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Abstract

1 Tools for exploring and communicating the impact of uncertainty on spatial

prediction are urgently needed, particularly when projecting species distribu-

tions to future conditions.

2 We provide a tool for simulating uncertainty, focusing on uncertainty due

to data quality. We illustrate the use of the tool using a Tasmanian endemic

species as a case study. Our simulations provide probabilistic, spatially expli-

cit illustrations of the impact of uncertainty on model projections. We also

illustrate differences in model projections using six different global climate

models and two contrasting emissions scenarios.

3 Our case study results illustrate how different sources of uncertainty have

different impacts on model output and how the geographic distribution of

uncertainty can vary.

4 Synthesis and applications: We provide a conceptual framework for under-

standing sources of uncertainty based on a review of potential sources of

uncertainty in species distribution modelling; a tool for simulating uncer-

tainty in species distribution models; and protocols for dealing with uncer-

tainty due to climate models and emissions scenarios. Our tool provides a

step forward in understanding and communicating the impacts of uncer-

tainty on species distribution models under future climates which will be

particularly helpful for informing discussions between researchers, policy

makers, and conservation practitioners.

Introduction

Natural systems are inherently variable in both space and

time. Consequently, models of natural systems, including

species distribution models (SDMs), inevitably include

some degree of uncertainty. Uncertainty is not problem-

atic per se as long as its effects on model projections are

not ignored. However, many correlative SDMs are spa-
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tially projected at fine resolution without explicitly

addressing uncertainty, thereby implying a confidence in

model outputs that may be misleading (Refsgaard et al.

2007; Sinclair et al. 2010; Beale and Lennon 2012; Wenger

et al. 2013). Correlative SDMs are being widely used in

conservation planning and to assess the adequacy of

reserve systems under anticipated future climates. To

reduce the risk of adverse conservation outcomes, it is

important that any uncertainties in species distribution

models are explicitly addressed. Explicitly addressing

uncertainty is particularly important when projecting to

future conditions as uncertainty increases the further

removed a projection is from current conditions (Thuiller

2003). Broadly, three mutually compatible approaches for

addressing uncertainty are available. The first approach is

to reduce model uncertainty by increasing ecological

knowledge and improving the modelling process. The sec-

ond approach is to assess model uncertainty quantita-

tively or probabilistically. The third approach is to apply

risk management measures that make decision making

robust to model uncertainty. Irrespective of which

approach is adopted, good scientific practice demands

that model uncertainty is explicitly addressed and

communicated.

Substantial progress has been made in reducing uncer-

tainty in SDMs. Previous reviews have identified multiple

sources of uncertainty (Guisan and Zimmerman 2000;

Ara�ujo et al. 2005; Guisan and Thuiller 2005; Barry and

Elith 2006) and procedures for reducing their impacts

(Vaughan and Ormerod 2005; Hernandez et al. 2006;

Randin et al. 2006). Progress has also been made toward

making conservation planning robust to uncertainties in

SDMs (Moilanen et al. 2006; Carvalho et al. 2011; Bagchi

et al. 2013). Recent advances have also been made in

quantifying overall model uncertainty. However, the rela-

tive contribution of any single source of uncertainty to

overall model uncertainty will vary with attributes of the

model species, attributes of the landscape, size of the

study area, and the location of the study area relative to

climate projections. For example, Wenger et al. (2013)

developed a probabilistic ensemble modelling approach

for accounting for uncertainty in forecasts of species dis-

tributions under future climates. The current distribution

of their model species, the bull trout, is already close to

the limits of suitable climatic conditions. Consequently,

differences between climate models accounted for most of

the overall model uncertainty in their case study. In con-

trast, Dormann et al. (2008) compared the relative contri-

butions of different sources of uncertainty in models of

the great gray shrike under future climates. The study

area, Saxony, was small, and there was little difference

between the climate projections for the three emission

scenarios modelled. In this case, model type and data

quality accounted for most of the overall model uncer-

tainty. Thus, there is no single best solution for

minimizing uncertainty. This highlights the need for

exploring and communicating uncertainty to be an expli-

cit part of any modelling process.

