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Unobtrusive Authentication Using ACTIvity-Related and Soft BIOmetrics (ACTIBIO) is an 
EU Specific Targeted Research Project (STREP) where new types of biometrics are 
combined with state-of-the-art unobtrusive technologies in order to enhance security in a 
wide spectrum of applications. The project aims to develop a modular, robust, 
multimodal biometrics security authentication and monitoring system, which uses a 
biodynamic physiological profile, unique for each individual, and advancements of the 
state of the art in unobtrusive behavioral and other biometrics, such as face, gait 
recognition, and seat-based anthropometrics. Several shortcomings of existing biometric 
recognition systems are addressed within this project, which have helped in improving 
existing sensors, in developing new algorithms, and in designing applications, towards 
creating new, unobtrusive, biometric authentication procedures in security-sensitive, 
Ambient Intelligence environments. This paper presents the concept of the ACTIBIO 
project and describes its unobtrusive authentication demonstrator in a real scenario by 
focusing on the vision-based biometric recognition modalities. 

KEYWORDS: biometrics, behavioral biometrics, physiological biometrics, image analysis, 
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INTRODUCTION 

The use of biometrics for access control in restricted infrastructures has been extensively researched 

during the last 4 decades. Biometrics measures the unique physical or behavioral characteristics of 

individuals as a means to recognize or authenticate their identity. Common physical biometrics include 

fingerprints; hand or palm geometry; and retina, iris, or facial characteristics. Behavioral characteristics 

include signature, voice (which also has a physical component), keystroke pattern, and gait. Although 

some technologies have gained more acceptance than others, it is beyond doubt that the field of access 

control and biometrics as a whole show great potential for use in end-user segments and for covering 
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areas such as airports, stadiums, and defense installations, but also industry and corporate workplaces 

where security and privacy are required. 

However, current biometric security systems exhibit various shortcomings despite their wide 

acceptance in commercial applications[1,2]. One such shortcoming is the de facto exclusion or 

discrimination of people by the system whose biometrics cannot be recorded well for the creation of the 

database reference (e.g., people whose fingerprints do not print well or people who miss the required limb 

or feature). In that respect, the research on new biometrics that use features that exist in every human, 

thus rendering them applicable to the greatest possible percentage of the population, becomes very 

important. 

Late technologies in biometrics resemble more natural ways of recognizing people. For instance, 

friends do not recognize each other by examining each others’ palms or fingerprints. Thus, similar to the 

ways or techniques that humans use to recognize each other, modern trends in biometrics indicate the 

recognition of dynamic face grimaces, gait, movements, etc. In other words, they tend to recognize 

―aliveness‖ rather than static features such as fingerprint traits or irises. Following this principle, 

behavioral biometrics is related to specific actions and the way that each person executes them. In this 

respect, spoofing attacks to biometric systems that usually use artificially made features (fingerprints, 

photographs, etc.)[3] will fail. Due to the nature of dynamic indicators that describe a person’s internal 

physiology and external behavior, an authentication system that uses them performs de facto and reliably 

an aliveness check of that person. 

Moreover, identity fraud is possible when authentication takes place instantaneously and only once. 

An attacker can bypass the biometric authentication system and continue undisturbed. Given this, a 

cracked or stolen biometric system presents a difficult problem. Unlike passwords or smart cards that can 

be changed or reissued, absent serious medical intervention, a fingerprint or iris is forever. Once an 

attacker has successfully forged those characteristics, the end user must be excluded from the system 

entirely, raising the possibility of enormous security risks and/or reimplementation costs. Static physical 

characteristics can be digitally duplicated; for example, the face could be copied using a photograph, a 

voice print using a voice recording, and the fingerprint using various forging methods. In addition, static 

biometrics could be intolerant of changes in physiology. For instance, the voice could be altered by a 

cold, while face recognition systems are susceptible to changes under ambient light conditions or the pose 

of the subject. Behavioral and physiological dynamic indicators as a response to specific stimuli could 

address these issues and enhance the reliability and robustness of biometric authentication systems when 

used in conjunction with the usual biometric techniques. Additionally, continuous and repeated 

authentication of a person (in the controlled environment) is possible because of the nature of dynamic 

traits. 

