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Physical characterization and in 
vivo organ distribution of coated 
iron oxide nanoparticles
Anirudh Sharma1, Christine Cornejo1, Jana Mihalic3, Alison Geyh3, David E. Bordelon1,  
Preethi Korangath1, Fritz Westphal2, Cordula Gruettner2 & Robert Ivkov1,4,5,6,7

Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl 
dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-
phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in 
an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution 
in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all 
coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by 
dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. 
Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated 
significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following 
intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure 
iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was 
observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively 
charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These 
preliminary results suggest a complex interplay between nanoparticle size and charge determines organ 
distribution of systemically-delivered iron oxide magnetic nanoparticles.

Magnetic iron oxide nanoparticles (MNPs) have demonstrated utility in biomedical diagnosis and therapy 
because they display generally favorable biocompatibility and varied responsiveness to magnetic fields1–10. The 
search for nanoparticle constructs that preferentially accumulate in cancer tumors or cancer cells, after sys-
temic delivery, remains an area of active research11–15. A successful strategy to develop selective targeting how-
ever requires knowledge of the relationship between nanoparticle structure and the resulting biologic activity 
between the physicochemical properties of nanoparticles and their impact on biological processes that affect the 
nanoparticle distribution throughout tissues and organs16. A precise working knowledge that reliably predicts 
such relationships remains a challenge for targeted nanomedicine17. Consideration of nanoparticle properties 
such as surface coating materials, size, zeta potential; and, the correlation of these with biodistribution in vivo 
remains a necessary and compelling area of investigation. In addition to relating the coating with physiological 
response, characterizing the magnetic properties is needed to determine if and how the coating affects the iron 
oxide responsiveness to magnetic fields.

When injected into circulating blood, nanoparticles encounter a complex fluid environment that includes 
living and non-living biological matter, and varying physical conditions. Interaction of nanoparticles with this 
dynamic environment can modify the initial particle surface to one having a molecular signature which produces 
specific interactions with host biology. Ultimately, though indirectly, the interactions of nanoparticles with the 
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complex host environment can lead to final deposition in organs or tissues that depends upon the initial phys-
ical and chemical properties of the injected construct16. Therefore, a refined knowledge of these basic in vivo 
property-function correlations can benefit rational design of nanoparticle formulations for specific therapeutic 
applications.

We investigated, in pilot trials using healthy mice, the in vivo organ distribution of an iron-oxide magnetic 
nanoparticle (MNP) construct, previously used for in vivo cancer hyperthermia studies18,19. The surface coat-
ing of the nanoparticles was varied with polymer materials often used for this purpose16,17,20–25. Specifically, the 
nanoparticles were coated with carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine 
(PEG-PEI), methoxy-PEG-phosphate + rutin, and dextran. Polymer coated particles were characterized for size, 
surface-charge or zeta potential, magnetic responsiveness, and heat generation. Following intravenous delivery 
(48 hours), animals were sacrificed and tissues were collected to measure iron concentrations with inductively 
coupled-plasma mass spectrometry (ICP-MS) in livers, spleens, and lungs. Recovered iron content, a surrogate 
measure of nanoparticle deposition, was highest in livers of mice injected with CM-dextran nanoparticles. On 
the other hand, iron content was highest in lungs of mice injected with PEG-PEI coated nanoparticles. These pilot 
results suggest various complex biological mechanisms engage, depending upon both size and surface charge of 
injected nanoparticles.

Results and Discussion
Table 1 contains a summary of MNP physical data. For each coating, nanoparticle size [Z(Avg)] and polydis-
persity index (P.I.) were evaluated in water and in PBS separately at an iron concentration of 0.4 mg/ml using 
dynamic light scattering. Iron concentration for each lot was determined using spectrophotometry (see Methods 
in Supporting Information).

The precursor citrate-stabilized iron oxide particles demonstrated evidence of coagulation in PBS displaying 
significantly increased hydrodynamic diameter (>15-fold), and formation of precipitates. To a lesser extent, the 
methoxy-PEG-phosphate + rutin coated nanoparticles exhibited similar instability in PBS. These results are con-
sistent with previous observations of charge-stabilized nanoparticle suspensions when in physiologic solutions 
or biologic media26–29.

As expected, particles coated with high molecular weight polymers were stable in either water or PBS (Table 1). 
The measured mean hydrodynamic diameter of dextran-coated nanoparticles remained constant in either water 
or PBS demonstrating relative insensitivity to changes of solvent conditions within physiologic parameters. It 
is worth noting that, while stable in either water or PBS, the measured mean hydrodynamic diameters of the 
CM-dextran and PEG-PEI coated nanoparticles decreased slightly when in PBS vs water. The presence of availa-
ble carboxyl or amine groups on the polymer chain is likely responsible for these differences because their pres-
ence can introduce complex responses to changes of solution pH or ionic strength26–29. Indeed, this complexity 
has been proposed as a potential advantage for some nanoparticle formulations to achieve specific therapeutic 
objectives within the environment of tumors which typically exhibit low pH30,31.