We provide a tool for simulating the effects of some

known sources of uncertainty. The tool uses a Monte

Carlo process to produce probabilistic, spatially explicit

output. The simulation tool allows users to explore the

impacts of different sources of uncertainty on spatial pre-

diction. Furthermore, our tool provides a visual aid for

communicating the impacts of uncertainty on spatial pre-

diction. Communicating the impacts of uncertainty in a

spatially explicit way could increase awareness of the

potential impacts of uncertainty and reduce the risks that

model outputs are misinterpreted (Elith et al. 2002;

Wiens et al. 2009; Rocchini et al. 2011; Kujala et al.

2013). We illustrate the use of our tool by simulating

known sources of uncertainty using a Tasmanian ende-

mic, the yellow wattlebird, Anthochaera paradoxa (Dau-

din, 1800) as a case study (Fig. 1). We focus primarily on

uncertainty relating to data quality and simulate the

effects of locational uncertainty, spatial bias, uncertainty

in climate data and model variance on spatial prediction.

We also demonstrate how the choice of global climate

model and emissions scenario can alter spatial prediction.

Our modelling framework was developed in R, using the

GTK+ toolbox to provide a graphical user interface for

ease of use, and using MaxEnt (Phillips et al. 2006; Phil-

lips and Dudik 2008) as the underlying species distribu-

tion model. The source is available in Appendix S1. The

tool will be useful for simulating and communicating the

Figure 1. Our model species, Anthochaera paradoxa yellow

wattlebird is a Tasmanian endemic (Photograph by Alan Fletcher).
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impacts of some important sources of uncertainty on

species distribution models.

Uncertainty Defined

Uncertainty is a measure of unexplained variation that

has three components in models of natural systems: (i)

natural variability; (ii) measurement error; and (iii)

incomplete knowledge about natural phenomena and

complex processes. Natural variability is an inherent

property of natural systems. Across a species’ distribution,

populations can differ in morphology, movement behav-

ior, and habitat preferences in response to local condi-

tions. Species and ecosystems are also constantly adjusting

to the contingencies of environmental drivers including

climate. Ideally, natural variability would be classed as

explained variation and accounted for separately from

uncertainty (Lehmann and Rillig 2014). In practice, how-

ever, there are limitations to our ability to separately

account for natural variability and it is usually included

with other uncertainty. Measurement error includes vari-

ous shortcomings that can arise when modelling species

distributions including errors in input data. The magni-

tude of uncertainty due to measurement error can be

probabilistically quantified. Uncertainty due to incomplete

knowledge, including knowledge of future events, how-

ever, cannot be eliminated or quantified.

Uncertainty Framework

Our conceptual framework for uncertainty in SDMs is

outlined in Fig. 2. Some sources of uncertainty affect

multiple steps in the modelling process. Our framework

of uncertainty is structured according to where a given

source of uncertainty first enters the modelling process

beginning with the collation of spatial data. Our frame-

work also indicates the class of uncertainty, that is,

whether the uncertainty is due to measurement error,

natural variability, incomplete knowledge, the unpredict-

ability of the future, or modelling error. To supplement

the conceptual framework, the potential sources of uncer-

tainty are outlined in more detail in Table 1.

Uncertainty Due to Spatial Data

Uncertainty relating to species observational data can be

caused by sporadic errors such as taxonomic misidentifi-

cation, inaccurate or imprecise locational data, or system-

atic error such as spatially biased sampling effort

(Table 1). Although modern technology enables accurate

recording of location, SDMs often use historical data

which has unquantified location error or imprecise posi-

tional information. Almost all published models based on

presence-only data are subject to spatial bias because data

have not been collected systematically. Spatial bias in

 2.  Building an 
      ecological model   

Incomplete ecological model

Effect of species’ traits

Spatial and temporal variation

Mismatch between environmental 
data and species’ presence

measurement error natural variability unpredictability of the futureincomplete knowledge modelling error

3.  Statistical modelling 
     of habitat suitability

Model evalutation

Modelling method

1.  Spatial data

Climate variability

Emissions scenario

Global climate model

Presence-only data

Species occurrence data

Environmental data

Future climate data:

Figure 2. Potential sources of uncertainty in the species distribution modelling process. Different classes of uncertainty are indicated by the box

borders.
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species location data is commonly an artifact of road dis-

tribution but can also be caused by environmental bias.

In the absence of information to quantify spatial bias,

most models incorrectly assume equal sampling effort

across the modelled region.

Current climate data

The impacts of uncertainty in climatic data on SDMs

are rarely addressed but potentially significant (Willmott

and Johnson 2005; Dobrowski 2011; McKenney et al.

