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A Clinically and Biologically Based Subclassification of
the Idiopathic Inflammatory Myopathies Using Machine
Learning
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Timothy B. Niewold,” Rae S. M. Yeung,' ' and Ann M. Reed*"

Objective. Published predictive models of disease outcomes in idiopathic inflammatory myopathies (lIMs) are
sparse and of limited accuracy due to disease heterogeneity. Computational methods may address this heterogene-
ity by partitioning patients based on clinical and biological phenotype.

Methods. To identify new patient groups, we applied similarity network fusion (SNF) to clinical and biological
data from 168 patients with myositis (64 adult polymyositis [PM], 65 adult dermatomyositis [DM], and 39 juvenile DM
[JDM]) in the Rituximab in Myositis trial. We generated a sparse proof-of-concept bedside classifier using multinomial
regression and identified characteristics that distinguished these groups. We conducted x° tests to link new patient
groups with the myositis subtypes.

Results. SNF identified five patient groups in the discovery cohort that subdivided the myositis subtypes. The
sparse multinomial regressor to predict patient group assignments (areas under the receiver operating characteristic
curve = [0.78, 0.97]; areas under the precision-recall curve = [0.55, 0.96]) found that autoantibody enrichment de-
fined four of these groups: anti-Mi-2, anti—signal recognition peptide (SRP), anti-nuclear matrix protein 2 (NXP2), and
anti-synthetase (Syn). Depletion of immunoglobulin M (IgM) defined the fifth group. Each group was associated with
one subtype, with adult DM being associated with anti-Mi-2 and anti-Syn autoantibodies, JDM being associated with
anti-NXP2 autoantibodies, and adult PM being associated with IgM depletion and anti-SRP autoantibodies. These
associations enabled us to further resolve the current myositis subtypes.

Conclusion. Using unsupervised machine learning, we identified clinically and biologically homogeneous groups
of patients with [IMs, forming the basis of an integrated disease classification based on both clinical and biological

phenotype, thus validating other approaches and what has been previously described.

INTRODUCTION

Idiopathic inflammatory myopathies (lIMs) encompass
a heterogeneous group of chronic acquired disorders that
include polymyositis (PM), adult dermatomyositis (DM), child-
hood myositis (predominantly juvenile DM [JDM]), myositis
associated with cancer or another connective tissue disease,
and inclusion body myositis (1). They are characterized by
proximal muscle weakness, elevated muscle enzymes, electro-
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myographic changes, and in some cases, characteristic his-
tologic changes with cellular infiltrates on muscle biopsy.
Although no standard therapeutic guidelines exist, traditional
treatment has included corticosteroids and a variety of sec-
ond-line immunosuppressants (2). When these treatments do
not control disease, B-cell depletion with rituximab (RTX) is
considered a valid therapeutic option.

Recently, promising results on the effectiveness of RTX for
DM, PM, and JDM were published from the Rituximab in Myositis
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(RIM) trial, which is a prospective randomized double-blind clinical
trial (3). In this study, 200 patients with refractory myositis were
randomized into two arms: one in which patients received RTX at
baseline and another in which patients received RTX after eight
weeks. Eighty-three percent of study patients achieved the defini-
tion of improvement, and individual core set measures improved
in both RTX-treated groups. Furthermore, RTX provided a steroid-
sparing effect throughout the trial. Although this trial detected no
difference between the arms, its results suggest that RTX had an
effect.

To maximize the effectiveness of RTX and minimize com-
plications and cost, predictive models may identify patients with
[IMs who will benefit most from RTX. Predictive models could also
provide clinicians with valuable information on RTX use in lIMs.
Published predictive models of disease outcomes in refractory
myositis are sparse.