The basic framework for understanding the stability of charged colloids is the Derjaguin-Landau- 
Verwey-Overbeek (DLVO) model28,29,32, which identifies colloid stability to be the consequence of a bal-
ance between attractive and repulsive forces among charged colloids, and their interactions with solvent ions. 
Increasing ionic strength of the solvent (or changing pH), can have the effect to change the surface potential 
and compress the counter-ion cloud (i.e. electric double layer) leading to a reduced zeta potential and hydrody-
namic diameter. On the other hand, a highly compressed double layer can effectively reduce the repulsive forces 
between MNPs, giving rise to agglomeration and increased hydrodynamic diameter. In the extreme limit, colloid 
aggregates become too large to be supported by Brownian motion and the particles begin to flocculate. We con-
clude that both citrate stabilized precursor and methoxy-PEG-phosphate + rutin coated particles were unstable in 
PBS because ionic stabilization is inadequate to maintain colloid integrity in higher ionic strength solvents26,33,34. 
Dextran, carboxymethyl dextran and PEG-PEI, on the other hand are long-chain high MW polymers that provide 
additional steric stabilization making these suspensions less sensitive to changing ionic strength within physio-
logic parameters. These observations are generally consistent with prior work, leading to the prevalence of these 
polymers as nanoparticle coating agents for many biomedical applications26,33.

The observed slight reduction of mean hydrodynamic diameter displayed by nanoparticles coated with the 
carboxy- or amine-containing polymers is likely due to the increased sensitivity of the colloid surface potential 
to H+. Interestingly, CM-dextran- and PEG-PEI-coated MNPs displayed relatively high values of zeta poten-
tial at pH 7 (Fig. 1). In these cases, the ionic strength of PBS may contract the double layer, effectively reduc-
ing the thickness of the polymer layer (i.e. reducing radius of gyration and expelling solvent). A collapse of the 
polymer-double layer and dominance of attractive forces was likely prevented by polymer steric stabilization 
(monomer-monomer exclusion)26,32.

Coating (Lot) c(Fe) [mg/ml] Z(Avg) [nm] in H2O P.I. in H2O Z(Avg) [nm] in PBS P.I. in PBS

Uncoated (Citrate-stabilized) [90805] 35.3 77 0.179 1206 1.000

CM-dextran [5170945] 15.7 240 0.211 211 0.180

PEG-PEI [5100945] 30.7 230 0.162 219 0.202

Methoxy-PEG-phosphate + Rutin [5230945] 21.2 79 0.145 296 0.324

Dextran[5110945] 10.9 73 0.147 74 0.106

Table 1.  Physical properties of nanoparticle suspensions.
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The pH-dependent zeta potential measured for each MNP is shown in Fig. 1. Citrate-stabilized precursor 
MNPs displayed a high, positive zeta potential at low pH (<4), with point of zero charge (PZC) occurring at 
approximately 4.5. All other coated nanoparticle samples exhibited positive zeta potential at low pH, though only 
citrate- and PEG-PEI-coated nanoparticles exhibited high (measured maximum) zeta potential values>+20 mV 
at pH < 3. All particles, except PEG-PEI displayed PZC at pH ~4. The PZC of the CM-dextran-nanoparticles 
occurred at pH ~2.4, and zeta potential below PZC was <5 mV. At pH above the PZC, the measured zeta poten-
tial of all particles, except PEG-PEI was negative. PEG-PEI-nanoparticles did not display PZC to pH 10, and at 
a physiologic pH 7.4, the measured zeta potential was ~+40 mV. By contrast the measured zeta potential at pH 
7.4 for CM-dextran particles was −38 mV. The measured zeta potential of all other nanoparticles at pH 7.4 was 
similarly negative, although with slightly lower magnitude than the CM-dextran-nanoparticles. It is interesting 
to compare the sizes and surface potentials of the PEG-PEI with those of CM-dextran nanoparticles. Both exhibit 
high values of zeta potential at physiologic pH, with one having positive (PEG-PEI) sign and the other negative 
(CM-dextran); and, both these coated MNPs have comparable measured mean hydrodynamic diameter (Table 1).

The magnetic susceptibility of MNPs is given by χ


 = χ′ + jχ″ where, χ′(ω) = χ0/[1 + (ωτ)2] and χ″(ω) = χ0 ωτ 
/[1 + (ωτ)2]. χ0 is the static (DC) magnetic susceptibility, ω is the frequency of the applied magnetic field and τ is 
the relaxation time of the MNPs35,36. When suspended in a fluid and exposed to an external field, the magnetic 
moments of the MNPs will align with the external magnetic field vector, giving rise to the measured value of 
magnetization. Upon removal of the external field, randomization of the individual magnetic moments leads to 
decay of magnetization, or relaxation. Suspensions containing free MNPs realize relaxation via two possible phys-
ical processes, Brownian and Néel. Néel relaxation can be described as a thermal relaxation process of the mag-
netic moment against an effective anisotropy energy barrier, which originates from a combination of anisotropies 
such as magneto-crystalline, shape, surface, etc. in the MNP. Brownian relaxation results from physical rotations 
of the nanoparticles and is directly associated with the magnetic torque on the MNPs against the viscosity of the 
suspending medium and thermal fluctuations35,36. Depending upon the magnetic and physical characteristics of 
the nanoparticles, suspending medium and experimental conditions, Brownian relaxation is usually observed to 
be much slower than Néel relaxation. For magnetically blocked nanoparticles, where thermal energy is insuffi-
cient to overcome the anisotropy barrier, but the MNPs are free to move physically, relaxation may be dominated 
by Brownian processes. In the suspending medium the Brownian relaxation time can be described by the 
relation35–38

ι η= V K T3 / (1)B H B

where VH is the hydrodynamic volume of the particle, η is the dynamic viscosity of the liquid, KB is the Boltzmann 
constant and T is absolute temperature.

