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Abstract

In genome-wide association studies (GWASs) for binary traits (or case-control samples) in

the presence of covariates to be adjusted for, researchers often use a logistic regression

model to test variants for disease association. Popular tests include Wald, likelihood ratio,

and score tests. For likelihood ratio test and Wald test, maximum likelihood estimation

(MLE), which requires iterative procedure, must be computed for each single nucleotide

polymorphism (SNP). In contrast, the score test only requires MLE under the null model,

being lower in computational cost than other tests. Usually, genotype data include missing

genotypes because of assay failures. It loses computational efficiency in the conventional

score test (CST), which requires null estimation by excluding individuals with missing geno-

type for each SNP. In this study, we propose two new score tests, called PM1 and PM2, that

use a single global null estimator for all SNPs regardless of missing genotypes, thereby

enabling faster computation than CST. We prove that PM2 and CST have an equivalent

asymptotic power and that the power of PM1 is asymptotically lower than that of PM2. We

evaluate the performance of the proposed methods in terms of type I error rates and power

by simulation studies and application to real GWAS data provided by the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI), confirming our theoretical results. ADNI-GWAS appli-

cation demonstrated that the proposed score tests improve computational speed about

6–18 times faster than the existing tests, CST, Wald tests and likelihood ratio tests. Our

score tests are general and applicable to other regression models.

Introduction

Over the last decades, genome-wide association studies (GWASs) have successfully identified

many variants that are susceptible to hundreds of human diseases and traits [1, 2]. For discov-

ery of an association between disease and genotypes, researchers often use tests based on a

logistic regression model. It can analyze an association between disease (binary trait) and each

single nucleotide polymorphism (SNP) while adjusting for the effect of covariates including
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age, sex, body mass index, and/or principal components for population stratification [3]. Wald

test, likelihood ratio test, and score test are popularly used to examine the effects of each SNP

on an outcome and are applied to genome-wide scan. For example, PLINK (http://zzz.bwh.

harvard.edu/plink/) [4] and PLINK 1.9 (https://www.cog-genomics.org/plink2/) [5] use the

Wald test by default for genome-wide scan in the presence of covariates to be adjusted for.

Recently, we need to test over 500,000 loci in SNP-GWAS or tens of millions of loci in the

whole-genome sequencing studies. Inclusion of large number of covariates slows the computa-

tion further. We often carry out this genome-wide scan for multiple traits. Consequently, com-

putationally efficient method for genome-wide scan for large number of variants is highly

desired [6].

In a logistic regression model, an iterative procedure such as Newton–Raphson method is

needed to compute maximum likelihood estimator (MLE), which incurs computational bur-

den in application to genome-wide scan. For the Wald test and the likelihood ratio test, MLE

under full model for each SNP is required. On the other hand, the score test only requires

MLE under null model. Furthermore, since the null model is common for all SNPs in testing

association of SNPs (i.e. no SNPs have effect on outcome), if no SNPs have missing geno-

types, a single null estimation can be used in score test statistics for all SNPs and computa-

tionally demanding iterative optimization process in computing MLE for each SNP is

unnecessary. However, genotype data usually include missing genotypes because of assay fail-

ures [7]. Then, we still face computational burden even in the score test because missing pat-

tern differs across loci and null estimation by excluding individuals with missing separately

for each SNP is necessary. For example, the qtscore function in GenABEL package [8] imple-

ments fast genome-wide scan by the score test, where individuals with missing genotpyes are

removed for each SNP [9, 10]. The Wald test implemented in PLINK also uses the complete

case analysis.

In this study, we propose two fast score tests, called the proposed method 1 (PM1) and the

proposed method 2 (PM2), that require only a single global null estimator for all SNPs regard-

less of missing genotypes unlike the conventional score test (CST) which requires separate null

estimations for all SNPs. Fig 1 illustrates our idea. We prove that PM2 and CST have an equiv-

alent asymptotic power and that the power of PM1 is asymptotically lower than that of PM2.

We show through simulation studies that our PM1 and PM2 give correct control of the type I

error. The simulations also confirm our theoretical results for an equivalent power between

PM2 and CST, and the lower power of PM1 although the loss of power seems to be small in a

range of practical missing genotype rates (<10%) in current GWAS. Application to real

GWAS data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) demonstrates

6–18 times faster computation of the proposed methods than the CST, Wald test, and likeli-

hood ratio test.

