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Abstract

Facilitation processes constitute basic elements of vegetation dynamics in harsh systems.

Recent studies in tropical alpine environments demonstrated how pioneer plant species

defined as “ecosystem engineers” are capable of enhancing landscape-level richness by

adding new species to the community through the modification of microhabitats, and also

provided hints about the alternation of different ecosystem engineers over time. Neverthe-

less, most of the existing works analysed different ecosystem engineers separately, without

considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit

of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant

communities by facilitation cascades involving different ecosystem engineers, determining

the evolution of the microhabitat patches in terms of abiotic resources and beneficiary spe-

cies hosted. To analyze successional mechanisms, we used a “space-for-time” substitution

to account for changes over time, and analyzed data on soil texture, composition, and tem-

perature, facilitated species and their interaction with nurse species, and surface area of

engineered patches by means of chemical analyses, indicator species analysis, and rare-

faction curves. A successional process, resulting from the dynamic interaction of different

ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g.

nitrogen and organic matter content, and temperature), was the main driver of species

assemblage at the community scale, enhancing species richness. Cushion plants act as pio-

neers, by starting the successional processes that continue with shrubs and tussocks. Tus-

sock grasses have sometimes been found to be capable of creating microhabitat patches

independently. The dynamics of species assemblage seem to follow the nested assemblage

mechanism, in which the first foundation species to colonize a habitat provides a novel sub-

strate for colonization by other foundation species through a facilitation cascade process.
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Introduction

Facilitation processes between plant species are defined as positive plant-plant interactions in

which “nurse” species create favourable microhabitats for the germination, establishment, and

survival of “beneficiary” species [1], acting as a “safety net” that sustains diversity [2], by pro-

viding shelter from abiotic and biotic stresses [3]. In harsh systems, such as tropical alpine

environments, these processes constitute basic elements of vegetation processes [4]. Previous

studies highlighted that facilitative interactions are more common than competitive ones in

conditions of high abiotic stress (i.e. stress-gradient hypothesis [5]), especially across short

environmental gradients [6] or in communities composed of fewer species, under low to mod-

erate disturbance intensities [7, 8]. Facilitation in stressful environments is particularly

expected due to abiotic stress mainly induced by non-resource stressors, e.g. temperature [9],

as in mountain environments [10]. Instead, facilitation is expected to be less common when

abiotic stress is resource driven, as in arid environments [9, 10]. The nature and intensity of

plant-plant interactions can change between apparently similar sites as a result of several fac-

tors such as: scale of analysis [11], combination of stressors [2, 7, 12, 13], variations induced by

architectural or ontogenetic differences between individuals of interacting species in different

populations [14, 15, 16], species-specific interaction due to the interplay between the func-

tional features of nurse and beneficiary species [2, 12, 17, 18], relative tolerance to stress vs.

competitive ability of the interacting species [9].

Positive interactions can act directly (through abiotic stress amelioration) or indirectly (e.g.

competition intransitivity), but the direct modification of microhabitat is the most common

form of facilitation provided by nurse species [19]. For this reason, some nurse species have

been defined as “ecosystem engineers” or “foundation species” [20], as they directly transform

the environment via endogenous processes that alter the structure of the engineer itself, which

remains as part of the engineered environment and may be affected either positively or nega-

tively [21]. Such species are able to modulate the availability of resources to other species and

generate changes in both abiotic and biotic conditions, with the final effect of creating and

maintaining microhabitat patches with a positive impact on the diversity of plant communities

[21]. Recent studies focused on alpine environments at inter-tropical latitudes, demonstrated

how ecosystem engineers are capable of enhancing landscape-level richness by adding new

species to the community through the regulation of temperature extremes and the modifica-

tion of soil properties [22]. Moreover, they demonstrated how these nurse-induced microhabi-

tat modifications positively influenced the physiological parameters of facilitated species [23].

However, other authors found contrasting results on the effect of ecosystem engineers on spe-

cies richness at a wide scale [4]. One limitation in our current understanding of the impact of

engineer species on the richness of plant communities is that most of the existing works ana-

lysed different ecosystem engineers separately, or were located in areas dominated by a single

nurse species. Therefore, these studies do not consider, at the scale of plant communities, the

whole process of possible patch creation, alternation, coalescence and senescence, by means of

the interaction of different ecosystem engineers and the degradation of microhabitat patches,

that are key processes of vegetation dynamics in harsh environments [22, 24, 25]. In fact, most

ecosystems are structured by multiple foundation species, whose differences in structural and

functional morphology influence their impact on the community [17, 18, 26]. In addition,

there are some evidences that multiple foundation species give rise to facilitation cascades, in

which an independent, stress tolerant foundation species, facilitates a second, dependent foun-

dation species to provide complementary levels of complexity and to enhance stress ameliora-

tion [20]. Facilitation cascades can drive predictable patterns in the distribution of associated

organisms that tend to assemble where structural complexity and resource availability are
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higher [20]. The regularity with which foundation species distributions overlap suggests that

emergent effects, such as facilitation cascades, may play a critical role in the organization and

stabilization of many communities [27]. This calls for an integrate analysis of the temporal (i.e.

dynamic succession) and spatial extent of habitat patches in tropical alpine environments [28].

Previous studies on the Peruvian Dry Puna (tropical Andes), provided hints about the interac-

tion between ecosystem engineers at different stages of their life cycle and of a possible evolu-

tion of engineered patches due to the alternation of different engineers over time [12, 13]. To

deepen our understanding of these processes, we focused our research at the upper altitudinal

limit of the dry Puna vegetation, characterised by the dominance of Festuca orthophylla and

absence of anthropic pressure, assuming higher elevations to be more stressful for plants [e.g.

7, 16] because of low air temperature, low partial pressure of CO2, high UV radiation, thin

soils and low nutrient availability [29].