Magnetic single-domain nanoparticles exhibiting faster internal relaxation, i.e. unblocked or ‘quasi’-blocked 
at the experimental conditions will also display a Néel contribution to relaxation. Typically, for single-domain 
particles in null external field, the Néel relaxation time is taken to be35,36:
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where τA is the attempt frequency (~10−9 sec−1), VM is the magnetic volume, and K is the anisotropy constant, 
which includes all contributions to the anisotropy. This functional form for Néel relaxation time only applies for 
the special case of null magnetic field35. With application of an external magnetic field, complex ‘multi-domain’ 
internal magnetic structures, and contributions from dipole interactions in suspension or in aggregates will inev-
itably modify the relaxation time. In many cases both relaxation mechanisms can operate for a given MNP, yield-
ing an effective relaxation time of τ = (τn × τb)/(τn + τb)35–38. Generally, the frequency of Brownian relaxation 
of nanoparticles suspended in water is ~1 s−1 to 104 s−1 36. Néel relaxation times can range from 10−9 s to 109 s, 
depending upon the anisotropy energy and volume of nanoparticle, and experimental conditions36–38.

For dextran coated MNPs, the effective anisotropy Keff has been measured to be 0.51 J/kg Fe (3.66 × 103 J/
m3) and a magnetic volume Vm, that is a magnetic spherical domain of about 36 nm diameter (assuming sin-
gle domain sphere and neglecting magnetic shell)19. Using the dynamic viscosity of water, η = 9 × 10−4 Pa.s, 

Figure 1.  Measured pH-dependent zeta potential of magnetic iron oxide nanoparticles (MNPs) coated with 
citrate (red), PEG-PEI (blue), CM-dextran (green), dextran (magenta), and methoxy-PEG-phosphate + rutin 
(amber) in water. All MNP constructs displayed a negative surface charge at pH 7, except PEG-PEI MNPs.
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Boltzmann constant, kB = 1.38 × 10−23 m2·kg·s−1·K−1, temperature, T = 300 K, and a hard sphere hydrodynamic 
volume VH, of 77 nm; we obtain values of τB and τN to be 1.5 × 10−4 s and 4.5 × 10−1 s, respectively.

A peak in the out-of-phase component, χ″, corresponds to the alternating magnetic field (AMF) frequency at 
which optimal phase lag occurs36,38 i.e., ωτ = 1. The uncoated citrate stabilized MNPs exhibit a broad peak in the 
complex (imaginary component) susceptibility, χ″, at ~1.5 to 2 × 103 s−1 as shown in Fig. 2(b) which is in the fre-
quency range where Brownian relaxation is expected to dominate according to calculations shown above. Using 
the expression for Brownian relaxation and measured hydrodynamic diameter of MNPs, the expected Brownian 
relaxation peak for mobile non-interacting MNPs was estimated to be ~1 × 103 s−1, which approximately corre-
sponds with the observed susceptibility peak displayed in Fig. 2(b) (~1.5-2 × 103 s−1). While the calculated peak 
is within the same order of magnitude as the observed peak of the complex susceptibility, the observed differ-
ences suggest the assumptions that the MNPs are monodisperse, non-interacting hard spheres may be incorrect. 
Deviations of MNP shape from a perfect sphere and dipolar interactions among MNPs producing collective 
magnetic behavior can also explain differences between measured and calculated values39. Polydispersity in par-
ticle shape introduces complex deviations in Brownian relaxation calculations which assume a spherical object. 
Medium viscosity is also a dominant contribution to Brownian relaxation processes that interacts directly with 
particle volume. Polydisperse particle size, thus introduces deviations with increased relaxation times (slower) for 
larger particles and correspondingly decreased relaxation times (faster) for smaller particles, effectively broaden-
ing the peak40. A distribution p(τ) of relaxation times can be introduced to the Debye model to account for size 
polydispersity:
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Without further assumptions, a numerical inversion can be used to calculate p(τ) from AC susceptibility (ACS) 
data41 (Supplementary Information). The peak observed at 1 × 10−4 s in Figure S2, matches approximately the 
calculated value for Brownian relaxation time. Immobilization of these MNPs in agarose suppresses this major 
peak, thus providing evidence that a significant contributing process to this peak is Brownian relaxation.