Materials and methods

Logistic regression model

We consider a case-control study with total sample size n. For individual i, let Yi = 1 or Yi = 0

be an indicator of disease (case or control), respectively. The probability of being case is πi = Pr
(Yi = 1). Our logistic regression model for a SNP is written as

logit½PrðYi ¼ 1Þ� ¼ logit½piðb0; be; bgÞ� ¼ b0 þ beEi þ bgGi ð1Þ

where Gi is some genotype coding, such as an additive coding {0, 1, 2} and Ei is a covariate or

an environment factor. Letting θ1 = (β0, βe)
T, θ2 = βg, y ¼ ðy

T
1
; y

T
2
Þ

T
, X1 = (1, E), and X2 = G, the

Fast score test for genome-wide scan

PLOS ONE | https://doi.org/10.1371/journal.pone.0199692 July 5, 2018 2 / 19

(received author is M.U.). Data collection and

sharing for this project was funded by the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(National Institutes of Health Grant U01

AG024904) and DOD ADNI (Department of

Defense award number W81XWH-12-2-0012).

ADNI is funded by the National Institute on Aging,

the National Institute of Biomedical Imaging and

Bioengineering, and through generous

contributions from the following: AbbVie,

Alzheimer’s Association; Alzheimer’s Drug

Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company;

CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals,

Inc.; EliLilly and Company; EuroImmun; F.

Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO

Ltd.; Janssen Alzheimer Immunotherapy Research

& Development, LLC.; Johnson & Johnson

Pharmaceutical Research & Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research;

Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal

Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The

Canadian Institutes of Health Research is providing

funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the

Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the

Northern California Institute for Research and

Education, and the study is coordinated by the

Alzheimer’s Disease Cooperative Study at the

University of California, San Diego. ADNI data are

disseminated by the Laboratory for Neuro Imaging

at the University of Southern California. This work

was carried out under the ISM General Cooperative

Research 1 (2015-ISM-CRP-1013). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://zzz.bwh.harvard.edu/plink/
http://zzz.bwh.harvard.edu/plink/
https://www.cog-genomics.org/plink2/
https://doi.org/10.1371/journal.pone.0199692
http://www.fnih.org


probability of being case at a full model is

piðyÞ ¼ piðy1; y2Þ ¼
exp ðb0 þ beEi þ bgGiÞ

1þ exp ðb0 þ beEi þ bgGiÞ
¼

exp ðX1y1 þ X2y2Þ

1þ exp ðX1y1 þ X2y2Þ
:

Under these setting, the log-likelihood function at the full model is

log f ðyÞ ¼
Xn

i¼1

½Yi log piðyÞ þ ð1 � YiÞ logf1 � piðyÞg�:

For logistic regression model, no closed-form solution is available for MLE for ðy
T
1
; y

T
2
Þ

T
,

and iterative procedure such as Newton–Raphson method is required, which causes high

computational load in applying to genome-wide scan.

The score function evaluated at the full model is

u1ðyÞ

u2ðyÞ

 !

¼
@ log f ðyÞ=@y1

@ log f ðyÞ=@y2

 !

¼

Pn
i¼1

u1iðyÞ

Pn
i¼1

u2iðyÞ

0

@

1

A

Fig 1. Conceptual difference between the conventional score test and the proposed new score tests. Conceptual

difference between the conventional score test (CST) and the proposed new score tests (PM1 and PM2). Outcomes (Y)

and covariates (E) are observed in all individuals. NA indicates missing genotype. In CST, null estimation is performed

for each SNP excluding individuals with missing genotype. On the other hand, null estimation required in PM1 or

PM2 is common in all SNP.

https://doi.org/10.1371/journal.pone.0199692.g001
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and their covariance matrix at the full model is

J11ðyÞ ¼
J11½1; 1�ðyÞ J11½1; 2�ðyÞ

J11½2; 1�ðyÞ J11½2; 2�ðyÞ

 !

¼ �
1

n

@u1ðyÞ=@y1 @u1ðyÞ=@y2

@u2ðyÞ=@y1 @u2ðyÞ=@y2

 !

