all factors of primary and secondary
hemostasis. It involves the direct activation of thrombin and
fibrin synthesis by production of pro-coagulatory substances
by tumor cells and/or indirectly via the activation of endothe-
lial cells, thrombocytes, and leukocytes by production of
cytokines, proteases, glycoproteins, and tissue factor-loaded
microparticles [83]. Eventually, this creates a protumorigenic
micromilieu, which drives cellular programs promoting cell
growth, motility, angiogenesis, and invasiveness [7].

Tissue factor is one of the most important tumor-associated
determinants for tumor progression and metastasis (i.e., by the
induction of tissue factor signaling promoting tumor growth
and angiogenesis; see [84, 85] for review). In addition, tissue
factor mediates (local) thrombin generation (Fig. 3), which is
crucial for various protumorigenic processes [6, 70, 86, 87].
The critical role of thrombin in augmenting protumorigenic
cellular programs reflects the whole plethora of thrombin
functions—including its dual role in fibrin formation and
platelet activation, the activation of PAR signaling, the pro-
teolytic breakdown of extracellular matrix, and/or direct on-
cogenic mechanisms (i.e., via induction of c-myc or co-
activation of the hepatocyte growth factor) [6, 69, 84,
88–90]. Specifically, thrombin generation is crucial for me-
tastasis not only through fibrin and platelet deposition but also
via thrombin-dependent PAR-1 signaling [86, 91–95]. Throm-
bin stimulates tumor adhesion [91, 92, 94, 96, 97], growth
[98], DNA synthesis, and cellular proliferation either directly
or in synergy with other mitogens [86, 99]. Thrombin is an

effective activator of angiogenesis by clotting-dependent
mechanisms involving platelet activation and fibrin deposi-
tion. However, thrombin also induces tumor angiogenesis via
clotting-independent mechanisms mediated by PAR activa-
tion, which leads to an upregulation of various growth factors,
including VEGF [100], angiopoetin-1 [101] and angiopoietin-
2 [102], the major VEGF receptor KDR, as well asMMP1 and
MMP2 in endothelial cells [103, 104]. Furthermore, activated
platelets augment the pro-angiogenic process by releasing
VEGF and platelet-derived growth factors [100, 105]. Finally,
thrombin-dependent fibrin formation and platelet activation
create a niche protecting the emerging tumor against natural
killer cell attacks [106–108].

In patients, the appropriate control of thrombin expres-
sion and activation therefore not only determines the deli-
cate balance of pro- and anticoagulatory activities
[109–112] but also effects tumor dissemination and metas-
tasis [81, 113]. Accordingly, the prevalence of mutations
increasing thrombin expression (such as F2 20210 G>A)
are higher in some cancer patients compared to controls
[76], and tumor cells treated with thrombin display in-
creased metastatic potential [81, 91]. These observations
are highlighted by our own data showing that thrombin
gene expression is specifically upregulated in metastatic
prostate and colon cancer (Fig. 4; [113]), which ultimately
leads to PAR activation and induction of genes involved in
thrombin-mediated invasion and angiogenesis.

Inversely, low-level thrombin expression [81] or the spe-
cific inhibition of thrombin by sulfohirudin or thrombostatin
reduces tumor growth and metastasis in vivo [114, 115]. This
prometastatic function of thrombin is further corroborated by
findings demonstrating that the endogenous generation and/or
activity of thrombin—by altering the thrombomodulin sys-
tem—plays a crucial role for spontaneous metastasis in vivo
[116]. Finally, the expression of thrombin-activated receptors
(PAR-1) is frequently up-modulated in highly metastatic tu-
mors [88], which correlates with negative prognosis [117].
Interestingly, numerous reports document beneficial effects of
pharmaceutical thrombin inhibition for cancer patient survival
(for reviews, see [6, 70, 118] and special issue, Journal of
Clinical Oncology [77, 83]).

