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A Clinically and Biologically Based Subclassification of 
the Idiopathic Inflammatory Myopathies Using Machine 
Learning
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Objective. Published predictive models of disease outcomes in idiopathic inflammatory myopathies (IIMs) are 
sparse and of limited accuracy due to disease heterogeneity. Computational methods may address this heterogene-
ity by partitioning patients based on clinical and biological phenotype.

Methods. To identify new patient groups, we applied similarity network fusion (SNF) to clinical and biological 
data from 168 patients with myositis (64 adult polymyositis [PM], 65 adult dermatomyositis [DM], and 39 juvenile DM 
[JDM]) in the Rituximab in Myositis trial. We generated a sparse proof-of-concept bedside classifier using multinomial 
regression and identified characteristics that distinguished these groups. We conducted χ2 tests to link new patient 
groups with the myositis subtypes.

Results. SNF identified five patient groups in the discovery cohort that subdivided the myositis subtypes. The 
sparse multinomial regressor to predict patient group assignments (areas under the receiver operating characteristic 
curve = [0.78, 0.97]; areas under the precision-recall curve = [0.55, 0.96]) found that autoantibody enrichment de-
fined four of these groups: anti–Mi-2, anti–signal recognition peptide (SRP), anti–nuclear matrix protein 2 (NXP2), and 
anti-synthetase (Syn). Depletion of immunoglobulin M (IgM) defined the fifth group. Each group was associated with 
one subtype, with adult DM being associated with anti–Mi-2 and anti-Syn autoantibodies, JDM being associated with 
anti-NXP2 autoantibodies, and adult PM being associated with IgM depletion and anti-SRP autoantibodies. These 
associations enabled us to further resolve the current myositis subtypes.

Conclusion. Using unsupervised machine learning, we identified clinically and biologically homogeneous groups 
of patients with IIMs, forming the basis of an integrated disease classification based on both clinical and biological 
phenotype, thus validating other approaches and what has been previously described.

INTRODUCTION

Idiopathic inflammatory myopathies (IIMs) encompass 
a heterogeneous group of chronic acquired disorders that 
include polymyositis (PM), adult dermatomyositis (DM), child
hood myositis (predominantly juvenile DM [JDM]), myositis 
associated with cancer or another connective tissue disease, 
and inclusion body myositis (1). They are characterized by 
proximal muscle weakness, elevated muscle enzymes, electro

myographic changes, and in some cases, characteristic his
tologic changes with cellular infiltrates on muscle biopsy. 
Although no standard therapeutic guidelines exist, traditional 
treatment has included corticosteroids and a variety of sec
ondline immunosuppressants (2). When these treatments do 
not control disease, Bcell depletion with rituximab (RTX) is 
considered a valid therapeutic option.

Recently, promising results on the effectiveness of RTX for 
DM, PM, and JDM were published from the Rituximab in Myositis 
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(RIM) trial, which is a prospective randomized doubleblind clinical 
trial (3). In this study, 200 patients with refractory myositis were 
randomized into two arms: one in which patients received RTX at 
baseline and another in which patients received RTX after eight 
weeks. Eightythree percent of study patients achieved the defini
tion of improvement, and individual core set measures improved 
in both RTXtreated groups. Furthermore, RTX provided a steroid 
sparing effect throughout the trial. Although this trial detected no 
difference between the arms, its results suggest that RTX had an 
effect.

To maximize the effectiveness of RTX and minimize com
plications and cost, predictive models may identify patients with 
IIMs who will benefit most from RTX. Predictive models could also 
provide clinicians with valuable information on RTX use in IIMs. 
Published predictive models of disease outcomes in refractory 
myositis are sparse.