:

Here, the score function and their covariance matrix at a null model (y ¼ ðy
T
1
; 0TÞ

T
) are

u1ðy1Þ

u2ðy1Þ

 !

¼
u1ðyÞ

u2ðyÞ

 !�
�
�
�

y¼ðyT
1
;0T ÞT

¼
@ log f ðyÞ=@y1

@ log f ðyÞ=@y2

 !�
�
�
�

y¼ðyT
1
;0T ÞT
¼

Pn
i¼1

u1iðyÞ

Pn
i¼1

u2iðyÞ

0

@

1

A

�
�
�
�

y¼ðyT
1
;0T ÞT

and

J11½1; 1�ðy1Þ J11½1; 2�ðy1Þ

J11½2; 1�ðy1Þ J11½2; 2�ðy1Þ

 !

¼
J11½1; 1�ðyÞ J11½1; 2�ðyÞ

J11½2; 1�ðyÞ J11½2; 2�ðyÞ

 !�
�
�
�

y¼ðyT
1
;0T ÞT

¼ �
1

n

@u1ðyÞ=@y1 @u1ðyÞ=@y2

@u2ðyÞ=@y1 @u2ðyÞ=@y2

 !�
�
�
�

y¼ðyT
1
;0T ÞT

:

Wald, likelihood ratio, and score tests

In GWAS, the null hypothesis H0: θ2 = 0 in the logistic regression model (1) for each SNP is

tested using the Wald test, the likelihood ratio test, or the score test. The Wald statistic is

W ¼ ŷT
2
varðŷ2Þ

� 1
ŷ2;

where ŷ2 is MLE for θ2 under the full model and varðŷ2Þ denotes an estimator of (asymptotic)

variance of ŷ2. Wald tests need single optimization for full model MLE for each SNP. The like-

lihood ratio statistic is

LR ¼ � 2flog f ð�y1; 0Þ � log f ðŷ1; ŷ2Þg;

where ŷ1 and ŷ2 are MLE for θ1 and θ2, respectively, under the full model and �y1 is MLE for θ1

under the null model. Likelihood ratio tests need two optimizations for the null model MLE

and the full model MLE for each SNP. The score statistic is

S ¼ u2ð
�y1Þ

Tvarfu2ð
�y1Þg

� 1
u2ð

�y1Þ;

where varfu2ð
�y1Þg denotes an estimator of (asymptotic) variance of u2ð

�y1Þ. Score tests require

single optimization for the null model MLE for each SNP. If there is no missing genotypes for

all SNPs, that is complete data, then null estimation is common for all SNPs. We focus score

tests in this study, because parameter estimation which needs iterative optimization can be

performed only once. Therefore, the score test with complete data can be computed with

much lower computational cost than the Wald and the Likelihood ratio tests.

For a SNP, which we denote the individual i’s genotype by Gi, we consider the setting where

there are missing genotypes. Under this setting, score functions and their covariance matrix at
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the null model are given as follows:

um
1
ðy1Þ

um
2
ðy1Þ

 !

¼
um

1
ðyÞ

um
2
ðyÞ

 !�
�
�
�

y¼ðyT
1
;0T ÞT
¼

Pn
i¼1

u1iðyÞIi

Pn
i¼1

u2iðyÞIi

0

@

1

A

�
�
�
�

y¼ðyT
1
;0T ÞT

and

Jm
11
½1; 1�ðy1Þ Jm

11
½1; 2�ðy1Þ

Jm
11
½2; 1�ðy1Þ Jm

11
½2; 2�ðy1Þ

 !

¼
Jm
11
½1; 1�ðyÞ Jm

11
½1; 2�ðyÞ

Jm
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½2; 1�ðyÞ Jm

11
½2; 2�ðyÞ

 !�
�
�
�

y¼ðyT
1
;0T ÞT
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1

n

@um
1
ðyÞ=@y1 @um

1
ðyÞ=@y2

@um
2
ðyÞ=@y1 @um

2
ðyÞ=@y2

 !�
�
�
�

y¼ðyT
1
;0T ÞT

:

where Ii is an indicator defined by

Ii ¼
1 if Gi is observed

0 if Gi is missing

(

For theoretical studies in what follows, we assume missing completely at random (MCAR),

that is, Ii independently and identically follows a binomial distribution of size 1, Ii * Bin(1, 1 −
R) for i = 1, � � �, n, where R is a probability of random missing, and is independent of u1i and

u2i.