Furthermore, given that most of the existing biometric systems are unimodal systems, it makes them 

more vulnerable to theft attempts since an attacker can easily gain access by stealing or bypassing a single 

biometric feature. In the same concept, unimodal biometric systems have to contend with a variety of 

problems, such as noisy data, intraclass variations, restricted degrees of freedom, nonuniversality, spoof 

attacks, and unacceptable error rates, i.e., it is estimated that approximately 3% of the population does not 

have legible fingerprints[4]. This kind of biometric system may not always meet performance 

requirements, may exclude large numbers of people, and may be vulnerable to everyday changes and 

lesions of the biometric feature. Because of this, the development of systems that integrate two or more 

biometrics is emerging as a trend.  

On the other hand, some of the aforementioned limitations can be addressed by deploying multimodal 

biometric systems that integrate the evidence presented by multiple sources of information. A multimodal 

biometric system uses multiple applications to capture different types of biometrics. This allows the 

integration of two or more types of biometric recognition and verification systems in order to meet 

stringent performance requirements. A multimodal system can combine any number of independent 

biometrics and overcome some of the limitations arising when using just one biometric as the verification 

tool. Multiple biometrics could consist of different types of biometrics, such as combining facial and iris 

recognition. Particularly, the use of behavior, physiology, and signals from either wearable sensors or 
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sensors integrated into the infrastructure in a multimodal setup might be of special interest considering 

that they share the most part of the signal acquisition system. Experimental results have demonstrated that 

the identities established by systems that use more than one biometric[5] could be more reliable, be 

applicable to large target populations, and improve response time. 

Last but not least, a major shortcoming of all biometrics is the obtrusive process of obtaining the 

biometric feature. The subject has to stop, go through a specific measurement procedure (which, depending 

on the biometric, can be very obtrusive), wait for a period of time, and then get clearance after 

authentication is positive. Emerging biometrics such as gait recognition[3], dynamic body motion 

recognition, and technologies such as automated face/gestures dynamics detection, as well as biometrics 

measured by sensors either worn by the user or transparently integrated into the infrastructure, can 

potentially allow the nonstop (on-the-move) authentication or even identification that is unobtrusive and 

transparent to the subject and become part of an Ambient Intelligence (AmI) environment. In this respect, 

the identity of the users will be initially established based on their behavioral biometric features and it will 

be continuously validated based on activity-related signals that can be captured in an unobtrusive way. 

ACTIBIO CONCEPT 

The ACTIBIO (ACTIvity-Related and Soft BIOmetrics) project has researched and developed a 

completely new concept in biometric authentication, i.e., the extraction of biometric signatures based on 

the response of the user to specific stimuli, while performing specific work-related activities, such as 

answering the phone, talking into the microphone, controlling an office panel, etc. Each activity is 

stimulated by environmental events, i.e., ringing of the phone or the announcement of an alarm message 

through the microphone. 

The novelty of the approach lies in the fact that the measurements from several biometric subsystems 

(i.e., modalities) that are used for authentication correspond to the response of the person to specific 

events being, however, fully unobtrusive and also fully integrated in an AmI infrastructure. Thus, the 

current system implements a multimodal approach, fusing information from various sensors capturing 

either the dynamic behavioral profile of the user (face, gesture, gait, body dynamics) or the physiological 

response of the user to events. Within the ACTIBIO project, novel activity-related and soft biometric 

technologies for improving security, trust, and dependability of ―always-on‖ networks and service 

infrastructures have been developed. (The term ―always on‖ refers to any system [PC, infrastructure 

device, etc.] that is online and ready to go 24 h a day. Nothing has to be turned on or dialed up in order to 

start it.) 

The biometric modalities that are initially considered compatible with the user’s behavioral analysis 

in the project are the face, the gait, the body poses, as well as some ―soft‖ biometrics (e.g., height), and 

special biometrics that can be collected via the use of unobtrusive sensors, i.e., a sensing seat[6] that is 

able to extract anthropometric profiles based on the user’s weight distribution on the seat and the seat’s 

cover deformation. Additionally, activity-related biometrics (i.e., prehension movements) are studied in 

conjunction with physiological biometrics extracted from electroencephalography (EEG) and 

electrocardiography (ECG) using wireless sensors. 

In general, the novelty lies in the introduction of invariant physiological activity-related biometrics 

that are combined with unobtrusive behavioral and soft biometrics by using a triplet of sensors: (a) an 

improved sensing seat, (b) a wireless physiological sensor, and (c) stereo cameras. 