In this landscape, possible ecosystem engineering processes are due to three types of nurse

species: cushions, shrubs and grass tussocks [30, 31, 32], but only a few recent studies have

documented the local impact of these types of nurse species on plant diversity and community

structure [30, 33, 34], even if it was widely demonstrated that in stressful environments facilita-

tion is a key driver of species richness [35, 36]. Moreover, as regards Andean tropical alpine

environments, previous studies mainly focused on the cushion species Azorella sp. pl. [37], but

little is known about the role played by Pycnophyllum sp. pl., a group of cushion species that

inside the dry Puna landscape is fostered by the harshest conditions [32]. Furthermore, in

spite of the evidence pointing to the effects of ecosystem engineers on either species richness

or species abundance, studies integrating the impacts of these effects on species diversity across

different engineer species are lacking [18, 22].

We hypothesised that positive interactions structure the dry Puna community at its upper

altitudinal limit, by facilitation cascades, in which the first foundation species to colonize a

habitat facilitates other foundation species, and that they support diverse species assemblages,

creating complex successional patterns and determining an evolution of the microhabitat asso-

ciated with the patch in terms of abiotic resources and beneficiary species hosted.

Assuming patch dimension as a proxy for patch age, we used a “space-for-time” substitu-

tion to analyze successional mechanisms accounting for changes over time [38], and addressed

the following research questions: i) Is there a succession between different types of ecosystem

engineers in engineered patches, and does this succession follow a pattern of facilitation cas-

cades? ii) How do different ecosystem engineers modify the microhabitat of patches? iii) How

do ecosystem engineer dynamics affect species richness and composition?

Materials and Methods

Study area

We performed our research in the Salinas and Aguada Blanca National Reserve, in South Peru,

not far from the town of Arequipa (Fig 1, central coordinates of the protected area: 16˚ 04’ 59”

S, 71˚ 24’ 15” W–coordinate system: WGS84), which includes a part of the Andean Plateau

and is characterised by soils with sandy texture, sub-acid pH (�5.5) and organic matter lower

than 2% [12]. Precipitation is seasonal with over 80% of the annual rainfall (300–400 mm)

occurring between December and March [39]. The annual mean temperature is 3–4˚C with

sharp diurnal and annual variations. These tropical alpine environments are different in many

aspects from the alpine temperate regions: they are characterised by higher levels of solar radi-

ation, absence of persistent snow cover, and daily temperature oscillations that may exceed the

seasonal ones and may induce daily freeze-thaw cycles. Consequently, vegetative growth

occurs throughout the year, and changes in precipitation become the most important seasonal
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pulse, especially in drier and/or higher-elevation regions, where the climate seasonality is

more marked [27].

Inside the Reserve, we chose a study area, privately owned, that comprises the typical dry

Puna landscape between 4,400 and 4,600 m a.s.l. (altitudinal limit of dry Puna vegetation),

dominated by cushion plants (Pycnophyllum molle), tussock grasses (e.g. Festuca orthophylla
and Calamagrostis rigida), and resinous shrubs (Parastrephia quadrangularis and P. lucida).

The spatial pattern of the vegetation studied has a patchy clumped structure with a matrix

characterized by bare soil areas (approx. 60% cover) hosting few species with low abundance

and sometimes dead wood fragments, interrupted by vegetated patches (approx. 40% cover).

The human settlements are limited to small villages and isolated farms located outside of the

study area, which is not used as pasture and has only been grazed by wild camelids (Lama gua-
nicoe and Vicugna vicugna) for more than 30 years (local farmers, pers. comm.).

Data collection

The field campaign was carried out in March 2013, during the flowering period of most plant

species. The Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP, Peru)

Fig 1. Location of the study area (indicated with a small star in the main map) within Salinas and Aguada Blanca National Reserve (Arequipa and

Moquegua Departments, southern Peru)

doi:10.1371/journal.pone.0167265.g001
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authorized our team to investigate in the Salinas and Aguada Blanca National Reserve. We did

not collect or damage protected species during the sampling. We considered the patches engi-

neered by each of three types of potential ecosystem engineers (hereafter EEs) present in the

study area, and bare soil (non-engineered patches). We considered three types of EEs, basing

on the classification of a well-recognized group of nurse plants [3, 40, 41]: cushion plants (Pyc-
nophyllum molle, P. weberbaueri), grass species with tall tussock (Festuca orthophylla, Calama-
grostis rigida, C. heterophylla), and shrubs higher than 40 cm (Parastrephia lucida, P.

quadrangularis).
The study area was chosen since we aimed to deepen the very poor knowledge about the

mechanism of plant assemblage at the upper altitudinal limit of dry Puna under low distur-

bance intensity, to test the importance of facilitative processes in tropical alpine environments

regardless of the effect induced by disturbance of domestic herbivores. Therefore, using a strat-

ified random sampling approach, we identified, through interviews with local farmers, an area

of 4.5 km2 (central coordinates of the study site: 15˚ 48’ 00" S, 71˚ 27’ 50" W) that was not sub-

jected to anthropic disturbance (e.g. mining, fires, grazing by domestic herbivores) at the alti-

tudinal limit of dry Puna vegetation (4,400–4,600 m a.s.l.). We considered south-facing slopes

because they occupied large part of the area, and selected sites with slope angles ranging from

5 to 15 degrees, excluding those with presence of latrines and/or outcropping rocks. EEs patch

size was not used as stratification criterion.