2011). Uncertainty in climate data can result in inaccu-

rate specification of the values of environmental vari-

ables used in SDMs (Bedia et al. 2013). The primary

causes of uncertainty in current climate data are incom-

plete records and spatial interpolation. Uncertainty in

spatial interpolation can be caused by the modifying

effects of complex terrain, season, cloudiness, and geo-

graphical effects (Hutchinson 1991). Soria-Auza et al.

(2010) demonstrated that uncertainty in climate data

can cause large geographic discrepancies in model pre-

dictions for tropical species.

Uncertainty in SDMs can also be caused by the use of

coarse-resolution climatic data. This uncertainty can be

reduced by incorporating high-resolution terrain data in a

spatial climate model (Hutchinson 1991; Daly et al. 2008;

Fridley 2009; Hutchinson et al. 2009). This can provide

finer-scale temperature estimates by incorporating tem-

perature lapse rates associated with altitude. However,

there are limits to the improvements that can be achieved,

particularly in areas where meteorological data stations

are sparsely distributed, and variables such as rainfall do

not have simple relationships with orography. This is par-

ticularly important in coastal and mountainous regions

(Hijmans et al. 2005; Daly 2006). The use of fine-scale

digital elevation models without representation of local

climate processes can lead to unwarranted confidence by

creating an impression of greater accuracy than is justified

by the underlying climate data (Mearns et al. 2003). Shar-

ples et al. (2005) show that there are specific limits to the

additional accuracy that finer-resolution topographic

dependence can provide. Furthermore, the transferability

of SDMs declines as the precision of climatic data

increases, especially in regions where species range limits

Table 1. Potential sources of uncertainty.

1. Input data

1.1 Species occurrence data: (i) positional errors; (ii) incorrect identification;

(iii) truncated data; (iv) translocated species; (v) detectability; (vi) sampling bias

Elith et al. (2002); Kadmon et al. (2003)

1.2 Environmental data: (i) classification error; (ii) spatial interpolation error;

(iii) incomplete data; (iv) instrument error; (v) rasterizing vector data

Lu and Weng (2007)

1.3 Future climate data: (i) climatic variability; (ii) GCM model differences;

(iii) emissions scenarios

Beaumont et al. (2008); Daly et al. (2009)

2. Building an ecological model

2.1 Spatial or temporal mismatch between input data and species’ ecology Heikkinen et al. (2006); Dormann (2007);

Roubicek et al. (2010)

2.2 Incomplete understanding of species’ ecology or inability to reflect

ecological complexity: (i) specific habitat requirements; (ii) specific

physiological requirements at different life stages; (iii) dispersal behavior;

(iv) source–sink spatial structure

Pulliam (2000); Kearney (2006)

2.3 Effects of species traits on model accuracy: (i) range size; (ii) specialists

cf. generalists; (iii) commonness

Stockwell and Peterson (2002); Kadmon et al. (2003);

McPherson and Jetz (2007)

2.4 Spatial variation in species’ ecology due to the following: population-specific

local optima and (ii) variation in limiting factors across species range

Urban et al. (2007); Rodder and Lotters (2010); Souther

and McGraw (2011)

2.5 Temporal variation in species’ ecology due to the following:

(i) development of nonanalogous environmental conditions; (ii) altered outcome

of species interactions; (iii) adaptation and evolutionary change;

(iv) phenotypic plasticity; (v) niche shifts

Davis et al. (1998); Pearson and Dawson (2003); Ara�ujo

and Luoto (2007); Suttle et al. (2007); Urban

et al. (2007); Kissling et al. (2010); Montoya

and Raffaelli (2010)

2.6 Use of presence-only data Barry and Elith (2006); Phillips et al. (2009); Elith et al. (2011)

3. Statistical modelling of habitat suitability

3.1 Modelling method including model parameterization Segurado and Araujo (2004); Elith et al. (2006);

Pearson et al. (2006); Elith and Leathwick (2009);

Elith et al. (2010); Merow et al. (2013)

3.2 Model selection and evaluation Ara�ujo et al. (2005); Vaughan and Ormerod (2005);

Allouche et al. (2006); Lobo et al. (2008);

Rupprecht et al. (2011); Warren and Seifert 2011;

Wenger and Olden (2012)
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coincide with steep climatic gradients (Kriticos and Leri-

che 2010).