In this respect, the monitoring of actions performed by the user is triggered by a dedicated event 

detector, occasionally augmented by wired usb-sensors. The user authentication is based on signals with 

dynamic nature (focusing on the behavioral part), which significantly vary among different users Further, 

increased safety levels are boosted via the continuous, on-the-move behavioral and physiological analysis 

of the data provided by several modalities. In the same concept, multimodal signal analysis techniques are 

used for the detection, while user-specific activity patterns are processed from a system fully unobtrusive 

and fully integrated in AmI environments. 
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ARCHITECTURE 

An open, modular, and efficient system architecture has been designed in order to address the different 

applications and systems of the ACTIBIO project. The overall framework focuses on the definition of 

nodes (independent modalities) in the network, their functionalities, the definition of internode 

communication protocols, and the information flow between nodes. A proposed architecture is presented 

in Fig. 1. 

 

FIGURE 1. The ACTIBIO architecture. 

The overall architecture of the proposed framework for activity-related biometric authentication 

integrated into wired and wireless sensor infrastructures is illustrated in Fig. 1. Specifically, the Sensor 

Network is responsible for the collection of data from various heterogeneous sensors, while the 

Behavioral Activity Pattern Extraction module involves the extraction of behavioral activity patterns 
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(face, gesture, body motion, gait, etc.) by using data from various wireless/wired, wearable/infrastructure-

embedded sensors). 

Further, the Physiological Activity Pattern Extraction module involves the extraction of activity-

related and global physiological patterns for authentication (processing EEG, ECG data captured by 

wireless sensors). The Activity Biometrics Recognition/Matching module is the core of the ACTIBIO 

system, involving multimodal fusion of physiological and behavioral biometric activity-related patterns 

and the extraction of the activity-related signature that characterizes the individual. 

Finally, the module for the detection and tracking of a user is constantly on. The output of this 

module feeds the High Level Event Detection Models that generates a series of events that are then used to 

extract meaningful activity-related patterns. In this respect, information from the all the modules in the 

network is received, analyzed, and compared to previously stored activity patterns. When substantial 

deviation from the stored activity patterns is detected, an alarm is triggered, launching a predefined set of 

security-related actions. 

In addition, issues like the geographical distribution of the system components, data access, data 

security mechanisms, and compliance with international standards[7] have been taken into account. 

ACTIBIO PILOTS 

The effectiveness of the ACTIBIO prototype that integrates all the software and hardware modules is 

evaluated, and its modularity and adaptation in versatile scenarios is shown in a series of pilots that have 

been designed as described below. Specifically, three innovative pilots are implemented, targeting the 

secure ―always-on‖ operation of machines and networked infrastructures controlled by humans (Fig. 2). 

 

FIGURE 2. (a) Fixed-seat pilots, (b) driver pilot, (c) workplace pilot. 

These pilots have been planned in such way as to cover the most important aspects of the current 

project. Moreover, they exhibit its modularity and adaptation in multipurpose scenarios:  

1. A fixed-seat pilot for enhanced resources protection from unauthorized access and for the 

evaluation of the system as an emotional state classifier 

2. A driver pilot representing, in general, the transportation environment 

3. A workplace pilot for high-security areas and installations protection from unauthorized access 

and for the evaluation of the system as an emotional state classifier 

Table 1 presents the modalities enabled at each of the three ACTIBIO pilots, according to the 

corresponding project’s configurations, so as to highlight the multimodal nature of the system. 
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TABLE 1 
Enable Modalities for Each Pilot 

ACTIBIO 
Pilots 

Gait Face 
Dynamics 

Sensing 
Seat 

Physiological 
(ENOBIO®) 

Soft Activity-
Related 

Event and 
Activity 

Detection 

Office         
Workplace    ()    
Driver        

THE FIXED WORKPLACE OFFICE PILOT 

The Pilot Protocol 

The workplace scenario pilot (Fig. 2c), which demonstrates the unobtrusiveness of the system, is 

presented in this paper along with some preliminary results for the relevant biometric modalities. The 

appropriate sensor setup has been used according to the acceptable level of obtrusiveness. In this respect, 

two scenarios have been considered: (a) the partially obtrusive scenario and (b) the totally unobtrusive 

scenario, which dictates that the employees do not carry any sensor on them, which in turn means that the 

physiological profile of the subject was not available. 

The system has been installed in a controlled environment in which the individuals were able to move 

freely in the area of their workspace. The main aim of this pilot is to authenticate the identity of 

authorized employees that can perform their daily activities, either simple or complex. The subjects have 

moved in their workspace with no restrictions and several behavioral activity signatures have been 

automatically extracted. These include body gestures/poses when switching on/off the scene lights, 

motion analysis of human body shape during walking, dynamic body features extraction during simple 

activities (e.g., sitting, walking, etc.). Within this environment, the position of the user is detected, while 

specific actions trigger the system to start recording (e.g., first walk towards the workstation [gait 

biometrics] and perform simple activities related to the working environment [activity-related biometrics, 

soft biometrics, activity and event detection]). 