Using a randomized block design, we laid 30 linear transects (blocks) parallel to contour

lines, whose starting points were placed randomly using a GIS generator of random points

(using the “random points” tool of QGIS software). Along each transect we laid a string, and

selected the first patch for each type of EE (namely, cushion, tussock, and shrub) and bare soil

intersected by the string, so that we selected along each transect a cushion, a shrub, a tussock,

and an area with bare soil. We selected EE patches at a distance no less than 10 m from each

other to prevent relevés from being mutually influenced. Average distance between the nearest

starting points of transects was about 250 m. In each of them we recorded the nurse species,

measured the maximum length (measured along the direction of maximum spread) and width

(measured orthogonally to the direction of maximum length) of its canopy, and counted the

individuals of each species, including seedlings of the considered nurse species. We counted

individuals found inside the patch, namely inside the area occupied by a cushion or under the

shrub or tussock canopy, as well as at the patch border and inside a buffer of 20 cm from the

patch border. Approximating the shape of each patch to an ellipse, we calculated the area occu-

pied by each patch by the formula S = π a b, where a and b are the semi-major axis (patch

length divided by two) and the semi-minor axis (patch width divided by two), respectively. On

bare soil (surface outside any engineered patch, whose living plant cover percentage did not

exceed 10%, without outcropping rock cover and with possible occurrence of dead matter), we

counted the individuals of each species in a circular plot of 0.5 m in radius and distant at least

1 m from the closest engineered patch. In total, we surveyed 30 patches per type of EE (namely,

one patch of each type of EE per transect; 90 patches in all) and 30 plots on bare soil (namely,

one plot per transect).

Since the amelioration of unfavourable conditions decreases from the canopy centre of

nurse plants outwards [42, 43], for each individual of each species we recorded the respective

spatial interaction type (SIT), classified as follows. SIT1, attributed to individuals growing out-

side the nurse canopy at a distance greater than 20 cm from the border of the nearest nurse

patch (species with SIT1 can be recorded only in plots laid on bare soil). SIT2, referred to indi-

viduals growing less than 20 cm from the border of the nearest nurse patch but not under its

canopy. SIT3, assigned to individuals growing in the shadow of the nurse canopy (this SIT

does not apply to cushion EE species). SIT4, related to individuals growing inside the nurse
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canopy [13]. Valiente-Banuet and Verdú [44] defined non-facilitated species (species with

SIT1 in the study case) as those recruiting more often on open ground and facilitated species

(species with SITs 2, 3 and 4 in the study case) as those recruiting under or close to nurses,

depending on their growth form (cushion, shrub, and tussock in the study area). With the aim

of understanding the interaction and possible succession processes involving different nurse

species, in each engineered patch and in plots with bare soil we recorded the number of seed-

lings of potential nurse species and the presence of dead matter of each type of EE (cushion,

shrub, and tussock), as well as the occurrence of mature individuals of other potential nurse

species in contact with the surveyed engineered patch.

In order to assess the effect of the ecosystem engineering process on microhabitats, we ran-

domly extracted a subsample of 11 relevés carried out in each type of engineered patch and on

bare soil. In each of them, we collected one soil sample (44 samples in total, 33 of which under

engineered patches and 11 on bare soil). Soil samples were collected from the ground level to

20 cm depth, and analysed at the Estación Experimental Agraria—Instituto Nacional de Inova-

cion Agraria (INIA), water, soil, and plants analysis laboratory of Arequipa (Ministerio de

Agricultura y Riego del Peru) to measure parameters related to texture (percentage of sand,

loam and clay–measured with Buoyuocos’ method), percentage of organic matter (modified

Walkley and Black’s method), percentage content of nitrogen (Micro Kjeldahl’s method),

potassium (flame photometry by ammonium acetate at pH 7.0) and phosphorus (modified

Olsen’s method 0.5 M NaHCO3 extraction at pH 8.8), and pH (by potentiometer at 1:2.5 soil/

water suspension), following the procedures for soil analysis of the International Soil Reference

and Information Centre (ISRIC), Wageningen, Netherlands [45] and the analytical methods of

the Service Laboratory for soil, plant and water analysis, Royal Tropical Institute, Amsterdam

[46]. In addition, to record fluctuations of soil temperature (˚C), we placed three button-type

electronic data loggers (iButton DS1923, Maxim Integrated Products, San Jose, CA, U.S.) at a

depth of 15 cm under the centre of each type of engineered patch and on bare soil. The data

loggers were set to record one value of soil temperature each two days at 2:00 PM, when the

level of direct solar irradiance is maximum (we wanted to assess the effect of the nurse cover

on soil features throughout the vegetative period, considering possible variations of the maxi-

mum temperature as a major factor in tropical alpine environments, since during periods of

bright weather, maximum temperatures of upper soil layer are strongly influenced by the type

of vegetation cover [29]). The data loggers were left in place from 15th March to 15th Septem-

ber 2013, mostly encompassing the growing period of plants and especially all phases of their

reproductive cycle. We averaged data recorded by the three data loggers placed on bare soil, as

well as those recorded by the three data loggers placed below each type of engineered patch.

Soil temperature was available for bare soil, shrub and tussock microhabitat types.

Species nomenclature mainly followed Brako and Zarucchi [47]. We checked later taxo-

nomic changes by consulting IPNI (http://www.ipni.org/index.html) and Tropicos (http://

www.tropicos.org).

Data analysis

Patch dynamics and patterns of soil variation. To test whether potential EEs at different

phases of their life cycle showed preferential association with a type of EE in its mature state

(namely, the nurse species engineering the surveyed patch) or with bare soil, we used an

approach based on indicator species analysis (ISA). ISA is a method used to identify those

items (species and species with associated SIT in the study case) that show significantly prefer-

ential distribution (in terms of frequency and abundance) in a group of samples in comparison

with the other groups [48]. This method combines information on the concentration of species
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abundance in a particular group and the faithfulness of occurrence of a species in a particular

group [49]. ISA involves the calculation of an indicator value (IVij) for species i in group j. The

IVij is the product of relative abundance (mean abundance of species i within group j divided

by the sum of the mean abundance of species i in all groups) and relative frequency (number

of samples in group j occupied by species i divided by the total number of samples in group j),
and ranges from 0 to 1 [48]. Then, the group j in which IVi is at its maximum is identified.