Computational methods may address the heterogeneity of
[IMs and therefore aid in improving predictive power of disease
course and outcomes. Previous applications of computational
methods in clinical and biological contexts have demonstrated
their potential for integrating diverse and heterogeneous data
sets to identify patterns that distinguish patient subgroups from
each other. Eng et al, in a study with newly diagnosed juve-
nile idiopathic arthritis, identified clinically intuitive indicators
from demographic, clinical, laboratory, and cytokine expression
data that produced patient groups that were more homoge-
neous than existing classifications (4). Wang et al developed
similarity network fusion (SNF), a novel method that integrates
diverse genomic and clinical data to identify homogeneous
disease entities. When applied to genomic data from patients
with cancer, SNF identified biologically unique patient subtypes
with direct relevance to clinical outcomes (5), demonstrating the
potential power of computational methods when applied in the
context of [IMs.

QOur refractory myositis cohort is heterogeneous, and
machine learning methods may help to resolve homogeneous
disease entities that predict clinical outcomes in an unsupervised
approach. We sought to develop predictive models of refractory
myositis with the aid of machine learning methods and to improve
on our understanding of existing predictors of disease outcome
using data from the RIM trial.

METHODS

Overview. Figure 1 outlines the analysis conducted in this
study. The analysis is detailed below.

Study population. The design of the RIM trial has been
described in detail previously (3). The trial enrolled 200 sub-
jects: 76 with refractory adult DM, 76 with adult PM, and 48
with JDM. Data were available for 194 of these 200 patients.
The RIM trial used a randomized double-blind placebo-phase

Rituximab in Myositis trial
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Figure 1. Overview of the analysis in the study. DM,
dermatomyositis; 1IM, idiopathic inflammatory myopathy; MMTS8,
Manual Muscle Testing and a Subset of Eight Muscles; PM,
polymyositis; SNF, similarity network fusion.

design of intravenous RTX in which refractory subjects were
randomized to either an “early-start arm” or “late-start arm”;
therefore, all subjects received RTX. Demographic, clinical fea-
tures, and core set measures at baseline were similar between
the early and late RTX-treated groups. There was no difference
in the time to achieving the definition of improvement in any
subtype (3). Baseline was defined as the time of initial treatment
with RTX: week zero for the early-start arm and week eight for
the late-start arm.

Informed consent and assent for participation in the RIM
study including biological and data analysis.

Clinical assessment. Clinical assessment and disease
activity measures were evaluated using a core set of measures
described by the International Myositis Assessment and Clinical
Studies group (6). These measures included the physician global
visual analog scale (VAS), extramuscular global VAS, and Manual
Muscle Testing and a Subset of Eight Muscles (MMT8). Extramus-
cular global VAS combines scores of a physician’s assessment of
all measures, excluding muscle, and muscle disease activity VAS
of the Myositis Disease Activity Assessment Tool. All study partici-
pants had their disease activity assessed at the time of study entry
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and at all follow-up visits. Supplementary Table 1 lists all clinical
variables used in this studly.

Autoantibody assessment. Myositis-specific autoanti-
bodies were measured at the University of Pittsburgh using
immunoprecipitation techniques as previously described (3,7).
Autoantibodies were classified into eight groups: 1) anti-aminoacyl
transfer ribonucleic acid synthetases (anti-Syn), including that
for histidine (anti-Jo-1); 2) anti—transcription intermediary factor
1y (anti=TIF-1y); 3) anti-signal recognition particle (SRP); 4) anti—
nuclear matrix protein (anti-NXP2); 5) anti-Mi-2; 6) other known
myositis-related autoantibodies (anti-polymyositis-scleroderma,
anti-U1 ribonucleoprotein, anti-Sjégren’s-syndrome-related anti-
gen A/B, anti-Ku, anti-small ubiquitin-related modifier 1 activating
enzyme [anti-SAE], anti-U1/U2, and anticentromere antibody); 7)
autoantibodies that could not be definitively identified (unidenti-
fiable group); and 8) patients with no detectable autoantibodies.
Supplementary Table 1 lists all autoantibodies in this study.