The overview of the system that is used for the current scenario is presented in Fig. 3. In the 

following, each modality is evaluated separately. However, the fusion of several unimodal biometrics is 

expected to provide enhanced robustness and higher recognition rates. The gait and the activity-related 

recognition modalities are thoroughly described, while the physiological and face dynamics modalities 

are described in brief. 

Sensors 

The sensors that have been used in the totally unobtrusive version of the workplace scenario are two 

stereoscopic cameras, one for gait recognition and height estimation, and one for activity-related 

recognition as well as for soft biometrics of face and face dynamics. Since there were no sensors attached 

to the subject, the whole process can be characterized as transparent and totally unobtrusive. 

On the other hand, the sensors that have been used in the partially obtrusive version of the workplace 

scenario are the ones above with the addition of minimally obtrusive wearable sensors and the Personal 

Data Processing Unit (PDPU). The wearable sensors are electrodes based on the ENOBIO® 

technology[8]. These electrodes use nanocarbon substrate to stick to the skin without the need  

of conductive gel. The ECG signal is then transmitted wirelessly to the PDPU for processing and features  
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FIGURE 3. The full workplace scenario – system overview. 

extraction (Fig. 4a). The features are then transmitted to the ACTIBIO system for matching with the 

corresponding templates. The availability of physiological measurements could potentially be used also 

for the assessment of the subjects’ capacity to perform their task. 

 

FIGURE 4. (a) ENOBIO sensor mounted on a user, (b) extraction of tomofaces over time[9]. 

Dynamic Face Recognition Module and Soft Biometrics 

Tomofaces[9] is an interesting technique as it uses the edges to compute the facial signature. Tomofaces 

is more robust to illumination changes than eigenfaces. The reason for this is that edges are less affected 

by illumination changes than the intensity values of the pixels (i.e., appearance). Moreover, eigenfaces 

needs heavy preprocessing as it requires the extraction of facial features to perform the face 

normalization. This is quite a heavy operation in terms of computational power. It is inspired by the 

research on discrete video tomography[10,11], which applies a temporal X-ray transformation of a video 

sequence to summarize the facial motion (Fig. 4b).   
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In addition to the aforementioned technique for extraction of dynamic features from facial images, 

some soft biometric characteristics can be extracted as well. Specifically, eye color and hair color can 

easily be derived in conjunction, once the location of the face and the eyes have been processed. 

During the feature extraction step, the discriminative information that characterizes the user is 

preserved, while the rest of the information is discarded. This is achieved by transforming the vectorized 

X-ray image into the corresponding feature vector. Initially, a linear transformation is applied to reduce 

the dimension[12] of the X-ray image to a much smaller one. The transformation matrix is computed 

using the principal component analysis (PCA), which has the ability to represent the distribution of data 

in the root mean squares sense. The background is removed from the picture, by characterizing as valid 

only the area indicated by the face detector. Finally, the corresponding feature vector is generated by 

choosing either the projection in the reduced space or the whitened projection in the reduced space, which 

rescales the projection to compensate for the overweighting of the low frequencies.  

ACTIBIO Improved Gait Recognition Module 

Initially, the walking human binary silhouette is extracted as described in Ioannidis et al.[13]. Let Ii denote 

the i
th
 binary human silhouette (Fig. 5a). In order to detect stops during a gait sequence, motion estimation 

through the calculation of a motion history image (MHI)[7] is performed in the silhouette image 

sequence. Specifically, the motion history template Mt at time instance t is estimated by counting the 

number of nonzero pixels in the difference image D(I) of two sequential silhouette frames (Ii; Ii+1). 

 

FIGURE 5. (a) Originally extracted silhouette, (b) rotated silhouette, (c) rotated 

silhouette with added emerging points. 

The recording phase starts with the detection of silhouette motion in the scene, i.e., when the sum of 

all nonzero pixels in image Mt exceeds the noise threshold of a nonmotion image. Similarly, a stop in the 

user’s walking is detected when the sum of all nonzero pixels of a corresponding Mt as far as the lower 

25% of the silhouette image height, i.e., the part of the legs below the knees[14], is regarded, falls below 

an experimentally defined threshold. The values for both motion thresholds have been experimentally 

defined, according to the environmental light conditions. 