Sampling units are randomly reassigned by permutations to groups a specified number of

times, and each time the maximum IVi is calculated. The probability of type I error is the pro-

portion of times that the maximum IVi from the randomized data set equals or exceeds the

maximum IVi from the actual data set [49]. The null hypothesis is that the maximum IVi is no

larger than would be expected by chance [49]. We tested the statistical significance (P< 0.05)

of the observed maximum indicator values (IVs) using permutation tests with 4,999 iterations.

To identify indicator species linked only to a microhabitat type, controlling for the block effect,

we used permutations restricted within transects (blocks), where the microhabitat type (cush-

ion, shrub, tussock, and bare soil) could be exchanged, but microhabitat types exchange from

one transect to another was not permitted. Instead, we used unrestricted permutation tests

when ISA did not involve patches inside the same transect. Only IVs higher than 0.20 were

considered of interest, because values lower than 0.20 indicate species with a very low abun-

dance and/or frequency in the data set [24].

We ran ISA on the matrices “relevés x seedlings” (number of seedlings of each EE type in

relation with the surveyed patch) and “relevés x dead matter” (presence/absence of dead matter

of each EE type below the surveyed patch or on bare soil), where relevés were grouped on the

basis of the type of microhabitat (cushion, shrub, tussock, and bare soil). We ran another ISA

on the matrix “relevés x contacts” (presence/absence of contacts between patches of each EE

type and the surveyed patch), where relevés were grouped on the basis of the type of EE of the

surveyed patch.

To test if the distribution of soil variables (percentage of sand, loam and clay; content of

organic matter, nitrogen, phosphorus, and potassium; pH; and time series of average soil tem-

perature) was significantly different between EEs and between EEs and bare soil, we performed

Wilcoxon-Mann-Whitney tests as data did not meet the assumptions for parametric tests. We

applied the Holm’s correction for multiple comparisons to reduce the likelihood of a type I

error.

For the statistical analyses we used the R software (version 3.0.2 –R Foundation for Statisti-

cal Computing, Vienna, Austria http://www.R-project.org), and its stats (version 3.0–2, wil-

cox.test function), indicspecies (version 1.7.4, multipatt function) and permute (version 0.8–3,

how function and blocks argument) packages.

Patterns of species richness and composition in engineered patches. To investigate the

influence of the ecosystem engineering patterns on the diversity of the analysed plant commu-

nity, we calculated richness for the whole set of relevés and for each group corresponding to

the types of EE considered and to bare soil. We also compared the composition of the sub-

communities related to the single EEs (species pools with SITs 2, 3 and 4) and to bare soil by

means of the Jaccard dissimilarity index, as a measure of beta diversity, namely of the dissimi-

larity between communities.

To quantify the effect of all EEs on sub-community level species richness, comparing it to

species richness on bare soil, we used sample-based rarefaction curves that allowed accounting

for differences in sampling effort (different patch size / number of plots) within microhabitats

(cushion, shrub, tussock, and bare soil) [18]. With sub-community level we refer to all the spe-

cies found in relation with a type of EE and those found on bare soil. Rarefaction generates the

expected number of species in a collection of n samples, drawn at random from the large pool
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of N samples [50]. The rarefaction curves were produced by repeatedly re-sampling the pools

of N samples without replacement, in which samples are randomly accumulated in many itera-

tions, plotting the average number of species. In addition, to quantify the effect of EEs on

abundance of individuals, in comparison to bare soil, for each microhabitat we generated sam-

ple-based rarefaction curves, where the average number of individuals was plotted against the

number of samples. To describe the patterns of plant-plant spatial interactions linked to the

dynamics of ecosystem engineering, we executed ISAs on the “relevés x species individuals

(number)” and “relevés x species individuals with associated SIT (number)” matrices, using

the type of microhabitat (the three types of EE and bare soil) as grouping variable. To assess if

the number of co-occurring species/individuals for each type of EE and for the overall data set

were independent from the area occupied by the engineered patch, we calculated the Spear-

man’s correlation coefficients, as data did not meet the assumptions required for parametric

tests. We also divided the relevés corresponding to each type of EE into classes defined with

Sturges’ method [51] basing on the patch area. For each class we calculated descriptive statis-

tics of the number of co-occurring species and individuals in the three subgroups correspond-

ing to the types of EEs. To identify the indicator co-occurring species and the indicator co-

occurring species with the associated SITs of each class of area in the three subgroups, we exe-

cuted ISAs on the respective “relevés x co-occurring species individuals (number)” matrices

and on the “relevés x co-occurring species individuals with associated SITs (number)” matri-

ces, using surface area class as grouping variable.

For the statistical analyses we used the R software and its indicspecies (version 1.7.4, multi-

patt function), permute (version 0.8–3, how function and blocks argument), vegan (version

2.0–10, vegdist and diversity functions), and Hmisc (version 3.17–1, rcorr function) packages.

For rarefaction analysis, we used the specaccum function of vegan package, using the “ran-

dom” method and 1,000 permutations.