Computational methods may address the heterogeneity of 
IIMs and therefore aid in improving predictive power of disease 
course and outcomes. Previous applications of computational 
methods in clinical and biological contexts have demonstrated 
their potential for integrating diverse and heterogeneous data 
sets to identify patterns that distinguish patient subgroups from 
each other. Eng et  al, in a study with newly diagnosed juve
nile idiopathic arthritis, identified clinically intuitive indicators 
from demographic, clinical, laboratory, and cytokine expression 
data that produced patient groups that were more homoge
neous than existing classifications (4). Wang et  al developed 
similarity network fusion (SNF), a novel method that integrates 
diverse genomic and clinical data to identify homogeneous 
disease entities. When applied to genomic data from patients 
with cancer, SNF identified biologically unique patient subtypes 
with direct relevance to clinical outcomes (5), demonstrating the 
potential power of computational methods when applied in the 
context of IIMs.

Our refractory myositis cohort is heterogeneous, and 
machine learning methods may help to resolve homogeneous 
disease entities that predict clinical outcomes in an unsupervised 
approach. We sought to develop predictive models of refractory 
myositis with the aid of machine learning methods and to improve 
on our understanding of existing predictors of disease outcome 
using data from the RIM trial.

METHODS

Overview. Figure 1 outlines the analysis conducted in this 
study. The analysis is detailed below.

Study population. The design of the RIM trial has been 
described in detail previously (3). The trial enrolled 200 sub
jects: 76 with refractory adult DM, 76 with adult PM, and 48 
with JDM. Data were available for 194 of these 200 patients. 
The RIM trial used a randomized doubleblind placebophase 

design of intravenous RTX in which refractory subjects were 
randomized to either an “earlystart arm” or “latestart arm”; 
therefore, all subjects received RTX. Demographic, clinical fea
tures, and core set measures at baseline were similar between 
the early and late RTXtreated groups. There was no difference 
in the time to achieving the definition of improvement in any 
subtype (3). Baseline was defined as the time of initial treatment 
with RTX: week zero for the earlystart arm and week eight for 
the latestart arm.

Informed consent and assent for participation in the RIM 
study including biological and data analysis.

Clinical assessment. Clinical assessment and disease 
activity measures were evaluated using a core set of measures 
described by the International Myositis Assessment and Clinical 
Studies group (6). These measures included the physician global 
visual analog scale (VAS), extramuscular global VAS, and Manual 
Muscle Testing and a Subset of Eight Muscles (MMT8). Extramus
cular global VAS combines scores of a physician’s assessment of 
all measures, excluding muscle, and muscle disease activity VAS 
of the Myositis Disease Activity Assessment Tool. All study partici
pants had their disease activity assessed at the time of study entry 

Figure 1. Overview of the analysis in the study. DM, 
dermatomyositis; IIM, idiopathic inflammatory myopathy; MMT8, 
Manual Muscle Testing and a Subset of Eight Muscles; PM, 
polymyositis; SNF, similarity network fusion.
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and at all followup visits. Supplementary Table 1 lists all clinical 
variables used in this study.

Autoantibody assessment. Myositisspecific autoanti
bodies were measured at the University of Pittsburgh using 
immunoprecipitation techniques as previously described (3,7). 
Autoantibodies were classified into eight groups: 1) anti–aminoacyl  
transfer ribonucleic acid synthetases (antiSyn), including that 
for histidine (anti–Jo1); 2) anti–transcription intermediary factor 
1γ (anti–TIF1γ); 3) anti–signal recognition particle (SRP); 4) anti–
nuclear matrix protein (antiNXP2); 5) anti–Mi2; 6) other known 
myositisrelated autoantibodies (anti–polymyositisscleroderma, 
anti–U1 ribonucleoprotein, antiSjögren’ssyndromerelated anti
gen A/B, antiKu, anti–small ubiquitinrelated modifier 1 activating 
enzyme [antiSAE], antiU1/U2, and anticentromere antibody); 7) 
autoantibodies that could not be definitively identified (unidenti
fiable group); and 8) patients with no detectable autoantibodies. 
Supplementary Table 1 lists all autoantibodies in this study.