Measurement of serum cytokines and chemokines.
Peripheral blood serum was drawn into Serum-Separator Tubes
(BD Vacutainer Blood Collection Tube; Becton) at baseline, 8
weeks, and 24 weeks after the first RTX dose. Serum cytokine
levels were measured by multiplexed sandwich immunoassays
(Meso Scale Discovery) (Supplementary Table 1). Samples were
run in duplicate and calibrated recombinant proteins were used to
generate standard curves.

Table 1. Patient demographics®

Software. Analyses were performed using JMP 11.2.1
(JMP Statistical Discovery), R statistical software version 3.4.0
(R Foundation for Statistical Computing), and Python version 3.6
(Python Software Foundation).

Data preprocessing and discovery and validation
cohorts. To address heterogeneity in types of measurements and
the ranges their values encompass, data were first preprocessed
(Supplementary Text 1 and Supplementary Text 2). The remain-
ing 168 subjects were evenly partitioned into cohorts matched by
age, sex, and myositis subtype, producing discovery and valida-
tion cohorts of 84 patients each with continuous clinical data, cat-
egorical clinical data, biological data, and muscle function data.

Similarity network fusion. To integrate the multiple data
types together, SNF (5) was applied to preprocessed data using
the SNIFtool package, version 2.2. SNF consists of a two-step pro-
cess. First, for each data type, a patient similarity matrix (PSM) was
calculated, measuring how similar patients were to each other by
Euclidean distances. Patient similarity networks (PSNs) were then
constructed from these PSMs, with nodes as patients and weighted
edges as pairwise patient similarities. In the second step, these PSNs
were fused together. Patients were clustered on the fused PSN using
spectral clustering, resulting in new patient groups supported by all
data sets. The number of new patient groups was determined using
alluvial plots showing the flow of patients across increasing numbers
of groups and co-clustering probabilities (Supplementary Text 3).

Value, by Cohort

Characteristic All Patients Discovery Validation P Value
Female patients, number of patients (%) 125 (74%) 63 (75%) 62 (74%) 1.0
Caucasian race, number of patients (%) 122 (77%) 64 (76%) 58 (69%) 0.39
Disease duration, years, medianb 3.2(0.6,1.6,6.7,46) 29(0.7,1.6,7.1,36) 3.3(0.6, 1.5, 6.0, 46) 0.74
Myositis subtype, number of patients (%) 0.98
+ Adult polymyositis 64 (38%) 32 (38%) 32 (38%) 1.0
+ Adult dermatomyositis 65 (39%) 3 (39%) 32 (38%) 0.87
+ Juvenile dermatomyositis 39 (23%) W9 (23%) 20 (24%) 0.86
Physician global VAS, medianb 51 (4, 35, 62, 86) 0(7,34,59,84) 52 (4,42,63, 86) 0.080
Muscle disease activity VAS, medianb 49 (0, 30, 63, 91) (0, 29, 61, 84) 51 (0, 34, 63,91) 0.11
Extramuscular disease activity VAS, medianb 27 (0, 10, 46, 84) 25(0, 10, 46, 71) 30 (0, 8.6, 46, 84) 0.79
Failed immunosuppressive agentsc, medianb 2(1,2,3,6) 2(1,2,3,6) 3(1,2,3.5,6) 0.43
Prednisone dosage, mg/d, mean 21
Autoantlbody profiles, number of patients (%)
Anti-aminoacyl transfer ribonucleic acid 26 (16%) 11 (13%) 15 (18%) 0.52
synthetases
- ANti-TIF-ly 8 (11%) 5 (6.0%) 13 (16%) 0.080
- Anti-SRP 21 (13%) 10 (12%) 11 (13%) 0.40
- Anti-Mi-2 3 (14%) 4 (17%) 9 (11%) 0.37
- Anti-MJ 16 (9.5%) 1(13%) (6 0%) 0.19
+ Other 23 (14%) WZ (14%) 1 (13%) 0.34
+ Unidentified 9 (5.4%) 4 (4.8%) ( .0%) 0.26
- None 32 (19%) 17 (20%) 15 (18%) 0.84