Results

Patch dynamics and patterns of soil variation

The indicator species analysis highlighted that shrub seedlings are closely associated with cush-

ion patches (IV = 0.738, P< 0.001), while seedlings of tussock grass were identified as indica-

tors for shrub patches (IV = 0.530, P< 0.001). We also found that cushion seedlings tend to

establish on bare soil more frequently than the other types of EEs (23.3%); tussock grasses fol-

low with 20.0%, while shrubs (3.3%) seem to have a very low ability to grow outside microhab-

itats provided by other EEs (data in S4 Dataset). Tussock patches were preferentially in contact

with other tussocks (IV = 0.293, P = 0.036). With regard to the dead matter found under each

type of EE and on bare soil, dead matter of cushion plants was preferentially distributed under

shrub patches (IV = 0.287, P = 0.002), while dead matter of tussock tall grasses under tussock

patches (IV = 0.289, P< 0.001). Bare soil had a higher mean content in coarse-grained mate-

rial (sand) (64.6%) than soil beneath cushion, shrub and tussock patches (54.6, 46.2 and 45.4%,

respectively) and a lower percentage of average-grain material (loam) (25.9% vs. 34.9, 46.6 and

45.1%), organic matter (1.85% vs. 3.23, 11.34, and 4.89%) and nitrogen (0.09% vs. 0.14, 0.28,

and 0.13%), and lower pH (5.19 vs. 6.32, 6.61, 5.56) (Figs 2 and 3, S1 Table). Moreover, EEs

appear to decrease the maximum temperature of soil, also narrowing down the fluctuation of

this parameter (11.3 ± 3.4˚C on bare soil; 8.1 ± 2.6˚C under shrub; 4.6 ± 2.7˚C under tussock)

(Fig 4, S1 Table).

There were statistically significant differences (P< 0.001) between engineered patches and

bare soil for all soil variables, except for clay percentage, K and P concentrations, while soil
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texture was significantly different between shrub and tussock patches as regards clay content

(Figs 2–4).

Patterns of species richness and composition in engineered patches

Sample-based rarefaction curves generated from species data set did not reach an asymptote

(Fig 5). Although raw species richness counts can be validly compared only when curves have

reached a clear asymptote, we observed in our sample that the three EEs gave similar contribu-

tions to species richness and that their curves were higher than that of bare soil at every sample

size. Plots with bare soil hosted in all 19 species out of a total pool of 45, while cushion, shrub

and tussock patches had a total richness of 32, 34 and 34 species, respectively. Similarly, sam-

ple-based rarefaction curves generated using counts of individuals (average number of individ-

uals plotted against the number of samples) did not reach any asymptote (Fig 6). Although this

Fig 2. Boxplots of sand, loam, clay and organic matter content (%) of soil samples collected under the

patches of ecosystem engineers and on bare soil. Equal letters indicate no statistically significant differences

(P� 0.001) in the pairwise comparisons of groups as determined by the Mann-Whitney-Wilcoxon tests, after

Holm’s correction for multiple comparisons.

doi:10.1371/journal.pone.0167265.g002
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does not make possible to accurately compare the abundance of individuals among EEs and

bare soil, each curve showed quite constant rates of increase at every sample size, up to a total

number of 1,872, 776, and 771 individuals in cushion, shrub and tussock patches, respectively,

and of 499 individuals on bare soil at the maximum sample size. The Jaccard dissimilarities

between the sub-communities related to the microhabitat types are all above 0.50: the dissimi-

larities in community composition between engineered patches and bare soil increased from

cushion (0.68) to shrub (0.74) to tussock (0.79) patches. The lowest dissimilarity was observed

between shrub and tussock patches (0.52). The dissimilarities between cushion and shrub and

between cushion and tussock were 0.74 and 0.72, respectively.

No significant correlation was identified between patch area and number of co-occurring

species/individuals, neither for the single EEs nor for the whole plant community. The descrip-

tive statistics of number of co-occurring species/individuals for the classes of patch area are

Fig 3. Boxplots of the chemical characteristics of soil samples collected under the patches of ecosystem

engineers and on bare soil. Equal letters indicate no statistically significant differences (P� 0.001) in the pairwise

comparisons of groups as determined by the Mann-Whitney-Wilcoxon tests, after Holm’s correction for multiple

comparisons.

doi:10.1371/journal.pone.0167265.g003
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reported in S2 Table (data on co-occurring species with associated SITs and patch area in S3

Dataset).

The ISA executed on the four types of microhabitat (Table 1) identified nine indicator spe-

cies for cushion patches, three for shrub patches, three for tussock patches and one for plots

placed on bare soil. One species of potential nurse shrub (Parastrephia lucida) and one of

potential nurse tussock (Festuca orthophylla) in their mature state were among indicators of

cushion patches, while two potential nurse tussocks (Calamagrostis rigida, C. heterophylla) and

one potential nurse cushion (Pycnophyllum molle) in their mature state were associated with

shrub patches. The only indicator species identified for plots on bare soil was Viola granulosa.

As regards the spatial interaction types, ISA allowed to distinguish the association of the same

species with different EEs due to the change in spatial interaction patterns (Table 2): for exam-

ple, F. orthophylla with SITs 2 and 4 was associated with cushion patches, while the same spe-

cies with SIT 3 was associated with shrub patches. In plots on bare soil, six indicator species

with SIT 1 were identified. Most of the indicator species and of indicator species’ SITs were

identified for medium- to large-sized patches (S3 and S4 Tables).

Discussion

Patch dynamics and patterns of soil variation

We found that cushion seedlings (Pycnophylum molle) were able to grow on bare soil, playing

a key role as foundation species [22, 24, 41], namely, as dominant species that modulate

Fig 4. Boxplots of mean soil temperature (˚C) values collected under the patches of ecosystem engineers

and on bare soil. Equal letters indicate no statistically significant differences (P� 0.001) in the pairwise

comparisons of groups as determined by the Mann-Whitney-Wilcoxon tests, after Holm’s correction for multiple

comparisons.

doi:10.1371/journal.pone.0167265.g004
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ecosystem processes having a great impact on the conditions experienced by other species

[52]. Our results suggest that the maturation of seedlings of shrubs hosted as beneficiaries by

cushions plants leads to the succession of new microhabitat patches, mostly formed by coales-

cent engineered patches, composed of large cushions (often partially dead—pers. obs.) and

shrubs, instead Festuca orthophylla (a key nurse grass [30]) seems not in need of facilitation,

since it has been observed at the border or inside the cushions, under the canopy of shrubs and

on bare soil.