Score tests

Conventional score test. The conventional score test (CST) means the score test using

null estimator computed by removing individuals having missing genotype to be tested. The

score statistic of CST is expressed by the following formula, and asymptotically follows a chi-

squared distribution with 1 degree of freedom under the null hypothesis:

SCST ¼
1
ffiffiffi
n
p
Xn

i¼1

um
2ið

�ym
1
Þ

( )T

V � 1
m

1
ffiffiffi
n
p
Xn

i¼1

um
2ið

�ym
1
Þ

( )

where �ym
1

is MLE for θ1 under the null model on CST and Vm ¼ f� Jm
11
½2; 1�ð�ym

1
ÞJm

11
½1; 1�ð�ym

1
Þ
� 1

Jm
11
½1; 2�ð�ym

1
Þ þ Jm

11
½2; 2�ð�ym

1
Þg=n. In Appendix (p. 8), it is shown that the convergence rate to

chi-square distribution has order op(1) as n!1.

Proposed methods. We describe two new proposed score tests. The proposed method 1

(PM1) is the score test which uses a single null estimator for all score test statistics regardless

of missing genotypes. See Fig 1 for the difference from CST. The score statistic of PM1 is

expressed by the following formula, and asymptotically follows a chi-squared distribution with

1 degree of freedom under the null hypothesis:

SPM1 ¼
1
ffiffiffi
n
p
Xn

i¼1

um
2ið

�y
f
1Þ

( )T

V � 1
f

1
ffiffiffi
n
p
Xn

i¼1

um
2ið

�y
f
1Þ

( )

where �y
f
1 is MLE for θ1 under the null model computed independently of genotype data using

all individuals, and Vf ¼ f� Jm
11
½2; 1�ð�y

f
1ÞJ11½1; 1�ð

�y
f
1Þ
� 1Jm

11
½1; 2�ð�y

f
1Þ þ Jm

11
½2; 2�ð�y

f
1Þg=n. In

Appendix (p. 10), it is shown that the convergence rate to chi-square distribution has order

op(1) as n!1. The MLE �y
f
1 is a single global null estimator used in all test statistics for
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genome-wide scan and does not require re-computation for all SNPs unlike CST, and hence,

PM1 achieves lower computational cost than CST. However, we showed that the power of

PM1 is asymptotically lower than that of CST. The power of the score test statistic asymptoti-

cally increases as the non-centrality parameter increases. In Appendix (p.14–17), we have

shown that the mean of CST score function is asymptotically equivalent to that of PM1 score

function while the variance of PM1 score function is bigger than the variance of CST score

function. That is, the magnitude of non-centrality parameter is dominated only by the magni-

tude of variance, and the non-centrality parameter of PM1 is smaller than that of CST. There-

fore, the power of PM1 is smaller than that of CST.

To improve power, we developed a second test, called the proposed method 2 (PM2). Here,

we define the following modified score function:

u�
2iðy1Þ ¼ um

2iðy1Þ � Jm
11
½2; 1�ðy1ÞJm

11
½1; 1�ðy1Þ

� 1um
1iðy1Þ: ð2Þ

PM2 uses the above modified score function (2). It is computed without excluding individ-

uals with missing SNP from null model as in PM1. The score statistic of PM2 is expressed by

the following formula, and asymptotically follows a chi-squared distribution with 1 degree of

freedom under the null hypothesis:

SPM2 ¼
1
ffiffiffi
n
p
Xn

i¼1

u�
2ið

�y
f
1Þ

( )T

V � 1
m

1
ffiffiffi
n
p
Xn

i¼1

u�
2ið

�y
f
1Þ

( )

:

In Appendix (p.13), it is shown that the convergence rate to chi-square distribution has

order op(1) as n!1. It is shown in Appendix (p.13) that score function ð1=
ffiffiffi
n
p
Þ
Pn

i¼1
u�

2ið
�y

f
1Þ

is asymptotically equivalent to the score function ð1=
ffiffiffi
n
p
Þ
Pn

i¼1
um

2ið
�ym

1
Þ of CST. Therefore, the

power of PM2 is asymptotically equivalent to CST and higher than that of PM1. In PM2, null

estimation is common for all SNPs as in PM1. Thus, PM2 can have lower computational costs

than CST.