Abbreviations: SRP, signal recognition particle; TIF, transcription intermediary factor; VAS, visual analog score.
°P values for compar|sons between the discovery and validation cohorts were calculated by Fisher's exact test or Wilcoxon rank sum
tests as appropriate. °Values within parentheses: minimum, 25th percentile; 75th percentile, maximum. ‘Includes disease-modifying

antirheumatic drugs and corticosteroids.
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The fused PSN, whose connections between patients have
attributes such as similarity, was visualized using Cytoscape
3.5.0 (8). Starting with no connections, they were added in order
of descending similarity until each patient was connected with
at least one other. Patients were spatially arranged using Cyto-
scape’s Compound Spring Embedder layout algorithm using
inverse squared similarities so that similar patients were closer to
each other.

Validation. To assess whether the patient groups were
generalizable, the entire SNF analysis was rerun on the valida-
tion cohort using the same parameters as the discovery cohort,
including the number of new patient groups. The resulting valida-
tion patient groups were matched with discovery groups using a
greedy algorithm that first matched the discovery and validation
group with the minimum Euclidean distance between centroids.
Remaining groups were iteratively matched in this manner until all
were matched.

To increase the power of downstream analyses, the discov-
ery and validation cohorts were combined.

Markers of the new patient groups. To explore a poten-
tial bedside application of the new patient groups, a classifier was
constructed to identify markers that reliably assigned patients to
new patient groups. Bootstrapped multinomial regression was
conducted on the discovery cohort with 2000 bootstraps and L,
regularization to predict group assignments from input data. Each
coefficient (patient group and variable) in the resulting regression
model was the mean across these 2000 bootstraps. Performance
was evaluated by applying the resulting regression model to the
validation cohort.

To determine whether a reduced set of variables could pre-
dict group assignments, coefficients whose 95% bootstrap confi-
dence intervals (Cls) crossed zero were zeroed. Performance was
evaluated as above.

Distinguishing features of new patient groups. To
determine which variables distinguished new patient groups from
each other, multiple linear regression was conducted to predict
continuous values from groups, and multiple logistic regression
was conducted to predict dichotomous variables in both the dis-
covery and combined cohorts. Model P values were Bonferroni-
adjusted to account for multiple hypothesis testing.

Comparisons of new patient groups and classic
myositis subtypes. Circos 0.63 (9) was used to visualize rela-
tionships between new patient groups and myositis subtypes in
both the discovery and combined cohorts. To determine over-
represented combinations of new patient groups and myositis
subtypes, a contingency table was first created to count patients
within these combinations. A ¥* test was then conducted on
these counts (10).

RESULTS

Patient characteristics. Detailed demographics, baseline
disease characteristics, safety, and clinical outcomes of RIM trial
participants have been previously reported (3). Cytokine data were
available for 177 of 200 subjects. Among subjects included for this
analysis, 122 of 168 were Caucasian (77%), and 125 of 168 were
female (74%). They experienced longstanding disease (median:
3.2 years; interquartile range: 1.6-6.7 years) and highly active dis-
ease as evidenced by the Physician Global (51 mm; 35-62 mm)
and Muscle Disease Activity VAS scores (49 mm; 30-63 mm)
(3). Subjects failed a median of two immunosuppressive agents
in addition to glucocorticoids. The mean prednisone dosage at
study entry was 15.6 mg/d. Autoantibody profiles were as follows:
anti-Syn in 26 (15%) patients, anti-TIF-1y in 18 (11%), anti-SRP
in 21 (13%), anti-Mi-2 in 23 (14%), anti-NXP2 in 16 (9.5%), other
myositis-related autoantibodies in 23 (14%), unidentified autoanti-
bodies in 9 (5.4%), and none in 32 (19%). Table 1 further describes
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Figure 2. Distinct patient groupings within individual data sets.
A, Heat map of similarities between pairs of patients (both axes;
same order from bottom-left) for categorical clinical data. Patients
were arranged by spectral clustering. Higher similarities are shaded
darker (see figure legends) except on the diagonal, where patients
are similar with themselves. B, Same as panel A, but for continuous
clinical data. C, Same as panel A, but for biological data. D, Same as
panel A, but for MMT8 components. MMT8, Manual Muscle Testing
With Eight Measures.
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the characteristics of included patients. The validation cohort was
not different from the discovery cohort on details the discovery
and validation patient cohorts (Table 1, P > 0.079 by Wilcoxon
rank sum tests and Fisher’s exact tests).