Measurement of serum cytokines and chemokines. 
Peripheral blood serum was drawn into SerumSeparator Tubes 
(BD Vacutainer Blood Collection Tube; Becton) at baseline, 8 
weeks, and 24 weeks after the first RTX dose. Serum cytokine 
levels were measured by multiplexed sandwich immunoassays 
(Meso Scale Discovery) (Supplementary Table 1). Samples were 
run in duplicate and calibrated recombinant proteins were used to 
generate standard curves.

Software. Analyses were performed using JMP 11.2.1 
(JMP Statistical Discovery), R statistical software version 3.4.0 
(R Foundation for Statistical Computing), and Python version 3.6 
(Python Software Foundation).

Data preprocessing and discovery and validation 
cohorts. To address heterogeneity in types of measurements and 
the ranges their values encompass, data were first preprocessed 
(Supplementary Text 1 and Supplementary Text 2). The remain
ing 168 subjects were evenly partitioned into cohorts matched by 
age, sex, and myositis subtype, producing discovery and valida
tion cohorts of 84 patients each with continuous clinical data, cat
egorical clinical data, biological data, and muscle function data.

Similarity network fusion. To integrate the multiple data 
types together, SNF (5) was applied to preprocessed data using 
the SNFtool package, version 2.2. SNF consists of a twostep pro
cess. First, for each data type, a patient similarity matrix (PSM) was 
calculated, measuring how similar patients were to each other by 
Euclidean distances. Patient similarity networks (PSNs) were then 
constructed from these PSMs, with nodes as patients and weighted 
edges as pairwise patient similarities. In the second step, these PSNs 
were fused together. Patients were clustered on the fused PSN using 
spectral clustering, resulting in new patient groups supported by all 
data sets. The number of new patient groups was determined using 
alluvial plots showing the flow of patients across increasing numbers 
of groups and coclustering probabilities (Supplementary Text 3).

Table 1. Patient demographicsa

Characteristic

Value, by Cohort

P ValueAll Patients Discovery Validation
Female patients, number of patients (%) 125 (74%) 63 (75%) 62 (74%) 1.0
Caucasian race, number of patients (%) 122 (77%) 64 (76%) 58 (69%) 0.39
Disease duration, years, medianb 3.2 (0.6, 1.6, 6.7, 46) 2.9 (0.7, 1.6, 7.1, 36) 3.3 (0.6, 1.5, 6.0, 46) 0.74
Myositis subtype, number of patients (%)    0.98

• Adult polymyositis 64 (38%) 32 (38%) 32 (38%) 1.0
• Adult dermatomyositis 65 (39%) 33 (39%) 32 (38%) 0.87
• Juvenile dermatomyositis 39 (23%) 19 (23%) 20 (24%) 0.86

Physician global VAS, medianb 51 (4, 35, 62, 86) 50 (7, 34, 59, 84) 52 (4, 42, 63, 86) 0.080
Muscle disease activity VAS, medianb 49 (0, 30, 63, 91) 45 (0, 29, 61, 84) 51 (0, 34, 63, 91) 0.11
Extramuscular disease activity VAS, medianb 27 (0, 10, 46, 84) 25 (0, 10, 46, 71) 30 (0, 8.6, 46, 84) 0.79
Failed immunosuppressive agentsc, medianb 2 (1, 2, 3, 6) 2 (1, 2, 3, 6) 3 (1, 2, 3.5, 6) 0.43
Prednisone dosage, mg/d, mean 21 … …  
Autoantibody profiles, number of patients (%)     

• Anti–aminoacyl transfer ribonucleic acid 
synthetases

26 (16%) 11 (13%) 15 (18%) 0.52

• Anti–TIF-1γ 18 (11%) 5 (6.0%) 13 (16%) 0.080
• Anti-SRP 21 (13%) 10 (12%) 11 (13%) 0.40
• Anti–Mi-2 23 (14%) 14 (17%) 9 (11%) 0.37
• Anti-MJ 16 (9.5%) 11 (13%) 5 (6.0%) 0.19
• Other 23 (14%) 12 (14%) 11 (13%) 0.34
• Unidentified 9 (5.4%) 4 (4.8%) 5 (6.0%) 0.26
• None 32 (19%) 17 (20%) 15 (18%) 0.84