Once the stop and restart frames are detected, the whole gait cycle that includes the stop frames are 

removed from the recorded sequence. Thus, a new, cropped set of silhouette sequence is derived. In the 

following, the gait periods are extracted, as described in Schuckers[3] (Fig. 6a), and the gait cycle indices 

are estimated accordingly. 
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FIGURE 6. (a) Estimation of stride length, (b) gait energy image – GEI. 

Let the term ―gallery‖ refer to the set of reference sequences, whereas the term ―probe sequence‖ 

stands for the test sequences to be verified or identified. As reported in the literature, the gait recognition 

systems achieve high recognition rates when the gallery and the probe sequences demonstrate similar 

walking angles[15] with respect to the observing camera’s local coordinate system. On the contrary, in 

order to handle cases whereby people walk with arbitrary view angles, different model-based types of 

angle transformations are applied[16]. 

However, the accuracy of angle view transformations at model-based approaches relies on small 

angle variations that are easily affected by slightly noisy images. Thus, a novel feature-based method is 

introduced in the proposed framework that applies a 3D rotational and reconstruction algorithm on the 

silhouette itself, encoding shape information about the user’s body at the same time, prior to the feature 

extraction phase. Specifically, range data are used for the compensation of angular variation in the 

walking direction. The first step is to estimate the relative walking angle. The walking direction with 

respect to the camera can be estimated in a straightforward manner under the assumption of straight gait 

within each gait cycle. Given that the highest part of each silhouette image refers to the head of the user, 

the overall shift of the user in the 3D space within a gait cycle can be estimated just from the first and the 

last frame of the gait cycle. The walking angle, which is considered constant through each gait cycle, is 

estimated from the linear processing of the head’s 3D locations at the beginning and the end of the cycle. 

Thereafter, the silhouettes are rotated so as to register to the frontoparallel view. This is achieved by 

extracting the 3D coordinates of each silhouette pixel using the disparity data from the stereoscopic 

camera. This way, a rotated 3D point cloud is generated: 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 0

rotated

i iP P

 

 

 
 

 
 
  

 

The new point cloud is now reprojected onto the camera to create a new silhouette (Fig. 5b). The new 

set of silhouettes IRot is used to extract the gait features. Despite the notable simplicity of the equation, its 

direct application in the generation of the virtual view includes some inherent problems related to the fact 

that reconstructed point clouds could generate nonconsistent surfaces, including holes and nonrealistic 
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edges, when projected onto new virtual views. Therefore, in the proposed framework, a 3D surface is 

initially formed from the 3D point cloud, so as to generate a consistent surface and silhouette image in the 

synthesized virtual view (Fig. 5c). The surface is created using only a subset of the joints of the image, so 

as to reduce the redundancy and size of the triangulated surface to be generated. Then, the silhouette for a 

particular view is generated by reprojecting it using the Z-buffering principle. 

The feature extraction process of the gait sequences is applied on the gait energy images (GEI) and is 

based on soft biometrics (height), on the radial integration transformation (RIT), and on the Krawtchouk 

moments (KR) as shown in Fig. 7a and b, respectively. However, instead of applying those transforms on 

the binary silhouette sequences themselves[13,17], the GEIs (Fig. 6b) are used, which have been proven, 

on one hand, to achieve remarkable recognition performance and, on the other hand, to speed up the gait 

recognition[18]. Given the extracted binary gait silhouette images I(i) and the corresponding gait cycles, a 

GEI is calculated over a gait cycle according to following equation: 

1
( )

cycleEnd

i cycleStartL

GEI I i
C 

   

where CL is the length of the gait cycle and index i refers to the gait cycles extracted in the current gait 

image sequence. Finally, the RIT and KR transforms are applied on the GEI, after their estimation, in 

order to construct the gait template for each user. 

 

FIGURE 7. (a) RIT estimation, (b) KR moments estimation. 

In the following, let GGEI and PGEI denote the number of gait gallery and probe cycles, respectively, 

and T represent a specific feature (RIT or KR). The distance between the probe and the gallery is 

estimated using the equation below: 

min( (1,1),..., ( , ))T T TD Dist Dist i j  

for i[1;GGEI] and j[1; PGEI], where DistT(i, j) is provided by 
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Pr( , ) | ( ) ( ) |Gallery obe

T T TDist i j S i S j   

given that S
Gallery

 and S
Probe

 stand for the value of the corresponding extracted feature (i.e., KR or RIT) for 

the gallery and the probe collections, respectively. 