So far, we have considered the test of H0: θ2 = βg = 0 under the logistic regression model (1).

This framework can be easily extended to other tests. For another application, we consider the

following logistic regression model involving gene-environment interaction,

logit½PrðYi ¼ 1Þ� ¼ b0 þ beEi þ bgGi þ bgeGiEi: ð3Þ

Let θ2 = (βg, βge)
T. We can perform a joint test for combined effect of genetic marginal and

of gene-environment interaction [11]. This test constrains βg = 0 and βge = 0 under the null

hypothesis, i.e. the degrees of freedom is two. The joint test is more powerful than the test of

interaction alone, which is beneficial, particularly for GWAS where marginal SNP effect is low,

and it is applied to real data [12].

More details of this section including formulas, derivations, and additional descriptions are

given in S1 Appendix. A program code of simulations are given in S2 Appendix and all data

files of “Application to ADNI GWAS Data” are freely and publically available from the Alzhei-

mer’s Disease Neuroimaging Initiative (ADNI) database: http://adni.loni.usc.edu/.

Results

Evaluation of proposed methods using simulated data

We performed computer simulations to evaluate the performance (type I error rates and

power) of the various test statistics described above. We simulated datasets using R [13] based

on two logistic regression models ((1) and (3)) assuming disease prevalence 1%. Case-control
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data was generated accoring to the retrospective sampling as described in [14]. The test corre-

sponding to (1) is called ‘G test’, and the test corresponding to (3) is called ‘G-GE test’. We

considered binary variables as a covariate for E, e.g. gender, whose population frequency is

50% and set the odds ratio as ORe = exp(βe) = 1.2. Missing genotypes were generated assuming

missing completely at random, in particular, individuals with missing genotype are randomly

assigned with a given missing rate.

Type I error rates. We performed 1,000,000 simulation replicates under the null model to

estimate type I error rates for a nominal significance threshold of α = 5 × 10−5. We considered

a range of missing rates (2%, 5%, 10%), the number of case or control (1,000, 5,000), and

minor allele frequencies (MAF) (10%, 30%).

We provided the estimated type I error rates in various settings in Table 1. For

1,000,000 replication, the standard deviation of the estimated type I error rates is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:00005� 0:99995Þ=1; 000; 000

p
’ 0:71 � 10� 5 and the 95% confidence interval is

(3.6 × 10−5, 6.4 × 10−5) for the nominal significance level of α = 5 × 10−5. From this table, we

can see that all of the type I error rates are consistently within the 95% confidence interval,

which indicates that the type I error rates are well-controlled at the nominal level.

Next, we constructed quantile-quantile (Q-Q) plots of the distribution of several test set-

tings calculated in the above conditions under the null hypotheses. Fig 2 shows Q-Q plots of G

test and G-GE test for missing rate is 5% and MAF is 10% and 30%. We plotted the top 500

score statistics of the CST. Most of the points are distributed around the 45 degree line, which

Table 1. Type I error rates of the conventional score test and the proposed methods.