Abbreviations: SRP, signal recognition particle; TIF, transcription intermediary factor; VAS, visual analog score.
aP values for comparisons between the discovery and validation cohorts were calculated by Fisher’s exact test or Wilcoxon rank sum 
tests as appropriate. bValues within parentheses: minimum, 25th percentile; 75th percentile, maximum. cIncludes disease-modifying 
antirheumatic drugs and corticosteroids.
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The fused PSN, whose connections between patients have 
attributes such as similarity, was visualized using Cytoscape 
3.5.0 (8). Starting with no connections, they were added in order 
of descending similarity until each patient was connected with 
at least one other. Patients were spatially arranged using Cyto
scape’s Compound Spring Embedder layout algorithm using 
inverse squared similarities so that similar patients were closer to 
each other.

Validation. To assess whether the patient groups were 
generalizable, the entire SNF analysis was rerun on the valida
tion cohort using the same parameters as the discovery cohort, 
including the number of new patient groups. The resulting valida
tion patient groups were matched with discovery groups using a 
greedy algorithm that first matched the discovery and validation 
group with the minimum Euclidean distance between centroids. 
Remaining groups were iteratively matched in this manner until all 
were matched.

To increase the power of downstream analyses, the discov
ery and validation cohorts were combined.

Markers of the new patient groups. To explore a poten
tial bedside application of the new patient groups, a classifier was 
constructed to identify markers that reliably assigned patients to 
new patient groups. Bootstrapped multinomial regression was 
conducted on the discovery cohort with 2000 bootstraps and L1 
regularization to predict group assignments from input data. Each 
coefficient (patient group and variable) in the resulting regression 
model was the mean across these 2000 bootstraps. Performance 
was evaluated by applying the resulting regression model to the 
validation cohort.

To determine whether a reduced set of variables could pre
dict group assignments, coefficients whose 95% bootstrap confi
dence intervals (CIs) crossed zero were zeroed. Performance was 
evaluated as above.

Distinguishing features of new patient groups. To 
determine which variables distinguished new patient groups from 
each other, multiple linear regression was conducted to predict 
continuous values from groups, and multiple logistic regression 
was conducted to predict dichotomous variables in both the dis
covery and combined cohorts. Model P values were Bonferroni 
adjusted to account for multiple hypothesis testing.

Comparisons of new patient groups and classic 
myositis subtypes. Circos 0.63 (9) was used to visualize rela
tionships between new patient groups and myositis subtypes in 
both the discovery and combined cohorts. To determine over
represented combinations of new patient groups and myositis 
subtypes, a contingency table was first created to count patients 
within these combinations. A χ2 test was then conducted on 
these counts (10).

RESULTS

Patient characteristics. Detailed demographics, baseline 
disease characteristics, safety, and clinical outcomes of RIM trial 
participants have been previously reported (3). Cytokine data were 
available for 177 of 200 subjects. Among subjects included for this 
analysis, 122 of 168 were Caucasian (77%), and 125 of 168 were 
female (74%). They experienced longstanding disease (median: 
3.2 years; interquartile range: 1.66.7 years) and highly active dis
ease as evidenced by the Physician Global (51 mm; 3562 mm) 
and Muscle Disease Activity VAS scores (49 mm; 3063 mm) 
(3). Subjects failed a median of two immunosuppressive agents 
in addition to glucocorticoids. The mean prednisone dosage at 
study entry was 15.6 mg/d. Autoantibody profiles were as follows: 
antiSyn in 26 (15%) patients, anti–TIF1γ in 18 (11%), antiSRP 
in 21 (13%), anti–Mi2 in 23 (14%), antiNXP2 in 16 (9.5%), other 
myositisrelated autoantibodies in 23 (14%), unidentified autoanti
bodies in 9 (5.4%), and none in 32 (19%). Table 1 further describes 