Future climate data

Projected increases in global mean surface air temperature

for 2100 range from 0.2–4.8°C, relative to 1990 (IPCC

2013). The main sources of uncertainty contributing to

this wide range of values are as follows: (i) the natural

variability of the climate system; (ii) uncertainty around

future greenhouse gas emissions; and (iii) differences

between global climate models (GCMs). Each GCM sub-

mitted to the Coupled Model Intercomparison Project

(CMIP) archive is rigorously assessed, and only admitted

if it provides a plausible representation of climate. Each

individual GCM is deterministic in the sense that it calcu-

lates a specific repeatable result for a given set of input

variables.

However, intramodel and intermodel differences arise

because of model specification, resolution, and parameter-

ization (Beaumont et al. 2008; Harris et al. 2014). In the

short term, and at regional scales, the greatest sources of

uncertainty in future climate data are due to differences

between GCMs and natural climate variability. In the

longer term, and at larger spatial scales, the major sources

of uncertainty are associated with GCMs and emission

scenarios (Harris et al. 2014).

Greenhouse gases and aerosols are a major influence

on climate and another source of uncertainty. The

degree of uncertainty about future greenhouse gas emis-

sions increases with time. Changes projected under

lower-emission scenarios are often qualitatively similar

but smaller in magnitude than higher-emission scenar-

ios, with scenarios only diverging in the latter part of

the 21st century.

Uncertainty Due to Model
Specification

Ecological knowledge is critical to selecting meaningful

and appropriately scaled variables for use in correlative

SDMs (Austin 2002, 2007). Variable selection is poten-

tially a source of uncertainty in the sense that model

projections will vary according to the variables that are

included in the model. Williams et al. (2012) have out-

lined a process for systematically selecting environmental

variables for biodiversity modelling by examining rela-

tionships between a species’ ecological model, spatial

environmental data and a statistical model. The lack of

species absence data also affects the accuracy of SDMs as

the use of presence-only data can lead to inaccurate

identification of the attributes of unsuitable sites (Barry

and Elith 2006; Phillips et al. 2009). Merow et al. (2013)

illustrated the importance of ecological knowledge in

specifying absence data. Ecological knowledge is also

important for accurately matching species data with

environmental data. Matching species’ presence data with

environmental data both spatially and temporally is nec-

essary for accurate specification of the ecological model.

Accurate data matching is particularly important when

modelling migratory species and when projecting to

future conditions as shown by (Heikkinen et al. 2006).

Baseline climatic data should also correspond to the time

period in which the species data were collected (Harris

et al. 2014).

Statistical Modelling Method

Model selection and evaluation are problematic when

projecting to future conditions as no independent evalua-

tion data are available. A common approach is to com-

pare the predictive performance of different modelling

methods using the same input data. However, even with

high individual evaluation scores, large discrepancies can

exist between the spatial outputs of different methods

(Loiselle et al. 2003; Thuiller 2003; Pearson et al. 2006;

Rupprecht et al. 2011). Pearson et al. (2006) showed that

the modelling method can have a large impact on the

direction and magnitude of change. Failure to account for

these sources of uncertainty can lead to spurious predic-

tions of expansion or contraction of species’ distribution.

Various methods are available for evaluating predictive

performance, but they all suffer from a lack of systemati-

cally collected, independent evaluation data.

Case Study: Mapping the Effects of
Uncertainty on Spatial Prediction for
A. paradoxa

To illustrate how uncertainty can affect spatial prediction,

we modelled a Tasmanian endemic species, Anthochaera

paradoxa, the yellow wattlebird, using MaxEnt (Elith et al.

2006; Phillips et al. 2006; Phillips and Dudik 2008). Max-

Ent is widely used to model species distributions because

it has been shown to perform well with presence-only

data and because of its ease of use. All modelling meth-

ods, however, including MaxEnt have limitations. In the

case of MaxEnt, the method for generating background

samples from presence-only data is a source of variability

(Merow et al. 2013). We first modelled the species with-

out simulating uncertainty and then individually simu-

lated the effects of different sources of uncertainty on

spatial prediction using a Monte Carlo process. This pro-

cess results in probabilistic spatial predictions of predicted

presence. We interpret predicted presence as habitat suit-

ability.
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Species occurrence data for A. paradoxa were sourced

from the Natural Values Atlas, Tasmania (Department

of Primary Industries Parks Water and Environment

2014). The data were filtered to remove observations

that were not contemporaneous with the current cli-

mate data, where current is defined as 1976 to 2005.