ACTIBIO Activity-Related Recognition Module 

Activity recognition is performed, again using the concept of MHIs[7]. This temporal template, where the 

intensity value at each point is a function of the motion properties at the corresponding spatial location in 

an image sequence, is extracted for each frame, using the last τ frames. The MHI is then transformed 

according to the RIT and the circular integration transform (CIT)[19], which are used due to their aptitude 

to represent meaningful shape characteristics. The location of the head (x0, y0) is detected following the 

approach in Viola and Jones[20] and is used as the center of integration for both transformations. In 

particular, the RIT transform of a function f is defined as the integral of f along a line starting from the 

center of the image (x0, y0), which forms angle θ with the horizontal axis (Fig. 8a). In our feature 

extraction method, the discrete form of the RIT transform is used, which computes the transform in steps 

of dθ. 

 

FIGURE 8. (a) RIT and (b) CIT for activity detection. 

In a similar manner, the CIT is defined as the integral of a function along a circle curve with center 

(x0, y0) and radius ρ. Similar to the RIT transform, the discrete form of the CIT transform is used, as 

illustrated in Fig. 8b. The database of supported activities consists of several sets of MHIs transformed 

according to RIT and CIT methods for each activity. Thus, an incoming transformed signal x is compared 

to a stored one y according to two separate classifiers; namely, a Euclidian distance classifier and 

correlation factor distant curves, as shown in the following equations, respectively: 

2|| ||ED x y   and ,

(( )( ))cov( , )
( , )

x y

x y

x y x y

E x yx y
corr x y

 


   

 
    

The detected event is the one that has the most matches with the prototype MHIs from several 

subjects, stored in the database, according to a majority voting rule. Accordingly, an activity is considered 

to be performed within the successive appearance of a starting and an ending event. Moreover, an event is 
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only then detected when the returned scores from both classifiers exceed the experimentally selected 

thresholds, so as to diminish the false positives.  

The aim of the aforementioned activity detection method is the automatic annotation of the full 

recording. Given that an event has arisen, the annotated frames are segmented from the whole recorded 

sequence. In the following, they are used as input to the recognition module that is described below. 

The user’s movements are recorded by a stereo camera and the raw captured images are processed in 

order to track the users head and hands via the successive application of filtering masks on the captured 

image[21]. Specifically, when applying a skin-colored mask on all the frames of the extracted activity 

sequence[22], combined with a motion mask[7], the location of the palms can be provided, while the head 

can be accurately tracked via a combination of a head-detection algorithm[20] and a mean-shift object 

tracking algorithm[23]. Thus, the 3D information can be easily derived performing disparity estimation 

from the input stereoscopic image sequence (Fig. 9). 

 

FIGURE 9. (a) Extracted trajectories from user’s movements, (b) tracking of the user’s movement. 

Further, a series of postprocessing algorithms[21] applied on the raw tracked points manage to extract 

smooth motion trajectories that are then used as biometric signatures (Fig. 9). Additionally, in order to 

provide enhanced invariance with respect to the environmental conditions, the curvature κ(Pl(t)), the 

torsion τ(Pl(t)), and their derivatives κ*(Pl(t)), τ*(Pl(t)) for each trajectory are extracted. Specifically, the 

dependence from the relative position between the camera and the user can be avoided by using view-

independent features, as suggested in Wu and Li[24]. In Fig. 10, one can study the noticeable differences 

of these features between different users with respect to the same movement as far as the trajectory of the 

right hand is concerned. 

A motion trajectory for a certain limb l (head or palms) is considered in our work as the 7D N-tuple 

vector sl(t) = (xl(t); yl(t); zl(t); κ(Pl(t))); κ*(Pl(t)), τ(Pl(t)); τ*(Pl(t))) that corresponds to the x,y,z-axes 

location of limb center of gravity at each time instance t and the corresponding curvature, torsion, and 

their derivatives, respectively, of an N-frame sequence. These data of features are then concatenated into 

a single vector and all vectors produced in a specific activity c form the trajectory matrix Sc. Each 

repetition of the same activity by a user creates a new matrix. The set of matrices for each user for a 

specific activity are subsequently used to train a stochastic hidden Markov model (HMM).  

Finally, both the training and the identification procedure are implemented by the HMM. Specifically, 

a five-state, left-to-right, fully connected HMM is trained from several enrollment sessions of the same 

user. Accordingly, in the verification step, the extracted features from a user are used as input to the 

stored HMM and the user is classified as client or impostor to the system.  
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FIGURE 10. Trajectories’ transformation to view-invariant features. 