On the other hand, a second peak is observed in the numerical inversion of ACS data that occurs at ~7 × 10−7 s, 
and persists when the MNPs are immobilized in agarose gel (Figure S2). Even with a broad size distribution of 
the hydrodynamic diameter, the relaxation time distribution must include relaxation times below 7 × 10−7 s (or a 

Figure 2.  (a) The real component of AC volume susceptibility, χ′, measured from coated MNPs vs frequency 
suppressed in PEG-PEI and CM-dextran MNPs at frequencies 100–1000 s−1, a result of increased hydrodynamic 
volume and reduce mobility. (b) The imaginary component of AC susceptibility, χ″, measured from coated 
MNPs vs frequency displays a peak which shifted to lower frequencies when MNPs were coated with CM-
dextran or PEG-PEI to yield particles having larger measured hydrodynamic diameter (~200 nm) compared 
to their uncoated precursor MNPs (~80 nm). Other coated MNPs having sizes similar to the citrate-stabilized 
precursor MNPs had both χ′ and χ″ that remained close to original. MNP concentration was 1 ± 0.05 mg Fe/ml 
for all measurements.
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resonance frequency of 2.5 × 105 s−1) to provide an acceptable fit to ACS data (Figures S1 and S2). This suggests 
that a faster relaxation process also contributes to the measured ACS values. We suspect the origin of this peak 
includes Néel relaxation; however, while the second peak in Figure S2 (~3 × 10−6 s) is significant, it is close to the 
upper limit of the susceptometer (2.5 × 105 s−1), making detailed comparisons unreliable.

For larger MNPs (PEG-PEI and CM-dextran with d ~230–240 nm), the estimated Brownian relaxation is 
~36 s−1. The measured χ″ peak and therefore, Brownian relaxation is suppressed at 2 × 103 s−1 and shifted to 
lower frequency (~30 s−1). This can be attributed to reduced mobility arising from the increased hydrodynamic 
diameter with CM-dextran or PEG-PEI coating. Both complex, χ″, and real, χ′, components of susceptibility 
are suppressed and shifted to lower frequencies for these MNPs at 2 × 103 s−1 at the measured frequency range 
100–1000 s−1. Uncoated, dextran-coated, and methoxy-PEG-phosphate + rutin-coated MNPs displayed similar 
susceptibilities owing to comparable diameters of these MNPs (Fig. 2).

The MNPs were exposed to a time-varying or alternating magnetic field (AMF) having amplitude up to 
54 kA/m and frequency 1.5 × 105 s−1 to measure heat production by the MNPs. It is worth noting that the mag-
netic field to which the MNPs were exposed for heating experiments exceeds, in both magnitude and frequency, 
the AMF used for ACS measurements (see Methods). Heating rates measured from the coated MNPs were 
comparable to those of the uncoated citrate-stabilized MNPs (Fig. 3). The precursor iron oxide nanoparticles 
exhibited a non-linear amplitude-dependent specific loss power (SLP) with applied AMF. It has been previously 
reported that this non-linear response likely arises from intra-core magnetic domain structure and complex cou-
pling among magnetic domains within the iron oxide cores19, and the heating was relatively unaffected by surface 
coating.

To determine if the coating material influences organ deposition, healthy male athymic nude mice were 
injected intravenously with MNP suspensions. Generally, injections of MNPs were well tolerated within the 
observed time. The exception was one death out of four mice injected with PEG-PEI coated MNPs. 24 and 
48 hours later, blood samples were collected for iron content analysis, and at 48 hours all mice were sacrificed 
and livers, lungs and spleens were harvested. Iron content in blood and tissues was measured with ICP-MS to 
determine nanoparticle content in tissues. At both measured time points, blood iron content was similar to con-
trols (data not shown), suggesting that nanoparticle clearance from blood circulation occurred within 24 hrs. 
Results of organ iron analysis are provided in Fig. 4(a) and (b). Most interesting is a comparison of recovered 
iron measured in organs extracted from mice injected with PEG-PEI and CM-dextran MNPs. Coating the pre-
cursor nanoparticles with these materials produced nanoparticles having similar size and iron oxide composition 
(Table 1), and measured zeta potential having similar magnitude but opposite sign (Fig. 1). Measured iron was 
highest in spleens and livers of mice injected with CM-dextran MNPs, but it was highest in lungs of mice injected 
with PEG-PEI MNPs; similar to previously reported results for nanoparticles having comparable size and surface 
charged density42–49. When normalized with respect to initial injected dose of iron (Fig. 5), approximately 34% of 
the injected iron dose of PEG-PEI MNPs accumulated in the lungs compared to ~1% for CM-dextran (p = 0.057, 
borderline significance). The borderline statistical significance of the comparison is a consequence of the sin-
gle death in this study group (N = 3), compared to other treatment groups (N = 4). Livers and spleens of mice 
injected with CM-dextran MNPs showed much higher accumulation of iron (26% and 13%, respectively) com-
pared to mice injected with PEG-PEI MNPs (14% and 11%, respectively). Iron recovered from mice injected with 
uncoated, dextran, or methoxy-PEG-phosphate + rutin-coated MNPs yielded similar values with the maximum 
accumulating in the livers. The death following PEG-PEI MNP exposure warranted a more complete examination 
of potential toxicity arising from the use of PEG-PEI to coat magnetic iron oxide nanoparticles42,43.