Figure 2. Distinct patient groupings within individual data sets. 
A, Heat map of similarities between pairs of patients (both axes; 
same order from bottomleft) for categorical clinical data. Patients 
were arranged by spectral clustering. Higher similarities are shaded 
darker (see figure legends) except on the diagonal, where patients 
are similar with themselves. B, Same as panel A, but for continuous 
clinical data. C, Same as panel A, but for biological data. D, Same as 
panel A, but for MMT8 components. MMT8, Manual Muscle Testing 
With Eight Measures.
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the characteristics of included patients. The validation cohort was 
not different from the discovery cohort on details the discovery 
and validation patient cohorts (Table 1, P ≥ 0.079 by Wilcoxon 
rank sum tests and Fisher’s exact tests).

SNF identified five distinct new patient groups from 
clinical and biological features. We then sought to iden
tify new patient groups from the discovery cohort incorporat
ing both clinical and biological data after imputing missing data 
with  Knearest neighbor imputation (Supplementary Text 2 and 
Supplementary Figure 1). PSMs for each data type (Figure  2) 

clearly suggested at least two distinct groups per data type. 
Therefore, we could consider all data types when conducting SNF. 
Applying similar methods to the fused PSM, the fivegroup and 
sixgroup clusterings appeared similar to each other, having little 
patient movement between the five and six groups given by thick 
ribbons in an alluvial plot (Figure 3A). Patients clustered together 
most similarly with five and six groups as given by coclustering 
probabilities between consecutive numbers of groups (Figure 3B). 
Because having six groups did not provide much more informa
tion than having five, we selected five as the number of groups. No 
group clearly had more or fewer patients than the others (χ2 = 1.8,  
P = 0.77 by χ2 test; Supplementary Figure 2A). The resulting PSM 
and PSN supported this choice, with darker blocks comprising 
similar patients in the PSM (Figure 3C) and groups separating spa
tially in the PSN (Figure 3D). In the PSN, each data type linked 
at least one pair of patients with each other, as represented by 
colored lines. Therefore, all data types supported these groups.

Having established new patient groups in the discovery cohort, 
we then ran SNF independently on the validation cohort and matched 
the new patient groups between the two cohorts. As with the discov
ery cohort, no group clearly had more or fewer patients than the oth
ers (χ2 = 3.9, P = 0.43 by χ2 test; Supplementary Figure 2B).

A minimal set of autoantibodies distinguished new 
patient groups from each other. To begin describing the 
new patient groups and to investigate a bedside application for 
them, we created a bootstrapped multinomial regressor to predict 
groups from variables used to identify them. The resulting model, 
trained on the discovery cohort, recovered group assignments 
well in the validation cohort based on receiver operating char
acteristic (ROC) curves and precisionrecall curves (PRCs) (Sup
plementary Figure 3A and Supplementary Figure 3B), especially 
when compared with a multinomial regression model predicting 
myositis subtypes (Supplementary Figure 3C and Supplementary 
Figure 3D). Groups had areas under the ROC curve (AUROC) 
between 0.81 and 0.99 (Supplementary Table 2). They compared 
favorably to subtypes, with AUROCs of 0.34 to 0.51, suggesting 

Figure 3. Distinct patient groupings after fusing data sets. A, 
Alluvial plot showing how patients move between new patient groups 
(blocks arranged vertically) as the number of groups increases (vertical 
groups of blocks). Gray ribbons link patients from one number of 
groups to another. B, Coclustering probabilities (yaxis) between x 
and x – 1 groups (xaxis). C, Heat map of similarities between pairs 
of patients (both axes; same order from bottomleft) after fusing 
patient similarity networks for individual data sets (Figure 1). Patients 
are arranged by spectral clustering. Blues indicate higher similarity 
(right legend) except on the diagonal, where patients are similar with 
themselves. D, Network visualization of the fused patient similarity 
network. Patients (nodes), colored by patient group (right upper 
legend), are connected by edges whose width is proportional to 
their similarity. Edges are colored by their strongest supporting data 
type(s) (right lower legend). IgM, immunoglobulin M; NXP2, nuclear 
matrix protein 2; SRP, signal recognition particle; Syn, synthetase.
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that the variables as a whole predict subtypes with lower accu
racy than a random classifier. Areas under PRCs (AUPRCs) for 
groups were between 0.64 and 0.97. AUPRCs for subtypes were 
between 0.24 and 0.34, further supporting the notion that the var
iables are unable to predict subtypes.