In summary, thrombin contributes to various hallmark pro-
cesses directly associated with tumor dissemination and pro-
gression including (1) cellular proliferation and tumor growth,
(2) tumor adhesion to subendothelial matrix, (3) tissue inva-
sion and extravasation, (4) tumor-associated angiogenesis, (5)
tumor-associated pro-inflammatory processes, and (6) the col-
onization of a metastatic niche (fibrin net encapsulation and
platelet activation; Table 2).

Whether thrombin also plays a role for tumor initiation and
early events in tumorigenesis is yet to be determined. Never-
theless, it is noteworthy that the prevalence of prothrombotic
mutations increasing thrombin gene expression is higher in

J Mol Med (2013) 91:1257–1271 1263



some cohorts of cancer patients compared to controls [76].
This might either reflect a nonfunctional association or display
a potential selective disadvantage and predisposition for car-
riers of F2 20210 G>A for developing specific cancer enti-
ties—although this association clearly does not apply to all
tumor types [74, 79].

The functional role of thrombin for tumor initiation might
therefore differ with regard to specific tumor entities.

Therapeutic approaches targeting thrombin may thus help
to interfere with its protumorigenic properties during tumor
progression, but possibly also in tumor initiation. Although
several hallmark studies document the detrimental effect of
disordered hemostasis for cancer onset, these observations
have so far eluded mechanistic explanation [72–76, 80,
140]. A possible key to that might be that thrombin is
upregulated during inflammatory events [20, 32, 42, 113,
141]. Understanding potentially underlying mechanisms
could therefore help to disentangle the enigmatic relation-
ship between blood coagulation and cancer biology, and
potentially contribute to the development of novel thera-
peutic strategies.

When and where is thrombin generated? A p38 MAPK
dependent switch controls F2 expression

In order to become biologically active, prothrombin is cleaved into
thrombin. This proteolytic activation step is catalyzed by activat-
ed Factor X (Fig. 3) and controlled by various negative feed-
back mechanisms to prevent overwhelming pro-coagulatory
activities or other uncontrolled thrombin-dependent activities
(see natural thrombin inhibitors, Table 1). Nevertheless, muta-
tions that merely increase thrombin expression (such as F2
20210 G>A) already shift the well-balanced equilibrium of
pro- and anticoagulatory activities [109, 142, 143]. This

Table 2 Thrombin actions during tumorigenesis

Thrombin function Refs.

Tumor adhesion [91, 92, 94, 96,
97, 119]

Tumor growth [67, 98]

DNA synthesis, antiapoptotic [120]

Proliferation, cell cycle [67, 121–127]

Mitogenic for mesenchymal tissues, fibroblasts,
endothelial and muscle cells

[121–123]

Motility [121, 128]

Disruption of endothelial cell junctions [129]

Invasion [130, 131]

Metastasis [81, 91–95, 132]

Angiogenesis [100–104,
133–139]

Preservation of dormant tumor cells preventing host
eradication

[6, 106, 107]

Fig. 4 Stage-dependent induction of ectopic (i.e., extrahepatic) thrombin
(F2) gene expression in metastatic prostate cancer. Normalized mRNA
expression of the thrombin (F2) gene, of the F2 Receptor (F2R/PAR1), of
V-SRC and ARHGEF2 (surrogate for activated F2R signaling), and of
cathepsin D and angiopoetin 2 (for invasion and angiogenesis [6, 137]),
obtained from gene expression profiling after extraction, normalization,
and reassembly of 171 human samples (see [162] GEOGDS2545 record)

including metastatic prostate cancer tissues (n=24; GSE6605),
nonmetastatic primary prostate tumors (n=60; GSE6606), prostate tissues
adjacent to the tumor (n=63; GSE6608), and normal donor prostate
tissues (n=18, GSE6604) [163, 164] (median, horizontal line; 25th
through 75th percentile, box; range, standard error of the mean (SEM);
*p<0.05; **p<0.01; ***p<0.001)
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indicates that the activation step of prothrombin cleavage be-
comes secondary. As a consequence, prothrombin gene ex-
pression needs to be tightly controlled: even subtle changes
(1.5- to 1.7-fold) of its gene expression [143, 144] can
result in a clinically relevant thrombophilia [13, 145].