Last, the same frame sequence is processed so as to extract an estimation for the user’s static 

anthropometric profile that refers to the user’s upper-body static skeleton model[21,25] in conjunction to the 

aforementioned activity-related dynamic features. The full signature for the claimed user ID is restored from 

the database and the actual extracted features are used to classify the user as a client or an impostor to the 

system via the HMM classifier, concerning the dynamic motion and an attributed graph matcher 

(AGM)[26], concerning the static anthropometric information. Finally, a score-level fusion of both 

classifiers is performed by a support vector machine (SVM) algorithm implemented on a Gaussian kernel 

and the validity of the final score is then verified by a quality factor based on ergonomic restrictions. 

RESULTS 

The proposed framework was evaluated on the publicly available ACTIBIO dataset. This dataset was 

captured in an AmI indoor environment and its recordings include 29 subjects, performing a series of 

office/workplace activities and walking in both straight and arbitrary paths for eight repetitions each. The 

testing conditions for the reported results for the rest of the modalities are described below. 

Face Biometrics 

The model estimation for the tomofaces is similar to that of the eigenfaces technique[12]. Each person 

model is characterized by points in the feature space that summarize the distribution of the feature vectors 

of each person. In other words, the cluster center of the feature vectors is computed by taking the average 

(centroid) or the median feature vector. 

The authentication decision is made using the concept of the nearest-neighbor classifier. The 

unknown feature vector is compared to all the client models and selects the best match using one of the 
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following distance metrics: city-block distance, Euclidean distance, or cosine distance. The EER (equal 

error rate) score derived from the current method is close to 8% in the aforementioned database. 

Physiological Biometrics 

Regarding EEG and ECG modules, the main difference with the HUMABIO (Human Monitoring and 

Authentication using Biodynamic Indicators and Behavioral Analysis) approach[27] is that, in this case, 

an improved recording protocol is used in conjunction with wavelet transforms and linear discriminant 

analysis (LDA) classifying techniques. Specifically, after applying the artifact corrector, it can be noted 

that the results are significantly encouraging, lying at around 22% 

With EEG, the authentication scores are ~18% of EER after the artifact correction. These EERs are 

obtained by averaging the EER over the three office takes. Although more takes would be better to have a 

meaningful performance, it should be noted that for each take, 29 subjects have been used. In the 

computation of the EER, each subject claims to be all the subjects of the database (one legal transaction 

and 28 impostor transactions). Therefore, the above averages are a meaningful way to compute the 

performance of our systems.  

In the same concept, the results of the ECG biometric module, after having applied the artifact 

detector module, have been found to be ~30%. Both EEG and ECG have been tested while the subject 

was walking. The recognition potential from the office recording (the user remained seated) is expected to 

be much higher, since the movement artifacts are much stronger when the subject is walking than just 

sitting at his desk. Fusing these results with the other modalities within ACTIBIO would definitively 

increase the performance. 

Gait Biometrics 

The insertion of the GEI concept in conjunction with the use of the proposed gait recognition modality 

(i.e., stop detection and silhouette rotation), as well as the improved RIT and KR algorithms classifiers, 

provide significant improvements in the gait recognition module in comparison to the HUMABIO 

approach[28]. 

Specifically, one can notice that the significant influence of the rotation compensation algorithm can 

be demonstrated compared to the method proposed in Ioannidis et al.[13]. In particular, the recognition 

rates have increased by a mean ratio of 20% (peek ratio improvement 35%) in the RIT classifier case, and 

by a mean ratio of 10% (peek ratio improvement 23%) in the KR classifier case. Furthermore, with the 

additional use of the stop detection algorithm, the recognition rates increase even more, reaching a ratio 

value of 15.9 and 16.5% in both the RIT and KR classifier cases, respectively. 

In the same respect, the current enhancements exhibit high authentication scores, given the EER 

results in Table 2. 

TABLE 2 
Gait Authentication Rates 

 Gait (RIT) Gait (KR) Fusion 

EER 15.9% 16.5% 11.7% 
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Activity Related Biometrics 

Given the high degrees of unobtrusiveness of the method, significantly high authentication rates can be 

noted in the recognition performance when augmenting the existing algorithm with the static 

anthropometric information. The proposed framework has been evaluated in the context of three 

verification scenarios. Specifically, the potential of user’s authentication has been tested, based on the 

activity-related signature during the same activity when the user interacted with the workplace in front of 

him/her. The EER in this scenario was found to be 13%.  