Having established the performance of the multinomial 
regressor, we then labeled each new patient group by asking 
which measurements were most important for classification. From 
the bootstrap analysis mentioned above, we determined which 

groupmeasurement pair had a coefficient whose 95% CI did not 
cross zero. A small subset of measurements dominated by anti
bodies fulfilled this criterion (Figure 4).

As a tight set of measurements significantly predicted new 
patient groups, we then asked whether these antibodies alone 
could accurately predict these groups. The resulting pruned clas
sifier had six antibodies with nonzero coefficients and performed 
favorably compared with the original unpruned classifier with 
AUROCs between 0.78 and 0.97 and AUPRCs between 0.55 and 
0.96 (Supplementary Figure 3E, Supplementary Figure 3F, and 
Supplementary Table 2). Notably, the classification performance 
for most groups in the pruned classifier were similar to those in the 
unpruned classifier. Therefore, the pruned classifier could robustly 
predict the new groups, allowing us to name them as follows: 
anti–Mi2, low IgM, antiSRP, antiNXP2, and antiSyn.

Additional clinical and biological features associated 
with new patient groups. Distinct clinical and biological charac
teristics—beyond autoantibody profiles—were associated with the 
new patient groups and largely defined these groups having basal 
phenotypes or phenotypes appearing to extend these basal pheno
types. These phenotypes became apparent in the discovery cohort 
based on a heat map of distinguishing characteristics (Figure 5) and 
their underlying distributions (Supplementary Figure 4).

Low disease activity primarily characterized patients with anti–
Mi2 or antiSRP autoantibodies as given by lower muscle function 
indicated by lower MMT8 component scores. However, anti–Mi2 
patients tended toward quadricep impairment, whereas antiSRP 
patients tended toward gluteal impairment given lower mean scores 
for the gluteus medii. These two groups also differed in CXC motif 
chemokine (CXCL)10 expression, with anti–Mi2 patients having 
more CXCL10 and antiSRP patients having less CXCL10.

Patients with depleted IgM had better outcomes given 
greater muscle function and decreased disease activity, including 
skin cutaneous disease activity and Health Assessment Question
naire (HAQ) scores. In addition, these patients were enriched for 
other myositisrelated autoantibodies and depleted for anti–Mi2 
autoantibodies, further supporting the description of the anti–Mi2 
group identified above.

Figure 4. Markers for new patient groups. Heat map of mean 
bootstrapped coefficients (colors; right legend) for a bootstrapped 
multinomial regression model predicting new patient group 
assignment (xaxis) from measurements (yaxis). Dots (•) are 
coefficients whose 95% bootstrap percentile confidence interval 
did not cross zero. ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; CCL, chemokine CC motif ligand; CXCL, 
chemokine CXC ligand; DMARD, diseasemodifying antirheumatic 
drug; HAQ, Health Assessment Questionnaire; IFN, interferon; 
IgG, immunoglobulin G; IgM, immunoglobulin M; IIM, idiopathic 
inflammatory myopathy; IL, interleukin; NXP2, nuclear matrix protein; 
SRP, signal recognition particle; Syn, synthetase; TIF, transcription 
intermediary factor; TNF, tumor necrosis factor.
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The antiNXP2 group extended the low IgM phenotype with 
improved muscle function extending to the deltoids and quadri
ceps. These patients were also younger than all others and had 
the lowest disease activity measures as given by HAQ and muscle 
disease activity scores.

The last group, with antiSyn autoantibodies, had decreased 
muscle involvement in the gluteus medii and quadriceps but had 
increased overall chemokine ligand 2 and CXCL9 expression.