SNF identified five distinct new patient groups from
clinical and biological features. \We then sought to iden-
tify new patient groups from the discovery cohort incorporat-
ing both clinical and biological data after imputing missing data
with K-nearest neighbor imputation (Supplementary Text 2 and
Supplementary Figure 1). PSMs for each data type (Figure 2)

Figure 3. Distinct patient groupings after fusing data sets. A,
Alluvial plot showing how patients move between new patient groups
(blocks arranged vertically) as the number of groups increases (vertical
groups of blocks). Gray ribbons link patients from one number of
groups to another. B, Co-clustering probabilities (y-axis) between x
and x — 1 groups (x-axis). C, Heat map of similarities between pairs
of patients (both axes; same order from bottom-left) after fusing
patient similarity networks for individual data sets (Figure 1). Patients
are arranged by spectral clustering. Blues indicate higher similarity
(right legend) except on the diagonal, where patients are similar with
themselves. D, Network visualization of the fused patient similarity
network. Patients (nodes), colored by patient group (right upper
legend), are connected by edges whose width is proportional to
their similarity. Edges are colored by their strongest supporting data
type(s) (right lower legend). IgM, immunoglobulin M; NXP2, nuclear
matrix protein 2; SRP, signal recognition particle; Syn, synthetase.

clearly suggested at least two distinct groups per data type.
Therefore, we could consider all data types when conducting SNF.
Applying similar methods to the fused PSM, the five-group and
six-group clusterings appeared similar to each other, having little
patient movement between the five and six groups given by thick
ribbons in an alluvial plot (Figure 3A). Patients clustered together
most similarly with five and six groups as given by co-clustering
probabilities between consecutive numbers of groups (Figure 3B).
Because having six groups did not provide much more informa-
tion than having five, we selected five as the number of groups. No
group clearly had more or fewer patients than the others (x* = 1.8,
P =0.77 by ¥* test; Supplementary Figure 2A). The resulting PSM
and PSN supported this choice, with darker blocks comprising
similar patients in the PSM (Figure 3C) and groups separating spa-
tially in the PSN (Figure 3D). In the PSN, each data type linked
at least one pair of patients with each other, as represented by
colored lines. Therefore, all data types supported these groups.

Having established new patient groups in the discovery cohort,
we then ran SNF independently on the validation cohort and matched
the new patient groups between the two cohorts. As with the discov-
ery cohort, no group clearly had more or fewer patients than the oth-
ers (* = 3.9, P = 0.43 by ¥ test; Supplementary Figure 2B).

A minimal set of autoantibodies distinguished new
patient groups from each other. To begin describing the
new patient groups and to investigate a bedside application for
them, we created a bootstrapped multinomial regressor to predict
groups from variables used to identify them. The resulting model,
trained on the discovery cohort, recovered group assignments
well in the validation cohort based on receiver operating char-
acteristic (ROC) curves and precision-recall curves (PRCs) (Sup-
plementary Figure 3A and Supplementary Figure 3B), especially
when compared with a multinomial regression model predicting
myositis subtypes (Supplementary Figure 3C and Supplementary
Figure 3D). Groups had areas under the ROC curve (AUROC)
between 0.81 and 0.99 (Supplementary Table 2). They compared
favorably to subtypes, with AUROCs of 0.34 to 0.51, suggesting
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that the variables as a whole predict subtypes with lower accu-
racy than a random classifier. Areas under PRCs (AUPRCs) for
groups were between 0.64 and 0.97. AUPRCs for subtypes were
between 0.24 and 0.34, further supporting the notion that the var-
iables are unable to predict subtypes.