Although primarily synthesized in hepatocytes (in adults),
thrombin is also expressed in the brain [57] and is induced in
neurons after cerebral ischemia [59], during embryonic devel-
opment [52, 53, 55, 57], and in various acute and chronic
inflammatory processes [20, 32, 42, 56, 64, 141, 146]. Hence,
cells must have evolved mechanism(s) that fine-tune thrombin
expression and thereby ensure proper execution of thrombin-
mediated cellular programs. Yet—as highlighted above—the
underlying molecular principles governing thrombin expres-
sion regulation have remained enigmatic until recently.

Inflammatory processes represent possible triggers to in-
duce thrombin gene expression [20, 32, 42, 113, 141, 147,
148]. In addition, the crucial role of thrombin for angiogenesis
[11] suggests that a regulatory mechanism controlling throm-
bin expression might have evolved a sensor for low oxygen
pressure. This could explain why thrombin is hyperexpressed
in response to ischemic events [59] or in the tumormicromilieu
of growing tumors [113], which notoriously suffer from low
oxygen pressure.

We recently discovered a gene regulatory mechanism af-
fecting RNA3′ end processing that operates in response to and
integrates environmental stimuli to fine-tune thrombin mRNA
expression via p38 MAPK activation [113] (Fig. 5). In turn,
p38MAPK up-modulates the RNA 3′ end processingmachin-
ery and directly induces the phosphorylation of inhibitory
proteins, which bind to a highly conserved sequence motif
in the F2 3′UTR. Upon phosphorylation, these inhibitory
proteins fail to bind the prothrombin mRNA, making it acces-
sible to proteins that stimulate 3′ end processing (many of
which play important roles in cancer [149]). This eventually
results in a higher (pro)thrombin expression under inflamma-
tory conditions such as septicemia. Interestingly, p38 MAPK
activation also directs thrombin overexpression in the tumor
microenvironment of metastasized colon carcinoma. This, in
turn, activates PARs, which induces the expression of genes
with crucial roles in neoangiogenesis and tumor dissemination
[113] (Figs. 4 and 5), highlighting the physiological impor-
tance of novel layers of gene expression control [150–153].

The identification of p38 MAPK controlling thrombin
represents a hypothetically interesting “building block” for a
model, whereby (tumor-associated) hypoxia and/or ischemia
might trigger thrombin expression: hypoxia represents a po-
tent inducer of p38 MAPK [154], and its ablation results in

Fig. 5 Extracellular stimuli induce thrombin gene expression by p38
MAPK activation. Extracellular stimuli activate p38 MAPK and thereby
phosphorylate regulatory proteins (red), which “catalyzes” the remodel-
ing of a stimulatory ribonucleoprotein (RNP) complexes (green) to up-
modulate the efficiency of thrombin mRNA 3′ end processing. This
mechanism allows modulating cellular functions, such as blood

coagulation by controlling the amount of thrombin protein produced.
Yet activation of this mechanism also appears to play an important role
in other pathophysiological processes (such as tumorigenesis) and drives
cellular programs involved in tumor invasion and neoangiogenesis by the
activation of thrombin receptor signaling (F2R, PAR-1) and degradation
of extracellular matrix (figure adopted from Cell Press [113])
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defects of placental angiogenesis [155]. Partly, this
phenocopies the lethal vessel-malformation phenotype of
mice lacking thrombin [53]. Interestingly, the functional im-
portance of p38 MAPK for the regulation of thrombin gene
expression is further corroborated in prostate cancer patients,
where a stage-specific induction of p38 MAPK activity cor-
relates with an up-modulation of thrombin gene expression in
metastatic prostate cancer (Fig. 6).

Thrombin in blood coagulation, inflammation, cancer
and beyond: back to Virchow?