Having previously shown that the new patient groups and 
their core features generalized to the validation cohort (Supple
mentary Figure 3), we combined the discovery and validation 
cohorts to provide further clarity into the defining characteristics 
of these groups. The combined cohort enabled us to greater 
resolve biological features as antiSyn patients were associ
ated with numerous chemokines (Supplementary Figure 5 and 
Supplementary Figure 6). The combined cohort allowed us to 
reframe anti–Mi2 patients and antiSRP patients in terms of 
the degree of muscle involvement. Both groups shared defining 
features in the deltoids, quadriceps, gluteus medii, and gluteus 
maximi, but antiSRP patients scored lower on these measures. 
In the combined cohort, IgM depletion appeared to produce 
a more extreme phenotype as the gluteal regions no longer 
appeared as distinguishing features. Finally, patients with anti
NXP2 autoantibodies or who were younger continued to retain 
muscle function, given increased scores for the gluteal regions. 
The increased discriminative power, however, enabled us to 
identify anti–TIF1γ autoantibodies as another potential marker 
for that group.

New patient groups subdivided classical myositis 
subtypes. When we visualized relationships between the new 
patient groups and the classical myositis subtypes in the discov
ery cohort as a Circos figure (Figure 6), we found that all groups 
clearly divided the subtypes as supported by a χ2 test (χ2 = 61, 
P < 0.001). Based on standardized residuals from this test (Sup
plementary Table 3), adult DM was associated with anti–Mi2 and 
antiSyn autoantibodies, JDM was associated with antiNXP2 

Figure 5. Distinguishing features of new patient groups. Heat map 
of mean z scores (colors; bottom legend) of significantly distinguishing 
measurements (yaxis; Bonferroniadjusted model P < 0.05 by linear 
or logistic regression after Bonferroni adjustment) for each new 
patient group in the discovery cohort. Insignificant associations for 
individual groups (coefficient P ≥ 0.05) are white. Measurements 
were organized by agglomerative hierarchical clustering by complete 
linkage on Euclidean distances between mean z scores.
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Figure 6. Datadriven patient groups associated with myositis subtypes. Circos figure showing relationships between new patient groups (left 
side; colored wedges) and myositis subtypes (right side; gray wedges) in the discovery cohort. Ribbons link patients shared between groups 
and subtypes. Thicker ribbons indicate more patients. Opaquer ribbons denote significantly enriched relationships, as determined by a χ2 test, 
where the number of patients is higher than distributions of groups and subtypes across the entire cohort would suggest.
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autoantibodies, and adult PM was associated with IgM depletion 
and antiSRP autoantibodies. Patient groups rarely overlapped 
with other subtypes because enriched associations encompassed 
at least 61% of each group. These same relationships held true in 
the combined cohort (χ2 = 99, P < 0.001) (Supplementary Figure 7  
and Supplementary Table 4), with at least 56% of patients in each 
new patient group participating in a significantly enriched relation
ship between any group and subtype.

DISCUSSION

In this study, we stratified the IIMs into five datadriven groups 
using computational methods. Unique autoantibody profiles distin
guished these new groups from each other despite us not explicitly 
defining the groups this way prior. These new groups had distinct 
clinical and biological features that were thematically consistent 
regardless of patient cohort. Furthermore, these distinguishing 
autoantibodies arose from a classifier that reliably assigned patients 
to these new patient groups, suggesting distinct underlying pathobi
ologies. We recognize that new subgroups have been described, ie, 
necrotizing myopathy, etc, and published as the 2017 EULAR/ACR 
criteria; however, because these subjects were enrolled prior to that 
time, we could not use the new criteria.

The new patient groups confirmed the diagnostic value of 
autoantibody profiles. The multinomial regression analysis sug
gested a potential bedside application for the new groups by iden
tifying single autoantibodies that reliably classified patients into 
each new group, allowing us to succinctly differentiate the new 
groups. Age of diagnosis also defined the new groups, confirming 
its importance as a differentiator. Importantly, the sparse classifier 
retained its classification performance compared with the classi
fier containing all measurements. The performance of the sparse 
classifier has implications in bedside classification by reducing the 
time and cost required to make an accurate diagnosis.