To explore the nature of biological factors associated with accumulation of PEG-PEI MNPs in lungs, we con-
ducted a follow-up study. In this latter study, only lungs were harvested and prepared for analysis by histopathol-
ogy. The additional cohorts of mice were injected intravenously with PEG-PEI MNPs (n = 5) and CM-dextran 
(n = 5) MNPs, summarized in Table 2. Initially, intravenous injections were given at a dose of 2 mg Fe for both 
PEG-PEI and CM-dextran MNPs. Within 24 hours after injection, however all mice in PEG-PEI cohort died, 
indicating severe toxicity associated with this construct. Post-mortem histopathology of lungs indicates acute 
lung tissue toxicity (Supplementary Materials Figures S3).

Figure 3.  Specific loss power (SLP), reported as W/g Fe vs applied magnetic field was measured at fixed 
frequency (1.50 ± 10 × 105 s−1 kHz) demonstrates surface coating has a minimal impact on the SLP 
(variations < 10%). The SLP values reported are the mean of all values obtained from a heating measurement 
that satisfied the (quasi)-adiabatic criteria as described in ref.51 (see text for details). Error bars are the standard 
deviation of mean values.
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We repeated the trial with another cohort of mice (n = 4) using a lower dose of PEG-PEI MNPs, 1 mg Fe. All 
mice in this cohort and CM-dextran cohort survived to the endpoint of the study (48 hours), and lungs from all 
mice were collected and prepared for histopathology. Although no acute toxicity was observed in either PEG-PEI 
1 mg or CM-dextran injected mice, infiltration of immune cells was observed throughout lungs to varying degrees 
in both cohorts. (Supplementary Materials Figure S4.

As indicated by Prussian blue staining, PEG-PEI MNP localization appears to be concentrated within or near 
lung epithelial cells (Fig. 6a), whereas CM-dextran MNP localization was concentrated within interstitial spaces 
(Fig. 6b). Staining for mouse macrophages and monocytes revealed no clear association between either nano-
particle construct with lung macrophages or monocytes (Supplementary Materials Fig. S5). This is surprising 
considering macrophages are considered the principal immune cell population that interacts with nanoparticles 
to clear them from blood circulation24,44–49.

In summary, we report results of characterization of magnetic iron oxide nanoparticles coated with several 
biocompatible polymers. The choice of coating material determined the physical properties of the nanoparticles 
in solution depending on pH and solvent matrix. Measured hydrodynamic diameter and surface charge density 
(i.e. zeta potential) among the nanoparticles were relatively similar except PEG-PEI and CM-dextran coated nan-
oparticles. Other than size-dependent changes to colloid dynamics, we determined that no remarkable changes 
occurred to time-dependent magnetic processes following coating. The PEG-PEI and CM-dextran nanoparticles 
presented an interesting pair for comparing effects of nanoparticle charge (similar in magnitude but opposite 
sign) on organ distribution following systemic (intravenous) exposure. Contrary to expectations and unlike their 
negatively charged counterparts, the positively charged PEG-PEI nanoparticles proved more toxic and accu-
mulated preferentially in lungs of mice 48 hours after injection. Negatively charged nanoparticles were found to 
have preferentially localized in livers. In a follow up study, histopathology in lungs revealed that the PEG-PEI 
nanoparticles co-localized near or within lung epithelial cells. No evidence was found of nanoparticle localization 
with macrophages. From these results, we conclude that multiple immune and epithelial cells interact with nano-
particle constructs. The nature of in vivo cell interactions, across multiple cell and tissue types, with nanoparticles 
merits closer investigation with quantitative tools and histopathology.

Materials and Methods
All reagents were analytical grade purchased from SIGMA-ALDRICH Chemie GmbH (Taufkirchen, Germany) 
unless specified otherwise. 0.22 µm filtered reverse osmosis water was used in all preparations of coated 

Figure 4.  (a) Concentrations (μg/mg tissue) of Fe recovered from spleens, lungs, and livers of mice 
injected with MNP suspensions. Iron measurements were obtained using inductively-coupled plasma mass 
spectrometry (ICP-MS) from processed tissues that were collected 48 hours after intravenous injection. Symbols 
display individual data obtained from a single mouse and median values within a group are indicated by a 
horizontal line. (b) Plot showing total recovered Fe (total mass in μg) measured by ICP-MS from tissues as 
described in (a). (■) represents CM-dextran MNP, (▲) represents PEG-PEI MNP, (▼) represents methoxy-
PEG-phosphate + rutin MNP, (♦) represents dextran MNP, (*) represents uncoated MNP.



www.nature.com/scientificreports/

7SciEntiFic REPOrTS |  (2018) 8:4916  | DOI:10.1038/s41598-018-23317-2

nanoparticles. Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were produced by high-gravity con-
trolled precipitation (HGCP) (NanoMaterials Technology Ltd., Singapore) from aqueous solutions of precursor 
FeCl2 and NH4OH. Details for MNP synthesis are described elsewhere46. No further modifications of nanoparti-
cles were performed prior to coating.