This left 1517 records, of which 1339 were from the

first Atlas of Australian Birds project. We are confident

in the accuracy of species identification as the Atlas

data were rigorously vetted. The locational data, how-

ever, have low precision. Species locations are reported

as the coordinates of the center of a 10-minute, that is,

approximately 18.5-km, grid cell (A. Silcocks, pers.

comm.).

A logistic habitat suitability value was estimated using

six bioclimatic variables that represent the mean, range,

and seasonality of key components of climatic regimes:

(i) annual mean temperature; (ii) minimum tempera-

ture of the coldest month; (iii) maximum temperature

of the warmest month; (iv) annual precipitation; (v)

precipitation in the warmest quarter; and (vi) precipita-

tion in the coldest quarter. The values for these vari-

ables were derived from long-term mean monthly

records of maximum and minimum temperature, and

precipitation.

We generated estimates of current climate, that is, the

period 1976 to 2005, centered on 1990, using ANUCLIM

v6.1 (Xu & Hutchinson 2011). We then calculated cli-

mate change grids relative to 1990 for 2085 (i.e., the

center of the period 2070 to 2099), for two emissions

scenarios and six GCMs. High (A2)- and low (B1)-emis-

sion scenarios (IPCC 2000) were selected to bracket the

range of values due to differences in emission scenario.

A single iteration of each of six dynamically downscaled

GCMs (ECHAM5/MPI‑OM, GFDL‑CM2.0, GFDL‑CM2.1,

UKMO-HadCM3, CSIRO Mk3.5 and MIROC3.2_me-

dres) was used. These GCMs represent the means and

variability of the current climate in southeastern Austra-

lia and cover the range of projected rainfall change in

the CMIP3 archive (Corney et al. 2013). We used AN-

UCLIM to further interpolate the future dynamically

downscaled climate data to a 1-km resolution and gener-

ate monthly mean data for the current and future peri-

ods.

Thus, for each individual simulated source of uncer-

tainty, there were 13 outputs, one for current climate

and 12 for 2085. For the purposes of brevity, we only

present results for the A2 emissions scenario and the

two GCMs that best illustrated the need to consider

uncertainty due to climate model. In this case, the

GCMs that were most different were CSIRO Mk3.5 and

GFDL-CM20. Additional results are provided in Sup-

porting Information.

Locational Uncertainty

We simulated uncertainty in the locational data, a type of

measurement error (Fig. 2), by adding an average of

10 km of normally distributed noise to each point of spe-

cies data, and then running the model on the modified

data (see Supporting Information). This ensured that

most perturbed points were within the specified locational

accuracy of the bird data while covering the range of pos-

sibilities. We repeated this process 100 times to generate a

suite of expected distributions. Thus, we estimated each

cell’s probability of being classed as a “presence” given

the locational uncertainty.

Under current climate, the impacts of locational uncer-

tainty were concentrated in the northwest and along the

western limit of the modelled distribution (Fig. 3A).

Model sensitivity to locational uncertainty is greatest

where relatively small changes in location are equivalent

to changes in the values of variables in the model, causing

a transition over the model threshold which separates

(A) (B) (C)

Figure 3. Comparison of Anthochaera paradoxa models with simulated uncertainty in locational data for (A) current climate; and projected

climate in 2085 under the A2 scenario using climate models (B) CSIRO MK3.5; and (C) GFDL-CM20. Each plot shows the proportion of model

runs predicting species presence.
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“presence” from “absence”. That is, model sensitivity to

locational uncertainty is greatest in areas where the model

also predicts that habitat suitability is marginal. Model

output for the future time step indicated even further

contraction of the area where climatic conditions are

potentially suitable (Fig. 3B and C).

The impact of locational uncertainty is likely to be sim-

ilar in magnitude to the impact of uncertainty due to

misclassification of environmental data. However, error

due to incorrect species identification or translocation of

individuals could result in anomalous data that greatly

exceed the direction and magnitude of error compared to

the nominal 10-km average locational error illustrated

here.

Spatial Bias

We simulated the impact of spatial bias, a type of mea-

surement error (Fig. 2), using nonrandom cross-valida-

tion by repeatedly removing the 10% of spatially

autocorrelated data most distant from a randomly

assigned point. We compared the impact of spatial bias

with the impact of random loss of 10% of the dataset.