Beneath engineered patches several soil features were significantly ameliorated in com-

parison with bare soil patches, confirming the engineering role of the considered plant spe-

cies. Our results are consistent with previous findings on Andean cushion species such as

Azorella monantha, Mulinum leptacanthum and Oreopolus glacialis [53, 54], as well as

Hypericum laricifolium shrubs [55] and F. orthophylla grass tussocks [3]. We observed a

decrease of sand percentage from bare soil to shrub engineered patches, while organic mat-

ter and loam had the opposite trend. It was stated that these modifications could be related

to the protection against wind erosion and water run, offered by engineering species [56,

57]. Moreover, we found that nitrogen progressively increased from bare soil to shrub-engi-

neered patches, likely because the increase of fine-sized particles in the soil reflects in the

improvement of its nutrient status [58]. Actually, we found that nitrogen progressively

increased from bare soil to cushion / tussock and shrub-engineered patches. Instead, consis-

tently with Badano et al. [22], K and P macronutrient concentrations did not show signifi-

cant differences between bare soil and different types of EEs. We also observed an increase

Fig 5. Rarefaction curves indicating the contribution of cushions, shrubs, and tussocks to community species richness in comparison with bare

soil. Values are mean ± 2SD.

doi:10.1371/journal.pone.0167265.g005
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of soil pH from bare soil to shrub engineered patches. It was suggested that the ion pumping

action of woody species (with deep roots), redistributes alkalinity from deeper soil layer,

through the plant leaves, to the surface when leaves fall [59]. The litter accumulation, in

turn, causes an increase of pH in the shallow soil layers [60]. Shrubs could trigger this pro-

cess, since they function as natural barriers reducing wind velocity; this in turn leads to a

deposition of wind-blown soil material that has a relatively high pH because it corresponds

to soil surface material, which is the richest part of the soil profile [61]. It is noteworthy that

in the study case soil pH shifts from mean values around 5.0 (bare soil) to more than 6.6

(beneath shrub), that is from unproductive to productive conditions [31, 53].

As regards soil temperature, unfortunately the malfunctioning of data loggers beneath

cushions did not allow for the full understanding of the different environmental amelioration

patterns related to each nurse species. However, previous research [22, 23] proved that cushion

plants create thermally-buffered habitat patches with higher humidity and lower temperature

than surrounding open areas. Available data about soil beneath shrubs and tussocks showed

marked differences in that below the tussock patches the temperature was lower than below

shrubs. This is likely due to the different canopy density (with high light irradiance vs. over-

shading conditions). However, in both cases we observed that the mean temperatures, as well

as the amplitude of their variations, were lower than on bare soil. These findings are consistent

with previous studies; in fact, it was demonstrated that EEs affect the soil temperature and

humidity of microhabitats, increasing the availability of water resources, limiting the drought

stress and narrowing down the fluctuation of these parameters in comparison with open areas

Fig 6. Rarefaction curves indicating the contribution of cushions, shrubs, and tussocks to abundance of

individuals in comparison with bare soil. Values are mean ± 2SD.

doi:10.1371/journal.pone.0167265.g006
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[29, 31], thus reducing the heat shock and mortality of beneficiary plants and enhancing their

photosynthetic activity [53, 62].

In summary, we can argue that the observed nurse/nurse interactions besides soil ameliora-

tion and climatic mitigations, with different characteristics among engineered species, seem to

highlight a successional pattern involving different types of EEs. In particular, cushion plants

act as pioneers and facilitate other EEs, starting a succession process that mostly leads to

shrub-dominated patches (as indicated by the presence of cushion plants dead material and by

the strongest amelioration of soil conditions beneath shrubs). The dynamic role of F. ortho-
phylla is less clear. We found that the environmental amelioration produced by F. orthophylla
tussocks was less effective than that of shrubs and roughly comparable with that of P.molle
cushions. Thus, it could be argued that P.molle and F. orthophylla act as two quite independent

foundation species, while the encroachment of the fully developed patches (those dominated

by shrubs) is facilitated by previous EEs. Therefore, it seems conceivable that a facilitation cas-

cade process [20] is partially behind the observed dynamics. This trend can also be associated

to the effects of EEs on dominance patterns. In fact, previous studies report that dominant spe-

cies may become either co-dominant or subordinate with changes in the availability of

resources or abiotic conditions [63], and changes in species dominance patterns have been

observed for cushion nurse species in southern Chile [64].

Table 1. Indicator species of the three types of ecosystem engineers and of bare soil identified by

indicator species analysis performed on the “relevés x species individuals (number)” matrix, with the

observed indicator value and significance level.

Group with maximum IV Species IV Pa

Cushion Calamagrostis sp. 0.595 ***

Parastrephia lucida 0.416 ***

Belloa kunthiana 0.401 ***

Poa aequigluma 0.383 ***

Nototriche turritella 0.355 **

Festuca orthophylla 0.355 ***

Luzula racemosa 0.316 ***

Calamagrostis breviaristata 0.306 *

Werneria aretioides 0.276 *

Shrub Calamagrostis rigida 0.500 ***

Pycnophyllum molle 0.281 **

Calamagrostis heterophylla 0.222 **

Tussock Belloa longifolia 0.677 ***

Perezia ciliosa 0.365 ***

Perezia sp. 0.306 ***

Bare soil Viola granulosa 0.335 *

IV, observed indicator value.
a P is the probability of type I error, namely the proportion of times that the maximum IVi from the randomized

data set (4,999 iterations) equals or exceeds the maximum IVi from the actual data set, under the null

hypothesis that the maximum IVi is no larger than would be expected by chance

(*P < 0.05

**P < 0.01

***P < 0.001).

Only significant indicator values (P < 0.05) higher than 0.20 are shown.

Potential nurse species are in bold.

doi:10.1371/journal.pone.0167265.t001
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Table 2. Indicator species with associated spatial interaction type of the three types of ecosystem engineers and of bare soil, identified by indica-

tor species analysis performed on the “relevés x species individuals with associated SIT (number)” matrix, with the observed indicator value and

significance level.