Having established the performance of the multinomial
regressor, we then labeled each new patient group by asking
which measurements were most important for classification. From
the bootstrap analysis mentioned above, we determined which

Figure 4. Markers for new patient groups. Heat map of mean
bootstrapped coefficients (colors; right legend) for a bootstrapped
multinomial regression model predicting new patient group
assignment (x-axis) from measurements (y-axis). Dots (e) are
coefficients whose 95% bootstrap percentile confidence interval
did not cross zero. ALT, alanine aminotransferase; AST, aspartate
aminotransferase; CCL, chemokine C-C motif ligand; CXCL,
chemokine C-X-C ligand; DMARD, disease-modifying antirheumatic
drug; HAQ, Health Assessment Questionnaire; IFN, interferon;
IgG, immunoglobulin G; IgM, immunoglobulin M; 1IM, idiopathic
inflammatory myopathy; IL, interleukin; NXP2, nuclear matrix protein;
SRP, signal recognition particle; Syn, synthetase; TIF, transcription
intermediary factor; TNF, tumor necrosis factor.

group-measurement pair had a coefficient whose 95% CI did not
cross zero. A small subset of measurements dominated by anti-
bodies fulfilled this criterion (Figure 4).

As a tight set of measurements significantly predicted new
patient groups, we then asked whether these antibodies alone
could accurately predict these groups. The resulting pruned clas-
sifier had six antibodies with nonzero coefficients and performed
favorably compared with the original unpruned classifier with
AUROCs between 0.78 and 0.97 and AUPRCs between 0.55 and
0.96 (Supplementary Figure 3E, Supplementary Figure 3F, and
Supplementary Table 2). Notably, the classification performance
for most groups in the pruned classifier were similar to those in the
unpruned classifier. Therefore, the pruned classifier could robustly
predict the new groups, allowing us to name them as follows:
anti-Mi-2, low IgM, anti-SRP, anti-NXP2, and anti-Syn.

Additional clinical and biological features associated
with new patient groups. Distinct clinical and biological charac-
teristics—beyond autoantibody profiles—were associated with the
new patient groups and largely defined these groups having basal
phenotypes or phenotypes appearing to extend these basal pheno-
types. These phenotypes became apparent in the discovery cohort
based on a heat map of distinguishing characteristics (Figure 5) and
their underlying distributions (Supplementary Figure 4).

Low disease activity primarily characterized patients with anti—
Mi-2 or anti-SRP autoantibodies as given by lower muscle function
indicated by lower MMT8 component scores. However, anti-Mi-2
patients tended toward quadricep impairment, whereas anti-SRP
patients tended toward gluteal impairment given lower mean scores
for the gluteus mediii. These two groups also differed in C-X-C motif
chemokine (CXCL)-10 expression, with anti-Mi-2 patients having
more CXCL10 and anti-SRP patients having less CXCL10.

Patients with depleted IgM had better outcomes given
greater muscle function and decreased disease activity, including
skin cutaneous disease activity and Health Assessment Question-
naire (HAQ) scores. In addition, these patients were enriched for
other myositis-related autoantibodies and depleted for anti-Mi-2
autoantibodies, further supporting the description of the anti-Mi-2
group identified above.
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Figure 5. Distinguishing features of new patient groups. Heat map
of mean z scores (colors; bottom legend) of significantly distinguishing
measurements (y-axis; Bonferroni-adjusted model P < 0.05 by linear
or logistic regression after Bonferroni adjustment) for each new
patient group in the discovery cohort. Insignificant associations for
individual groups (coefficient P > 0.05) are white. Measurements
were organized by agglomerative hierarchical clustering by complete
linkage on Euclidean distances between mean z scores.