Coating MNPs.  Dextran coating of the MNPs was achieved by dissolving 18 g of dextran (M.W. = 40,000 g/
ml; Carl Roth GmbH, Karlsruhe, Germany) in 60 ml of water in a glass beaker, and heating to 60 °C. 45 ml of 
citrate MNP suspension (solid content 50 mg/ml) was diluted with 70 ml of water in a 500 ml glass flask. The 
citrate MNP suspension was added to the reservoir of a microfluidizer (M-110EH, Microfluidics, Newton, MA, 
USA), and was circulated for 18 minutes at 500 bar until a temperature of 60 °C was achieved. The pre-warmed 
(60 °C) dextran solution was added to the iron oxide suspension and the mixture was circulated at 1000 bar until a 
temperature of 80 °C was achieved. Circulation was continued at 1000 bar and 80 °C for 20 minutes, and after stop-
ping, the suspension was transferred to a 500 ml glass flask and was allowed to cool to room temperature. When 
the suspension had cooled, the particles were washed by magnetic separation in a high gradient magnetic field 
column (QuadroMACS with LD columns, Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany) with 5 ml water 
per column. The magnetic column was removed from the magnet and the dextran coated magnetic particles 
were eluted with 2 ml of water per column. The HGMF wash was repeated until the suspension was completely 
recovered. The suspension was filtered using 0.22 µm PES (polyethersulfone) filter (Carl Roth GmbH, Karlsruhe, 
Germany).

For carboxymethyl-dextran coating, 2 g CM-carboxymethyl sodium salt (SIGMA-ALDRICH Chemie GmbH, 
Taufkirchen, Germany) was dissolved in 15 ml water at room temperature. 5 ml of citrate MNP suspension 
(50 mg/ml) was added and the mixture was stirred for 1 hour at 100 °C (120 rpm). The particles were washed as 
described above, and the washed suspension was filtered using glass fiber filter (Millex®-AP, Carl Roth GmbH, 
Karlsruhe, Germany).

Figure 5.  Scatter plot showing calculated percent of injected dose (ID) of iron recovered from livers, spleens 
and lungs of mice injected with coated MNPs. N = 4 mice for each group, except PEG-PEI MNPs, for which 
N = 3. (■) represents CM-dextran MNP, (▲) represents PEG-PEI MNP, (▼) represents methoxy-PEG-
phosphate + rutin MNP, (♦) represents dextran MNP and (*) represents uncoated MNPs. Statistical analysis 
of data was performed using non-parametric Mann-Whitney test demonstrating significant differences in 
deposition in livers and spleens between CM-dextran MNPs and uncoated precursor (citrate-stabilized) MNPs 
(p = 0.0286). Comparison of iron concentrations measured in lungs of mice injected with PEG-PEI MNPs with 
those injected with CM-dextran, or with uncoated MNPs yields p = 0.057.

Coating

c(Fe) [mg/ml]

Z(Ave) [nm] P.I.

Z(Ave) [nm] in PBS P.I. in PBS

Zeta potential (mV)

(Lot) in H2O in H2O at pH 7

CM-dextran [0451745-001] 22.8 171 0.153 272 0.405 −38

PEG-PEI [0461745-001] 23.4 166.6 0.115 136.4 0.123 28

Table 2.  Physical properties of nanoparticle suspensions used for Histology sub-group.
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For PEG-PEI coating, 2 ml of PEG-PEI (37% aqueous solution, M.W. 50,000; SIGMA-ALDRICH Chemie 
GmbH, Taufkirchen, Germany) was dissolved in 3 ml water. 5 ml of citrate MNP suspension (50 mg/ml) was 
added and the mixture was shaken for 16 hours at room temperature. Particles were washed and filtered as 
described for CM-dextran coated particles above.

For methoxy-PEG-phosphate + rutin coating, 530 µl of methoxy-PEG 5000 phosphate (750 mg/ml; 
SIGMA-ALDRICH Chemie GmbH, Taufkirchen, Germany) was added to 10 ml of citrate stabilized MNP sus-
pension (50 mg/ml). Next, 100 mg rutin hydrate (SIGMA-ALDRICH Chemie GmbH, Taufkirchen, Germany) 
was dissolved in 5 ml methanol and added to the nanoparticle mixture. The mixture was stirred for 30 minutes at 
50 °C, and methanol was removed by vacuum using a Laborota 4011 (Heidolph Instruments GmbH, Schwabach, 
Germany). The particles were centrifuged at 10,000 rpm for 10 minutes. Filtration of the supernatant was per-
formed using a 0.22 µm PES filter.

MNP size measurement.  The mean hydrodynamic diameters of the MNPs was measured by dynamic light 
scattering (Zetasizer Nano-ZS90; Malvern Instruments Limited, Worcester, U.K.) at an iron concentration of 
c(Fe) = 0.4 mg/ml in water. The mean particle diameter Z(Avg) is given as result of the cumulative analysis of 
the autocorrelation function. The polydispersity index P.I. is a measure of the quality of the size distribution. A 
‘monodisperse’ suspension has a polydispersity index <0.25.