Group with maximum IV Species SITa IV Pb

Cushion Nototriche turritella 4 0.625 ***

Calamagrostis sp. 4 0.600 ***

Belloa kunthiana 4 0.558 ***

Calamagrostis breviaristata 4 0.553 ***

Poa aequigluma 4 0.533 ***

Parastrephia lucida 4 0.532 ***

Werneria aretioides 4 0.374 ***

Luzula racemosa 4 0.331 ***

Calamagrostis breviaristata 2 0.270 **

Festuca orthophylla 2 0.260 **

Festuca orthophylla 4 0.257 ***

Shrub Belloa longifolia 4 0.343 ***

Nototriche turritella 3 0.321 ***

Perezia ciliosa 4 0.278 ***

Calamagrostis rigida 4 0.267 **

Calamagrostis rigida 3 0.229 ***

Calamagrostis rigida 2 0.228 **

Aetheolena campanulata 3 0.221 **

Festuca orthophylla 3 0.212 **

Tussock Belloa longifolia 3 0.769 ***

Perezia ciliosa 3 0.520 ***

Perezia sp. 3 0.367 ***

Belloa kunthiana 3 0.363 ***

Silene andicola 3 0.218 **

Gnaphalium badium 3 0.215 ***

Hypochaeris echegarayi 3 0.212 **

Werneria aretioides 2 0.201 *

Bare soil Nototriche turritella 1 0.933 ***

Calamagrostis breviaristata 1 0.500 ***

Werneria aretioides 1 0.400 ***

Nototriche pedicularifolia 1 0.367 ***

Poa aequigluma 1 0.367 ***

Viola granulosa 1 0.300 ***

IV, observed indicator value; SIT, spatial interaction type.
a SIT1, individual growing outside the nurse canopy at a distance greater than 20 cm from the border of the nearest nurse patch; SIT2, individual growing

less than 20 cm from the border of the nearest nurse patch but not under its canopy; SIT3, individual growing in the shadow of the nurse canopy; SIT4,

individual growing inside the nurse canopy.
b P is the probability of type I error, namely the proportion of times that the maximum IVi from the randomized data set (4,999 iterations) equals or exceeds

the maximum IVi from the actual data set, under the null hypothesis that the maximum IVi is no larger than would be expected by chance

(*P < 0.05

**P < 0.01

***P < 0.001).

Only significant indicator values (P < 0.05) higher than 0.20 are shown.

Potential nurse species are in bold.

doi:10.1371/journal.pone.0167265.t002
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Patterns of species richness and composition in engineered patches

Each single type of engineered patch showed a higher species richness in comparison with plots

on bare soil, as indicated by rarefaction curves. This finding confirms that, in the studied sys-

tem, abiotic modulation by EEs increases species diversity by adding species that cannot survive

in open areas [30, 64, 65]. This is consistent with Michalet et al. [35] and Xiao et al. [36] who

assumed that facilitation in very harsh conditions has the potential to contribute to species rich-

ness at the community level because most subordinate species are positively affected by the

dominant nurse species. This is also consistent with Jones et al. [21], who stated that the addi-

tion of engineered patches should almost invariably increase landscape-level species richness

via a net increase in habitat diversity. In fact, in our study each type of engineered patch, charac-

terized by a peculiar set of soil features, represents a distinct sub-community that contributes in

a unique way to the overall composition of the whole plant community, as highlighted by the

Jaccard dissimilarity values and by the presence of different indicator species for each EE. This

result reflects the different trait composition of the considered nurse species. In fact, the inter-

play of nurse and beneficiary trait features plays a key role in determining the species-specific

interaction [2, 13, 28] and then species assemblage. Accordingly, we found that the presence of

EEs with different plant forms allows co-occurring species to differentiate their behaviour

depending on the nurse species, and increases the number of available niches by providing the

opportunity for various types of spatial interactions. Indeed, species may occupy different

microhabitats within nurse patches due to a micro-scale environmental heterogeneity that trig-

gers facilitation processes through within-patch niche differentiation [18, 52]. For example, spe-

cies with SIT 4 are mostly associated with cushion plants, since their short, dense leaves act as a

seed trap and the effects of ecosystem amelioration are maximised at the centre of their canopy

[22, 41]. Conversely, tussock grasses have many species with SIT 3, due to the protection offered

by their long, bent leaves that form an effective shelter from direct sunlight and herbivory [3,

30]. It is also worth noting how some species change their spatial interactions when associated

with different EEs, confirming the importance of the interplay between nurse and beneficiary

plant traits in determining the patterns of facilitation processes [2, 13, 28].

As regards the dimensions of microhabitat patches, even if no correlation has been found

between patch area and number of co-occurring species/individuals, rarefaction curves indi-

cated that EEs, especially tussocks and shrubs, exerted a positive effect on species richness com-

pared to bare soil, while cushions greatly enhanced the number of individuals. Moreover, ISA

highlighted that indicator co-occurring species are associated with medium- to large-sized

patches, likely because of the coalescence of different engineered patches or the co-dominance

of different EEs (pers. obs.). This suggests that mature engineered patches provide a key contri-

bution to the species pool, probably because the ecosystem amelioration increases with patch

dimension and age [43]. Conversely, the lower number (or absence of indicators) for the highest

class of area may be due to the senescence of patches. In fact, tussocks of F. orthophylla develop

in partially dead clonal garland with increase in the length but not in the width of the patch [29]

and with bare inner zones, likely due to the release of toxic compounds [66]. Instead, shrubs

senescence implies the death of branches and the opening of the canopy, probably triggering

the start of soil erosion processes and the dropping down of environmental amelioration [55].

Moreover, palatable plants lose the protection against the herbivore bite [67].