Although autoantibodies almost singularly defined the new 
patient groups, they also served as proxies for other clinical 
and biological features. These new groups confirmed previously 
known features of the IIMs and suggested novel groupings of 
features tied to autoantibody profiles, contrasting benign and 
severe disease within the IIMs. Patients with adult DM portioned 
into patients with antiNXP2 autoantibodies, previously known as 
MJ, and antiSyn autoantibodies, two new patient groups with 
opposing phenotypes. Patients with antiSyn autoantibodies 
experienced better outcomes related to RTX treatment than those 
with antiNXP2 autoantibodies because they had better muscle 
function in the gluteus medii and quadriceps. Meanwhile, patients 
with adult PM partitioned into patients with low IgM and those with 
antiSRP autoantibodies. Adult PM is thought to represent a form 
of disease with low biological activity yet ongoing clinical disease. 
Patients with antiSRP autoantibodies matched this description, 
having a decreased expression of several cytokines but the lowest 
muscle function among all new groups. This group could represent 

possible muscle damage or injury with little inflammatory response 
such as what is seen in more necrotizing myopathy, which was 
not differentiated in this study. Patients with low IgM, however, 
had a more benign phenotype, having increased muscle function. 
Notably, age of diagnosis distinguished antiNXP2 patients from 
all other patient groups, and JDM almost completely consisted of 
antiNXP2 patients, which suggests that JDM may be distinctly 
different than others and has been thought to be associated with 
worse outcomes. NXP2 antibodies in pediatric patients have 
been thought to be associated with worse outcomes, including 
muscle contracture, atrophy, compromised functional status, 
and calcinosis. Most of the patients are younger, with an average 
age of onset around six years, are Caucasian, present with more 
severe symptoms of dysphonia, appear weaker, and, even though 
uncommon, present with gastrointestinal bleeding and ulcerations 
(11–14). These patients, however, had improved baseline muscle 
function compared with the other new patient groups, suggest
ing a potential subclinical signal for poor outcome that will require 
further study. Data were not available regarding the melanoma 
differentiation–associated gene 5 autoantibody, which we recog
nize could also confuse the results because we are working with 
a preexisting data set and are unable to uniformly retest all the 
participants.

Our analysis largely overcame a primary limitation, ie, patient 
numbers. From a pattern recognition viewpoint, the cohort of 
168 patients would be considered small. Our use of the RIM 
study data was limited to patients in the trial who were treated 
and monitored in a standardized fashion. As a result, we could 
not add additional patients. Additionally, we divided the patient 
cohort into equally sized discovery and validation cohorts of 84 
patients, which could have further reduced the power to iden
tify and characterize patient groups. Despite these obstacles, 
SNF still recovered clinically and biologically meaningful large
scale features and new clinically and biologically relevant patient 
groups, highlighting the robustness of our analytical approach 
and demonstrating the applicability of SNF as a tool to study rare 
diseases. As such, the patient groups we have identified and 
characterized can be a foundation for a more detailed patient 
classification for the IIMs as larger, more detailed patient cohorts 
are enrolled.

In this study, we have described a computational approach 
that identified clinically and biologically homogeneous subgroups 
of patients with IIMs. Notably, even in a small discovery cohort 
of only 84 patients, SNF was able to identify homogeneous 
subgroups. The potential for identification of other meaningful 
distinguishing features using larger cohorts may enable even 
better predictive capabilities. Additionally, our study cohort was 
restricted to those patients who have refractory disease, and 
therefore we expected less variability among patients and thus 
a lower signaltonoise ratio. Despite these challenges, SNF 
found signals, pointing to the excellent potential of our analytical 
approach in producing a biologically based classification when 
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applied to patients with new disease onset—where the signalto
noise ratio would be expected to be higher. Our findings, there
fore, provide foundations for an approach to precision medicine 
in the IIMs.
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