As expected, the authentication performance of the system improves further when combining both 

modules. Namely, with the contribution of both the gait module and the activity-related module, an EER 

of ~8% has been calculated. Specifically, for the score-level fusion, the SVM classifier has been used 

based on a Gaussian kernel with a width value of 0.01. Further, the trade-off factor between training error 

and margin was set at 100,000, while all input score data have undergone the ―min-max‖ normalization. 

Activity Detection 

The performance of the proposed activity detection framework exhibited high accuracy, as described in 

the matrix of Table 3. The performed experiment forced a simultaneous search for the detection of four 

different activities. Namely, the activities of a ―phone conversation‖, an ―interaction with an office 

panel‖, the ―talking into a microphone‖, and the ―insertion of a card into a slot‖ have been simultaneously 

looked for at each frame. 

TABLE 3 
Event and Activity Detection Rates 

Event Phone 
Conversation 

Panel 
Interaction 

Talking into 
Microphone 

Card 
Insertion 

Phone conversation 93.1% 0% 0% 6.9% 

Panel interaction 0% 89.7% 10.3% 0% 

Talking into microphone 0% 10.3% 86.2% 3.44% 

Card Insertion 0% 3.44% 3.44% 93.1% 

Activities that gather a lot of energy in the same areas of the frame are most likely to be mismatched, 

i.e., the microphone and panel are on the same side of the user and both require the user to lean towards 

them. On the other hand, activities performed on distinctive areas of the image, i.e., the users picks the 

phone with the left hand and speaks into the microphone on his right side, are more likely to be correctly 

detected. 

DISCUSSION 

Behavioral biometrics are very valuable for many realistic application scenarios that require identification 

or authentication of an individual. Behavioral biometrics are often employed because they can be easily 

collected unobtrusively and are particularly useful in situations that do not provide an opportunity for 

collection of stronger, more reliable, biometric data. Moreover, they demonstrate great adaptability to 

current security installations since just a couple of cameras are required. 
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In this respect, the ACTIBIO approach offers increased safety and enhanced security solutions in AmI 

infrastructures. Some potential applications that can be empowered by the ACTIBIO project are aiming at 

health monitoring; environmental control of secure installations or databases; and monitoring of entire 

houses, including all major appliances and the access device status, and controlling them from anywhere in 

the world. In particular, ACTIBIO can be adjusted in order to enhance alarm detection and security against 

trespassing, as well as to ensure that only authorized persons have access to health information data. 

Regarding the health-oriented applications, there is sufficient evidence that medical conditions can be 

detected by behavioral biometrics. Thus, behavioral biometrics, such as gait or other activity-related 

biometrics, can contribute in the examination of detected medical conditions/disabilities (i.e., orthopedic 

problems). Furthermore, behavioral biometrics, using body dynamics, could potentially detect (a) 

psychiatric conditions, such as dissociative disorders, acute anxiety, panic, and major depression; (b) 

neurological conditions, such as movement disorders; (c) musculoskeletal and articular disorders, such as 

foot and ankle disorders (gait), joint disorders (activity related); and (d) all those conditions that can 

generate symptoms similar to those of previous disorders.  

Additionally, health and social care institutions/organizations could avoid congestion of patients with 

automatic remote monitoring of the condition of the latter. Given that there are many people with severe 

disabilities who face difficulties in gaining access to appropriate services, housing, etc., they are usually 

constrained either to rely on the assistance of their relatives or to bear a very limited standard of living. 

Consequently, it is possible to moderate the role of the above institutions/organizations and, conclusively, 

to reduce the health costs that the handicapped people and their families bear. Accordingly, health care 

institutions and organizations will highly benefit from the introduction of novel tools that minimize the 

time, cost, as well as the need for personnel. 

CONCLUSION 

In this paper, a novel biometric authentication system, developed within the framework of the ACTIBIO 

project, has been presented. It has used novel behavioral traits in combination with state-of-the-art 

algorithms, aiming primarily at the user’s convenience and unobtrusiveness. Novel biometric modalities 

have been studied and used in order to overcome several shortcomings of the current biometrics solutions, 

mainly, the strict protocols required to be followed by the subjects. ACTIBIO, among other innovations, 

will support authentication of the individuals in a continuous way and will also allow the monitoring of 

the physiological parameters to ensure the normal state of critical process operators. Its three pilots are 

designed in such a way as to demonstrate the versatility and extensive modularity of the system, and to 

provide performance evaluation in realistic application scenarios. 
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