Spatial bias had a much larger impact on model projec-

tion than random data loss although the absolute number

of data points was the same. In the presence of a small

amount of spatial bias, the number of predicted presences

declined substantially (Fig. 4) and a large part of the

range was affected. With spatial bias, areas that were

otherwise core habitat became marginal habitat for cur-

rent conditions and unsuitable habitat in the future. This

occurs because the geographic distribution of the impact

of spatial bias is determined by the way in which the spa-

tial bias skews the values of the covariates used in the

model (Elith et al. 2011).

This simple simulation illustrates the amount of uncer-

tainty we could expect with a small amount of spatial bias

in sampling effort. Thus, a small unbiased dataset may be

preferable to a larger but spatially biased dataset. This

simulation may be indicative of the magnitude of uncer-

tainty we could expect due to various sources of spatial

bias caused by spatial and temporal variation (Fig. 2). For

example, a change in limiting factors across a species’

range, variation in species detectability in different habi-

tats, truncated species data, and population-specific local

optima are all potential causes of spatial bias in the spe-

cies data.

Nonrandom cross-validation has also been used to

evaluate model transferability (Wenger and Olden 2012).

The large impact of quite conservative amounts of

(A) (B) (C)

(D) (E) (F)

Figure 4. Comparison of Anthochaera paradoxa models showing the impact of spatially biased data loss and random data loss on spatial

prediction. The model with spatially biased data loss is shown for (A) current climate; and projected climate in 2085 under the A2 scenario using

climate models (B) CSIRO MK3.5; and (C) GFDL-CM20, followed by the model with random data loss for (D) current climate; and projected

climate using (E) CSIRO MK3.5; and (F) GFDL-CM20 showing the proportion of model runs predicting species presence.
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simulated spatial bias on the A. paradoxa model indicates

that the model is unlikely to transfer well to a different

dataset, a different location, or a different time period;

that is, the model lacks generality (Vaughan and Ormerod

2005; Randin et al. 2006; Wenger and Olden 2012). Fur-

thermore, it may indicate that validation of this model

using standard procedures, which use nonindependent

data, may overestimate the predictive ability of the model

(Ara�ujo et al. 2005). Thus, as the time frames of future

projections increase, the more circumspect we should be

in accepting the model outputs.

Uncertainty in Climatic Data

We estimated uncertainty in the current climate grids, a

type of measurement error due to interpolation (Fig. 2),

by producing an error surface for each variable. The

error surfaces consisted of rasters of spatially distributed

standard errors for 36 variables (12 months 9 3 vari-

ables). The rasters combined measurement and interpo-

lation error in a way that approximately accounted for

spatial correlation in the gridded climate values. The ras-

ters were generated using code adapted from the ANU-

SPLIN thin-plate smoothing spline software package

(Hutchinson and Xu 2013) to take account of all spa-

tially random errors and their spatial correlation. Pertur-

bation grids were independently simulated at 0.5°C
resolution for monthly minimum temperature and

monthly maximum temperature, and at 0.25°C for

monthly precipitation. These were identified as the mini-

mum resolutions where spatial correlation between errors

became negligible. These values provide a direct measure

of the differing spatial scales of interaction with topogra-

phy of monthly mean temperature and monthly mean

precipitation. We then sampled from a normal error dis-

tribution for each cell with standard deviation specified

by the grid and used bicubic interpolation to apply this

error to the original climate surfaces. Spatial correlations

between the climate variables were not modelled. While

there are modest correlations between daily time series

values of these variables, these correlations are largely

removed when integrated to 30-year monthly means and

considered in the context of spatial interpolation errors.

This is confirmed in particular by the differing spatial

scales of interaction with topography exhibited by

monthly mean temperature and monthly mean precipita-

tion.

The impact of uncertainty in current climate data on

spatial prediction was similar in magnitude to loca-

tional uncertainty (Fig. 5). The simulated climatic

uncertainty resulted in a contraction of core habitat

and an expansion of marginal habitat. The magnitude

of impact of uncertainty in future climatic projections

will necessarily be much higher than that shown for

current conditions as it depends not only on the accu-

racy of the climatic data but also on additional sources

of uncertainty that are introduced by projecting to

future climates.