The anti-NXP2 group extended the low IgM phenotype with
improved muscle function extending to the deltoids and quadri-
ceps. These patients were also younger than all others and had
the lowest disease activity measures as given by HAQ and muscle
disease activity scores.

New patient group

Anti-Mi-2

Low IgM

Anti-SRP

Anti-NXP2

Anti-Syn

The last group, with anti-Syn autoantibodies, had decreased
muscle involvement in the gluteus medii and quadriceps but had
increased overall chemokine ligand 2 and CXCL9 expression.

Having previously shown that the new patient groups and
their core features generalized to the validation cohort (Supple-
mentary Figure 3), we combined the discovery and validation
cohorts to provide further clarity into the defining characteristics
of these groups. The combined cohort enabled us to greater
resolve biological features as anti-Syn patients were associ-
ated with numerous chemokines (Supplementary Figure 5 and
Supplementary Figure 6). The combined cohort allowed us to
reframe anti-Mi-2 patients and anti-SRP patients in terms of
the degree of muscle involvement. Both groups shared defining
features in the deltoids, quadriceps, gluteus medii, and gluteus
maximi, but anti-SRP patients scored lower on these measures.
In the combined cohort, IgM depletion appeared to produce
a more extreme phenotype as the gluteal regions no longer
appeared as distinguishing features. Finally, patients with anti-
NXP2 autoantibodies or who were younger continued to retain
muscle function, given increased scores for the gluteal regions.
The increased discriminative power, however, enabled us to
identify anti-TIF-1y autoantibodies as another potential marker
for that group.

New patient groups subdivided classical myositis
subtypes. When we visualized relationships between the new
patient groups and the classical myositis subtypes in the discov-
ery cohort as a Circos figure (Figure 6), we found that all groups
clearly divided the subtypes as supported by a ¥* test (x* = 61,
P < 0.001). Based on standardized residuals from this test (Sup-
plementary Table 3), adult DM was associated with anti-Mi-2 and
anti-Syn autoantibodies, JDM was associated with anti-NXP2

Myositis subtype

Adult dermatomyositis

Juvenile dermatomyositis

Adult polymyositis

Figure 6. Data-driven patient groups associated with myositis subtypes. Circos figure showing relationships between new patient groups (left
side; colored wedges) and myositis subtypes (right side; gray wedges) in the discovery cohort. Ribbons link patients shared between groups
and subtypes. Thicker ribbons indicate more patients. Opaquer ribbons denote significantly enriched relationships, as determined by a ¥ test,
where the number of patients is higher than distributions of groups and subtypes across the entire cohort would suggest.
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autoantibodies, and adult PM was associated with IgM depletion
and anti-SRP autoantibodies. Patient groups rarely overlapped
with other subtypes because enriched associations encompassed
at least 61% of each group. These same relationships held true in
the combined cohort (x* = 99, P < 0.001) (Supplementary Figure 7
and Supplementary Table 4), with at least 56% of patients in each
new patient group participating in a significantly enriched relation-
ship between any group and subtype.

DISCUSSION

In this study, we stratified the lIMs into five data-driven groups
using computational methods. Unique autoantibody profiles distin-
guished these new groups from each other despite us not explicitly
defining the groups this way prior. These new groups had distinct
clinical and biological features that were thematically consistent
regardless of patient cohort. Furthermore, these distinguishing
autoantibodies arose from a classifier that reliably assigned patients
to these new patient groups, suggesting distinct underlying pathobi-
ologies. We recognize that new subgroups have been described, ie,
necrotizing myopathy, etc, and published as the 2017 EULAR/ACR
criteria; however, because these subjects were enrolled prior to that
time, we could not use the new criteria.

The new patient groups confirmed the diagnostic value of
autoantibody profiles. The multinomial regression analysis sug-
gested a potential bedside application for the new groups by iden-
tifying single autoantibodies that reliably classified patients into
each new group, allowing us to succinctly differentiate the new
groups. Age of diagnosis also defined the new groups, confirming
its importance as a differentiator. Importantly, the sparse classifier
retained its classification performance compared with the classi-
fier containing all measurements. The performance of the sparse
classifier has implications in bedside classification by reducing the
time and cost required to make an accurate diagnosis.