Zeta potential with pH.  For all zeta potential measurements, the particles were suspended in 12 ml water at 
an iron concentration of 0.4 mg/ml. 0.25 M NaOH was added to pH = 10. Then 0.25 M HCl was added to measure 
the zeta potential in the pH range of 10 to 2.

Magnetic susceptibility.  The dynamic magnetic susceptibility of the particles was measured at 
c(Fe) = 1 mg/ml with a dynamic susceptometer (DynoMag, RISE Acreo, Gothenburg, Sweden) in a frequency 
range of 6 s−1 to 2.50 × 105 s−1. The applied magnetic field during measurement was <400 A/m. The sample con-
centration of 1 mg/ml for each type of coated MNPs was achieved by diluting the stock samples for which iron 
concentrations were measured (Table 1). Thus, an additional uncertainty of ± 5% in the final sample concentra-
tion (1 mg/ml) was present due to sample preparation.

Figure 6.  Representative images of Prussian blue stained lung sections of animals treated with MNPs shows 
distinct patterns of iron accumulation in lungs depending upon particle coating and dose. (a) Lung tissue 
section from mouse injected with PEG-PEI MNPs (1 mg Fe) showing Prussian blue positive staining appears to 
have a dispersed pattern and concentrations of blue coloring (nanoparticle rich regions) correlate with alveolar 
epithelial cells, indicating nanoparticle accumulation in these cells. (b) Lung of mouse injected with CM-
dextran MNPs showing a more intense clustering of particles within the interstitial spaces, a distinctly different 
manifestation than with PEG-PEI MNP distribution. The lower panel of figures provides a 20× magnified view 
of the boxed region in upper panels.
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Stability in PBS.  Physiological conditions were simulated with phosphate buffered saline (PBS) at pH 7.4. 
The particle size distribution was compared by PCS measurement of the coated MNPs in water and in 0.01 M PBS 
buffer (SIGMA, P3813, pH = 7.4).

Iron content measurement.  The iron concentration of the MNPs was measured after decomposition 
of the iron oxide with concentrated hydrochloric acid, followed by spectrophotometric measurement with the 
Spectroquant® -kit (Merck) against a Titrisol®-iron standard (Merck). The solid content of each suspension was 
determined by gravimetry. Therefore 3 × 100 µl of particle suspensions were transferred to a weighing dish with 
known mass and dried for 30 min at 70 °C. After cooling to room temperature the mass of the dishes was deter-
mined. The solid concentration of the suspensions was calculated from the mass difference of the weighing dishes 
before and after particle loading.

Specific loss power (SLP) measurement.  SLP was evaluated for coated and uncoated MNPs in the field 
range of 8 kA/m to 54 kA/m (peak-to-peak) and at fixed frequency of 1.5 × 105 s−1 ± 1.0 × 104 s−1. The alternating 
magnetic field (AMF) heating system, sample preparation and SLP evaluation have been described in detail else-
where50–53. In brief, an 80 kW induction heating system (PPECO, Watsonville, CA) was used as the power supply. 
The solenoid coil (16 cm length) with four turns, formed using cylindrical sections of copper plate, was con-
structed such that the entire sample volume was exposed to a homogenous (±<10%) magnetic field in a ~125 cm3 
volume. At an applied voltage of 650 V at 1.4 × 105 s−1, a peak field amplitude of 47.9 ± 0.2 kA/m was measured 
(AMF Life Systems, Inc field probe) and uniformity over a length of 6.6 ± 0.3 cm was measured52. The calorimeter 
consisted of an insulating sample holder placed within the solenoid induction coil51. The magnetic field amplitude 
at ~1.5 ×  × 105 s−1 (±10 × 105 s−1) was fixed in the range of 8-54 kA/m by changing the power supply voltage. 
Assuming that the system is closed, i.e. no energy or mass exchange with environment occurs; and, the work 
done on/by the system is solely of a magnetic nature, then the loss power can be estimated from measurements of 
temperature change within the sample51,53. The specific loss power, SLP, is defined as the measured thermal loss 
power normalized by mass of magnetic material (Fe for iron oxide MNPs) and expressed in W/g Fe units and is 
calculated using the expression,

= ∗ ∆ ∆SLP (C/m ) ( T/ t) (4)Fe

where T is temperature in °C, t is time in s, mFe is the equivalent mass of iron in g and C is the sample specificheat 
capacity in J/°C. This formula is only valid if the above stated assumptions hold. In experimental systems, the 
adiabatic criterion is never established throughout, thus compelling an analysis of the data to estimate SLP from 
portions of time-temperature data conforming to (quasi-)adiabatic conditions51,53.