Model Variance

Statistically speaking, model variance is that part of a

model’s total error that is explained by the effect of

variation in the training data (De’ath 2007). We esti-

mated model sensitivity to the dataset, a type of mod-

elling error (Fig. 2) using cross-validation. This method

has been shown to be robust for small datasets which

are common in many SDMs. The dataset was split into

100 equal segments; then, each segment was removed

one at a time to test the model generated by the

remaining 99 segments. This process created 100 sepa-

rate distributions, each of which was relatively unbiased,

having been tested using separate data from the train-

ing data. Differences between these models are due to

model variance. The impact of model variance on

model output was a contraction of the area predicted

as suitable habitat. The magnitude of impact of model

variance was greater than locational uncertainty or cur-

rent climatic uncertainty but less than spatial bias

(Fig. 6).

(A) (B)

Figure 5. Comparison of Anthochaera

paradoxa models showing (A) the original

model with no simulated uncertainty and (B) a

perturbed model showing the effects of

simulated current climatic uncertainty. In (A),

green denotes presence and gray absence,

whereas (B) shows the proportion of the 100

model runs predicting species presence in each

cell.
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All Simulated Sources Combined

We combined all sources of uncertainty by simultaneously

applying all described methods of simulating uncertainty

to the observation and climate data. The combined uncer-

tainty included model variance but not differences

between climate models or emissions scenarios. To com-

bine model variance with the other simulated sources of

uncertainty, a different approach was required as each

model replicate is likely to contain different data both for

the species and climatic data due to other sources of

uncertainty. Consequently, when combining all simulated

uncertainty, we instead used a random training–testing
split for each model run to test model variance. This dif-

fers from cross-validation in that the testing sets are not

mutually exclusive from run to run and is closer to a

bootstrapping approach. However, we expect this method

should produce similar results.

When all simulated sources of uncertainty were com-

bined, the uncertainty in the spatial distribution was lar-

ger than any individual source of uncertainty (Fig. 7).

The model that combined all simulated sources of uncer-

tainty regularly predicted suitable habitat in areas that

were predicted as unsuitable habitat in the model with no

simulated uncertainty. Conversely, the model that com-

bined all simulated sources of uncertainty predicted poor

habitat suitability in areas that were predicted to be core

habitat in the model with no simulated uncertainty.

Taken together, these observations suggest that the effects

of uncertainty not only blur the margins of a predicted

distribution, but can also skew the result. There were sub-

stantial differences in model predictions between emission

scenarios and global climate models (Fig. 7). Differences

between scenarios appear to be mainly in the magnitude

of change. However, differences between the two GCMs,

which represented the extremes of the six GCMs consid-

ered, varied in the direction of change.

The examples illustrated here represent modest and

realistic levels of uncertainty. All of these sources of

uncertainty and more are likely to be present but unac-

counted for when modelling species distributions. Our

simulations should provide reasonable estimates of the

actual uncertainty in the species distribution model if for

any given source of uncertainty the actual level of uncer-

tainty is low and well-defined. As the level of actual

uncertainty increases, however, the more the distributions

of simulated uncertainty will diverge from the actual but

unknown distribution of uncertainty. In most cases, it is

safest to interpret the results as generalized illustrations of

the effects of uncertainty rather than as reliable distribu-

tion maps.

Discussion

Our case study results illustrate three important points.

Firstly, the spatial distribution of uncertainty is not

homogeneous and can vary substantially across a species’

predicted habitat. Secondly, the way that the uncertainty

is spatially distributed depends on how the uncertainty

impacts the model specification. While the general effect

of uncertainty is to move predictions closer to the model

threshold and thus blur the edges, spatial bias can skew

the values for the covariates in the model so that when it

is projected spatially, it results in different geographic

output. Thirdly, the combined effects of different sources

of uncertainty are greater than the effect of any individual

source of uncertainty. Thus, simulating just one source of

uncertainty, even if it has a large effect, may not be suffi-

cient to represent other sources of uncertainty.

In the case of A. paradoxa, simulated spatial bias in the

species data had the greatest impact on spatial prediction.

Spatial bias is one source of uncertainty that is usually

present but rarely accounted for in SDMs. However, com-

parison of studies that have quantified overall uncertainty

(A) (B) (C)

Figure 6. Comparison between Anthochaera paradoxa models showing uncertainty due to model variance for (A) current climate; and for

projected climate in 2085 under the A2 scenario using climate models (B) CSIRO MK3.5; and (C) GFDL-CM20 showing the proportion of model

runs predicting species presence.
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shows that the relative magnitude of an individual source

of uncertainty is likely to vary from one case to another

(Dormann et al. 2008; Wenger et al. 2013). Factors

impacting the relative magnitude of individual sources of

uncertainty are data quality, species and landscape attri-

butes, the size and location of the study region with

respect to future climate projections, and the future

climate projections for the study area.