Importantly, an estimated 40–50 % of all human cancers are
linked to chronic inflammation [156], which can induce p38
MAPK. But also other environmentally triggered programs
such as the DNA damage or oxidative stress response (with
important roles during tumorigenesis) can directly activate

Fig. 7 Model for inflammation as a unifying trigger predisposing to
deregulated blood coagulation (thrombin gene expression) and tumor
formation. Inflammatory stimuli can induce both tumor formation (sim-
plified) and thrombin (F2) gene expression. This in turn leads to a
disequilibrium of pro- and anticoagulatory activities (and thereby pro-
motes tumor-associated thrombus formation) and drives protumorigenic
cellular programs (in an autocrine and/or paracrine manner; SD

unpublished). Tumor formation will thus be supported by the tumor-
promoting properties of thrombin; vice versa, tumor formation elicits
detrimental inflammatory responses [159], which in turn further promote
tumorigenesis and p38 MAPK (p38)-mediated induction of thrombin
gene expression. (Extracellular matrix (ECM), Reactive oxygen species
(ROS), epithelial–mesenchymal transformation, mesenchymal–epithelial
transformation (EMT/MET))

Fig. 6 Induction of thrombin
(F2) gene expression correlates
with a stage-dependent activation
of p38 MAPK signaling in
metastatic prostate cancer.
Normalized mRNA expression of
p38 MAPK (upper diagram) and
of MYO1B (lower left diagram),
which reflects activation of p38
MAPK signaling [165], obtained
from gene expression profiling of
171 human samples [162]
(median, horizontal line; 25th
through 75th percentile, box;
range, standard error of the mean
(SEM); *p<0.05; **p<0.01;
***p<0.001). Correlation of p38
MAPK signaling activation
(MYO1B gene expression) with
F2 gene expression is shown in
the lower right diagram
(Spearman’s rank correlation)
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p38MAPK [154], and deregulated p38MAPK signaling itself
is associated with cancers in humans and mice [155, 157].
Therefore, protumorigenic signals such as inflammation,
DNA damage, or reactive oxygen species might hypothetical-
ly represent the long-sought-after common risk factor between
deregulated blood coagulation and the increased incidence of
cancer [73] with detrimental bidirectional self-sustaining qual-
ities [7, 82] (Fig. 7).

Remarkably, such an association is also corroborated by
earlier studies, which demonstrated an inflammatory tumor
microenvironment to be associated with the induction of throm-
bin expression [113]. This regulatory mechanism would pro-
vide a molecular basis by which protumorigenic environmental
stimuli such as inflammation [158–160] can be directly linked
to the hyperexpression of thrombin (and its detrimental conse-
quences on tumor biology). This mechanism might also help to
explain thrombin’s role at the center of numerous inflammatory
and noninflammatory (patho)physiological processes.

Future directions

Although we unquestionably have broadened our un-
derstanding of thrombin and its cellular functions with-
in the past 20 years, we are just beginning to understand that
thrombin plays a previously underappreciated role in
(patho)physiology—ranging from autoimmunity, blood coag-
ulation, cancer to wound healing, but possibly also regenera-
tive medicine.

What remains puzzling is the contribution of thrombin to
many of these processes on a systems’ level in living organisms.
This is mainly due to the fact that the complete lack of thrombin
is lethal. In fact, most of the aforementioned roles of thrombin’s
contribution in diverse (patho)physiologies have been explored
in cell culture studies and/or been deduced from animal studies
where thrombin activity was reduced by pharmaceutical inhibi-
tors. What continues to be challenging is the multifunctionality
of thrombin: it can act systemically but also locally in different,
though (patho)physiologically meaningful “sub-compartments.”
Thus, systemic determinations of thrombin activity do not nec-
essarily reflect its local activity. In addition, there are numerous
tissues in which thrombin is dynamically (re)expressed and
modulated in various (patho)physiological conditions (see
above). We currently do not understand to what extent
(de)regulated thrombin expression and its activation represent
cause or consequence of (patho)physiological processes. There-
fore, studying the role of thrombin with spatial and temporal
resolution could pave the way to much better dissect the roles of
this multifunctional serine protease in various tissues and disease
entities. This would also help elucidating the potential therapeu-
tic dimension of strategies targeting thrombin gene expression
and/or activation.
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