For the SLP measurement, a 1 g nanoparticle suspension in deionized water (18 MΩ.cm) was placed in stand-
ard 5 ml polystyrene tubes and inserted into an insulating sample holder. Fiber-optic temperature probes and an 
optical conditioner (FISO Technologies Ltd., Quebec, Canada) were used to measure temperature in situ. Before 
commencing the measurements, each nanoparticle sample was allowed to equilibrate with the environment tem-
perature to ensure it was constant with a maximum deviation of ± 0.02 °C in 10 s. Temperatures were measured 
every 0.6 s. The AMF power supply was turned on and temperature was monitored for 60 s or until a maximum 
temperature of 50 °C, whichever was achieved first. Water blanks were used at each field setting to correct for the 
calorimeter heat capacity. From the temperature vs time plots, mean SLP and variances inherent in the meas-
urement were calculated using Equation 1 and by identifying all time ranges in a single heating experiment that 
satisfied quasi-adiabatic conditions53.

In vivo MNP uptake.  Animals were housed in an Association for Assessment and Accreditation of 
Laboratory Animal Care-accredited facility in compliance with the Guide for the care and use of laboratory ani-
mals54. All procedures were approved by the Johns Hopkins Institutional Animal Care and Use Committee. 
Twenty male athymic nude mice, aged 4-5 weeks and mean weight 24 grams, were obtained from Harlan 
(Frederick, MD). Mice were divided into 5 groups with 4 mice in each, and each mouse received injections of 
MNPs at a dose of 2 mg Fe/animal into retro-orbital (RO) plexus. Blood samples were collected from the RO sinus 
of each mouse 24 hours and 48 hours later. At 48 hours, mice were sacrificed and lungs, livers, and spleens were 
collected. For follow up histopathology studies, intravenous injections of MNPs were via tail vein. All collected 
tissues were lyophilized and prepared for ICP-MS using previously described procedures55.

ICP-mass spectrometry.  Seronorm™ Trace Elements Serum (SERO AS, Billingstad, Norway) was the 
standard reference material (SRM) used for analysis of blood and tissue samples. Samples and SRMs were weighed 
and quantitatively transferred to 7 ml Teflon microwave digestion vessels (Savillex Corporation, Eden Prairie, 
MN). 1 ml of Optima grade (67–69%) HNO3 (Fischer Scientific, Pittsburgh, PA) was added to each sample and 
to sample preparation blanks, and the samples were placed into 55 ml Teflon digestion vessels (CEM corporation, 
Matthews, NC) which were sealed after adding 10 ml of ultra-pure (18 MΩ·cm) water (Millipore Corporation, 
Billerica, MA) and placed into a microwave (Mars 5 Xpress, CEM Corporation, Matthews, NC) for digestion. 
Tissue samples were digested using single stage ramp-to-temperature method (15-minute ramp to 130 °C, with 
a hold of 10 minutes). Upon cooling, samples were diluted to 5% in polystyrene test tubes (Sarstedt, Nümbrecht, 
Germany) and an internal standard of Scandium was added to a concentration of 0.05 μg/ml. Analyses of diluted 
sample digests were carried out using inductively-coupled plasma mass spectroscopy (Agilent 7500ce, Agilent 
Technologies, Columbia, MD). For every batch of 20 tissue samples, three samples of Seronorm whole blood and 
four reagent blanks were digested and analyzed. Each measurement was blank-corrected using the average iron 
value in the reagent blanks, multiplied by the dilution factor, and adjusted based upon the recovery of Fe from 
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whole blood. A 10-point calibration curve (0, 1, 5, 10, 50, 100, 500, 1000, 5000 and 10,000 µg/l) was obtained and 
the iron mass (μg) was calculated per gram of tissue sample.

Histology and Immunohistochemistry.  Lungs collected from animals after 24 or 48 hours were fixed in 10% for-
malin for 48 hours at room temperature. They were then paraffin embedded and sectioned for hematoxylin and 
eosin (H&E) staining to visualize cellular morphology. Adjacent sections were prepared for Prussian blue staining 
to evaluate the iron distribution. The slides were digitally scanned using an Aperio ScanScope At system (Aperio, 
Vista CA) at 20× (H&E) or 40× (Prussian blue) magnification. Immunohistochemistry analysis of co-localization 
of nanoparticles with macrophages and monocytes was performed using anti-ionized calcium-binding adapter 
molecule 1 (anti-IBA-1) antibody. IBA-1 is a pan-macrophage marker that also labels some other myeloid cells 
including subpopulations of dendritic cells56. Tissue sections were stained with IBA-1 antibody on positively 
charged slides that were deparaffinized on a heating block followed by washing in 2 changes of xylene. The slides 
were then dehydrated in 100%, 95% and 70% ethanol followed by water. The slides were steamed for 45 minutes 
in EDTA buffer for antigen retrieval and then incubated with anti-IBA-1 antibody (1:2500- Wako 019-19741) for 
45 minutes at room temperature. After washing unbounded antibody, the sections were incubated with second-
ary antibody for 30 minutes at room temperature (PowerVision Poly-HRP anti-Rabbit IHC Detection Systems 
Novocastra, Leica Biosystems, Buffalo Grove, IL). After washing, the slides were developed with DAB reagent 
(DAB fast –Sigma Aldrich, St.Louis, MO) for 20 minutes and counter stained with hematoxylin at room temper-
ature. The slides were visualized and photographed using EVOS imaging system at 40× magnification (Thermo 
Fisher Scientific, Waltham, MA USA).

Data availability.  Data obtained during the course of this study are available upon request.
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