Our simulations illustrate that uncertainty can sub-

stantially affect spatial prediction. This emphasizes the

need to address uncertainty as an explicit part of the

experimental protocol for modelling species distributions.

Our simulation tool provides a potentially valuable tool

for communicating the impacts of uncertainty on spatial

prediction. As the tool provides spatially explicit output,

it could be a powerful aid in the ongoing dialogue that

should be taking place between researchers, policy mak-

ers, and practitioners. Furthermore, our tool provides a

method for evaluating model transferability. Evaluating

transferability is particularly important when projecting

species distributions under future climates as indepen-

dent test data are not available.

Different approaches are needed when uncertainty is

due to incomplete knowledge including our inability to

predict the future. To reduce known sources of uncer-

tainty when projecting to the future, GCM selection

should be based on which models best represent key

environmental variables for the model species and the

study region. For example, many species’ distributions

are strongly driven by temperature and rainfall, but

some GCMs project “wetter” or “hotter” than the mean

of all GCMs, and these projections vary spatially. In

southeastern Australia, for example, MIROC3.2_medres

projects a climate that is wetter and cooler than the

mean of all models in the CMIP archive, while the

ECHAM5 model is warmer and drier (Harris et al.

2014). If increased rainfall is known to have a negative

impact on a species of interest, GCMs that project

(A) (B)

(C) (D)

(E) (F)

Figure 7. Comparison of Anthochaera

paradoxa models showing (A) the original

model for current conditions with no simulated

uncertainty, with models including all

simulated sources of uncertainty combined for

(B) current conditions, and projected climate in

2085 using climate models (C) CSIRO MK3.5

under the A2 scenario; (D) GFDL-CM20 under

the A2 scenario; (E) CSIRO MK3.5 under the

B1 scenario; and (F) GFDL-CM20 under the B1

scenario. In (A), green denotes presence and

gray absence, whereas all other figures show

the proportion of model runs predicting

species presence.
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increased precipitation in the study region could be used

to assess the worst-case scenario when developing SDMs

under future climatic conditions. Irrespective of what

approach is used, the GCMs selected must be explicitly

stated, to assist interpretation of the results. The best

available method for assessing uncertainty due to GCM

is to use multiple CMIP GCMs within an ensemble

approach. Multimodel means (MMM) are sometimes

used but do not represent the variability of the input

models, seasonal variation, or daily extremes. Using

MMMs can therefore conceal uncertainty (Beaumont

et al. 2007). Furthermore, averaging individual variables

can produce results which are physically implausible

(Knutti et al. 2010) and unlike any individual model. If

a MMM approach is used, we recommend the additional

use of individual GCM inputs to assess the range of

variation due to climate model.

The best way to represent uncertainty due to future

greenhouse gas emissions is to model a range of plausi-

ble emissions scenarios, for example, SRES emissions sce-

narios A2 and B1, or RCP 2.6 and 8.5 (IPCC 2007).

Including the upper limits of proposed emission scenar-

ios may be important for conservation planning where

assessments of potential impacts are guided by the pre-

cautionary principle. Modelling emission scenarios that

bracket plausible futures will indicate the amount of

uncertainty that is due to future human actions.

There remain a number of potential sources of uncer-

tainty that cannot be quantified or bracketed to show

differences between plausible model outputs, for exam-

ple, uncertainty due to incomplete knowledge about spe-

cific habitat requirements, or how the outcomes of

biological interactions will change as the climate changes.

To address unquantifiable uncertainty, we recommend

that all potential sources of uncertainty should be sys-

tematically reported along with model outputs. Further-

more, to maximize the transparency of the modelling

process and enable independent assessment of model

outputs, all parameterizations should be reported includ-

ing the following: which GCMs and emission scenarios

are used, how GCMs have been parameterized, down-

scaling methods, time frames for species data, and base-

line climate data. Finally, to minimize linguistic

uncertainty, it should be clearly stated what is being spa-

tially projected. Models based on correlative analysis of

climatic variables predict a species’ potential climate

domain. They do not account for other environmental

and ecological factors that influence species’ distribu-

tions. At best, they represent potential habitat suitability.

Nevertheless, as long as their limitations are understood,

correlative species distribution models currently provide

the best available tool to support conservation planning

and management.
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