Conclusions

We found that a successional process, resulting from the dynamic interaction of different EEs,

which determined a progressive amelioration of soil conditions, was the main driver of species

assemblage at the community scale. This process seems to follow the nested assemblage
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mechanism, in which the first foundation species to colonize a habitat provides a novel sub-

strate for colonization by other foundation species through facilitation cascades. In the study

site, we observed that a wide set of nurse species fosters facilitative interactions within patches

and dynamic interactions among different EEs. Consequently, we could infer that, since high

disturbance intensity lowers the number of potential nurse species, it might thwart the facilita-

tion cascade process among EEs, preventing soil amelioration, and decreasing availability of

microhabitats and species richness. This helps understanding how anthropogenic modifica-

tion of natural grazing regimes through activities, such as burning and intensive livestock graz-

ing, can alter the dynamics among EEs, with cascading effects on dependent organisms, and

why at high disturbance intensity facilitation processes have a low importance in harsh envi-

ronments, indicating that sustainable management of farming systems in dry environments

should prevent the loss of foundation species.

Further research is needed to understand whether the processes involved in patch dynam-

ics, detected in the study area, are representative of the entire high Dry Puna and are relevant

also at a broader scale.
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18. Pistón N, Schöb C, Armas C, Prieto I, Pugnaire FI. Contribution of co-occurring shrub species to com-

munity richness and phylogenetic diversity along an environmental gradient. Persp Plant Ecol Evol

Syst. 2016; 19: 30–39.

19. Callaway RM. Positive interactions and interdependence in plant communities. Dordrecht, NL:

Springer; 2007.

Facilitation Cascade and Patch Dynamics in Dry Puna

PLOS ONE | DOI:10.1371/journal.pone.0167265 November 30, 2016 19 / 21

http://dx.doi.org/10.1111/ele.12217
http://dx.doi.org/10.1111/ele.12217
http://www.ncbi.nlm.nih.gov/pubmed/24238015
http://dx.doi.org/10.1016/0169-5347(94)90088-4
http://www.ncbi.nlm.nih.gov/pubmed/21236818
http://dx.doi.org/10.1038/nature00812
http://dx.doi.org/10.1038/nature00812
http://www.ncbi.nlm.nih.gov/pubmed/12075350
http://dx.doi.org/10.1111/ele.12080
http://www.ncbi.nlm.nih.gov/pubmed/23363430
http://dx.doi.org/10.1111/nph.12460
http://www.ncbi.nlm.nih.gov/pubmed/24032565


20. Angelini C, Altieri AH, Silliman BR, Bertness MD. Interactions among foundation species and their con-

sequences for community organization, biodiversity, and conservation. BioScience. 2011; 61(10): 782–

789.

21. Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem

engineers. Ecology. 1997; 78(7): 1946–1957.

22. Badano EI, Jones C, Cavieres L, Wright J. Assessing impacts of ecosystem engineers on community

organization: a general approach illustrated by effects of a high Andean cushion plant. Oikos. 2006;

115(2): 369–385.

23. Ramı́rez LA, Rada F, Llambı́ LD. Linking patterns and processes through ecosystem engineering:

effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes. Plant

Ecol. 2015; 216(2): 213–225.

24. Catorci A, Tardella FM, Cesaretti S, Bertellotti M, Santolini R. The interplay among grazing history,

plant-plant spatial interactions and species traits affects vegetation recovery processes in Patagonian

steppe. Community Ecol. 2012; 13(2): 253–263.

25. El-Keblawy A, Kafhaga T, Navarro T. Live and dead shrubs and grasses have different facilitative and

interfering effects on associated plants in arid Arabian deserts. J Arid Environ. 2016; 125: 127–135.

26. Bruno JF, Bertness MD. Habitat modification and facilitation in benthic marine communities. In: Bert-

ness MD, Gaines S, Hay ME, editors. Marine Community Ecology. Sinauer; 2001, pp. 201–216.

27. Yakovis EL, Artemieva AV, Shunatova NN, Varfolomeeva MA. Multiple foundation species shape ben-

thic habitat islands. Oecologia. 2008; 155(4): 785–795. doi: 10.1007/s00442-007-0945-2 PMID:

18193291

28. Anthelme F, Dangles O. Plant-plant interactions in tropical alpine environments. Perspect Plant Ecol.

2012; 14(5): 363–372.

29. Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer; 2003.

30. Catorci A, Cesaretti S, Velasquez JL, Zeballos H. Plant–plant spatial interactions in the dry Puna (south-

ern Peruvian Andes). Alpine Botany. 2011; 121(2): 113–121.

31. Brack Egg A, Mendiola Vargas C. Ecologia del Perú. Lima, Perú. Ed. Bruño; 2000.
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42. Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J. Effect of the canopy of Retama sphaerocarpa on its

understory in a semiarid environment. Funct Ecol. 1997; 11(4): 425–431.

43. Dickie IA, Schnitzer SA, Reich PB, Hobbie SE. Spatially disjunct effects of co-occurring competition and

facilitation. Ecol Lett. 2005; 8(11): 1191–1200. doi: 10.1111/j.1461-0248.2005.00822.x PMID:

21352443

Facilitation Cascade and Patch Dynamics in Dry Puna

PLOS ONE | DOI:10.1371/journal.pone.0167265 November 30, 2016 20 / 21

http://dx.doi.org/10.1007/s00442-007-0945-2
http://www.ncbi.nlm.nih.gov/pubmed/18193291
http://dx.doi.org/10.1111/j.1461-0248.2006.00935.x
http://www.ncbi.nlm.nih.gov/pubmed/16796565
http://dx.doi.org/10.1111/j.1438-8677.2008.00115.x
http://dx.doi.org/10.1111/j.1438-8677.2008.00115.x
http://www.ncbi.nlm.nih.gov/pubmed/19470106
http://dx.doi.org/10.1111/j.1461-0248.2005.00822.x
http://www.ncbi.nlm.nih.gov/pubmed/21352443
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