Although autoantibodies almost singularly defined the new
patient groups, they also served as proxies for other clinical
and biological features. These new groups confirmed previously
known features of the [IMs and suggested novel groupings of
features tied to autoantibody profiles, contrasting benign and
severe disease within the IIMs. Patients with adult DM portioned
into patients with anti-NXP2 autoantibodies, previously known as
MJ, and anti-Syn autoantibodies, two new patient groups with
opposing phenotypes. Patients with anti-Syn autoantibodies
experienced better outcomes related to RTX treatment than those
with anti-NXP2 autoantibodies because they had better muscle
function in the gluteus medii and quadriceps. Meanwhile, patients
with adult PM partitioned into patients with low IgM and those with
anti-SRP autoantibodies. Adult PM is thought to represent a form
of disease with low biological activity yet ongoing clinical disease.
Patients with anti-SRP autoantibodies matched this description,
having a decreased expression of several cytokines but the lowest
muscle function among all new groups. This group could represent

possible muscle damage or injury with little inflammatory response
such as what is seen in more necrotizing myopathy, which was
not differentiated in this study. Patients with low IgM, however,
had a more benign phenotype, having increased muscle function.
Notably, age of diagnosis distinguished anti-NXP2 patients from
all other patient groups, and JDM almost completely consisted of
anti-NXP2 patients, which suggests that JDM may be distinctly
different than others and has been thought to be associated with
worse outcomes. NXP2 antibodies in pediatric patients have
been thought to be associated with worse outcomes, including
muscle contracture, atrophy, compromised functional status,
and calcinosis. Most of the patients are younger, with an average
age of onset around six years, are Caucasian, present with more
severe symptoms of dysphonia, appear weaker, and, even though
uncommon, present with gastrointestinal bleeding and ulcerations
(11-14). These patients, however, had improved baseline muscle
function compared with the other new patient groups, suggest-
ing a potential subclinical signal for poor outcome that will require
further study. Data were not available regarding the melanoma
differentiation—associated gene 5 autoantibody, which we recog-
nize could also confuse the results because we are working with
a preexisting data set and are unable to uniformly retest all the
participants.

Our analysis largely overcame a primary limitation, ie, patient
numbers. From a pattern recognition viewpoint, the cohort of
168 patients would be considered small. Our use of the RIM
study data was limited to patients in the trial who were treated
and monitored in a standardized fashion. As a result, we could
not add additional patients. Additionally, we divided the patient
cohort into equally sized discovery and validation cohorts of 84
patients, which could have further reduced the power to iden-
tify and characterize patient groups. Despite these obstacles,
SNF still recovered clinically and biologically meaningful large-
scale features and new clinically and biologically relevant patient
groups, highlighting the robustness of our analytical approach
and demonstrating the applicability of SNF as a tool to study rare
diseases. As such, the patient groups we have identified and
characterized can be a foundation for a more detailed patient
classification for the IIMs as larger, more detailed patient cohorts
are enrolled.

In this study, we have described a computational approach
that identified clinically and biologically homogeneous subgroups
of patients with [IMs. Notably, even in a small discovery cohort
of only 84 patients, SNF was able to identify homogeneous
subgroups. The potential for identification of other meaningful
distinguishing features using larger cohorts may enable even
better predictive capabilities. Additionally, our study cohort was
restricted to those patients who have refractory disease, and
therefore we expected less variability among patients and thus
a lower signal-to-noise ratio. Despite these challenges, SNF
found signals, pointing to the excellent potential of our analytical
approach in producing a biologically based classification when
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applied to patients with new disease onset—where the signal-to-
noise ratio would be expected to be higher. Our findings, there-
fore, provide foundations for an approach to precision medicine
in the lIMs.
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