Test Missing rate (%) MAF (%) #case/control CST PM1 PM2

G 2 10 1,000 5.0 × 10−5 5.5 × 10−5 5.0 × 10−5

G 2 10 5,000 3.7 × 10−5 3.6 × 10−5 3.7 × 10−5

G 2 30 1,000 5.6 × 10−5 4.4 × 10−5 5.6 × 10−5

G 2 30 5,000 4.3 × 10−5 4.6 × 10−5 4.3 × 10−5

G 5 10 1,000 4.8 × 10−5 5.3 × 10−5 4.8 × 10−5

G 5 10 5,000 4.2 × 10−5 3.7 × 10−5 4.2 × 10−5

G 5 30 1,000 5.5 × 10−5 5.8 × 10−5 5.5 × 10−5

G 5 30 5,000 4.0 × 10−5 4.6 × 10−5 4.0 × 10−5

G 10 10 1,000 4.6 × 10−5 4.0 × 10−5 4.6 × 10−5

G 10 10 5,000 3.8 × 10−5 3.6 × 10−5 3.8 × 10−5

G 10 30 1,000 5.5 × 10−5 5.2 × 10−5 5.5 × 10−5

G 10 30 5,000 4.9 × 10−5 4.5 × 10−5 4.9 × 10−5

G-GE 2 10 1,000 4.7 × 10−5 4.8 × 10−5 4.7 × 10−5

G-GE 2 10 5,000 4.4 × 10−5 4.2 × 10−5 4.4 × 10−5

G-GE 2 30 1,000 5.7 × 10−5 6.0 × 10−5 5.6 × 10−5

G-GE 2 30 5,000 5.1 × 10−5 5.0 × 10−5 5.1 × 10−5

G-GE 5 10 1,000 4.8 × 10−5 4.9 × 10−5 4.8 × 10−5

G-GE 5 10 5,000 4.9 × 10−5 4.3 × 10−5 4.9 × 10−5

G-GE 5 30 1,000 5.3 × 10−5 5.4 × 10−5 5.2 × 10−5

G-GE 5 30 5,000 5.8 × 10−5 5.7 × 10−5 5.8 × 10−5

G-GE 10 10 1,000 4.6 × 10−5 4.1 × 10−5 4.6 × 10−5

G-GE 10 10 5,000 4.6 × 10−5 4.1 × 10−5 4.6 × 10−5

G-GE 10 30 1,000 5.2 × 10−5 5.3 × 10−5 5.0 × 10−5

G-GE 10 30 5,000 5.8 × 10−5 4.9 × 10−5 5.8 × 10−5

Type I error rates of the conventional score test (CST), the proposed method 1 (PM1), and the proposed method 2 (PM2) at a significance level of α = 5 × 10−5.

https://doi.org/10.1371/journal.pone.0199692.t001
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implies that χ2 approximations to the three score statistics are valid. Q-Q plots in other settings

are given in S1 and S2 Figs.

Furthermore, we investigated the scenarios with smaller sample size (the number of case or

control: 100, 500) and unbalance sample size (the number of case: 1,000 and control: 2,000) in

S1 Table. In the scenarios with smaller sample sizes, especially 100, the type I error rates are

slightly lower than the nominal level, but the accuracy is improved as sample sizes get large.

On the other hand, the type I error with unbalance scenarios are well-controlled at the nomi-

nal level.

Power. We performed 1,000 simulation replicates under alternative models to estimate

power at α = 5 × 10−8. We considered a range of missing rate (2%, 5%, 10%, 30%), the num-

ber of case or control (100, 500, 1,000, 5,000), unbalance sample size (case/control = 1,000/

2,000), and MAF (10%, 30%). Although the missing rate of 30% would be unrealistic in prac-

tical human GWAS data, it was set to make the difference in power easy to see for confirma-

tion of our theoretical asymptotic results on power. For reference, we also included the

method which simply imputes the missing genotypes by their median (called the median

imputation).

First, we showed the transition of the power of G tests as the change of ORg at MAF of 30%

in Fig 3. From Fig 3, we can see that score tests of CST and PM2 are more powerful than PM1.

Next, we showed the power transition of the G-GE test as the change of ORge at genetic odds

ratios (ORg = 1.1, 1.2), missing rate (2%, 5%, 10%), the number of case or control (1,000,

5,000), and MAF (30%) in Figs 4 and 5. Similar to G test, G-GE test also has higher power for

CST and PM2 than PM1. In G test and G-GE test, the power of median imputation has slightly

lower than CST and PM2, and higher than PM1. Even with a small genetic main effect, the

joint test can detect the effect of gene-environment interaction [11]. Analogous results were

obtained under other settings (see S3–S5 Figs and S2 and S3 Tables). Collectively, the theoreti-

cal results shown in the Materials and Methods section can be confirmed by the simulation

studies.

Fig 2. Q-Q plot of the conventional score test and the proposed methods. Chi-squared (1-df or 2-df) Q-Q plot of the

top 500 conventional score test, the proposed method 1, and the proposed method 2 score statistics for missing rate is

5% and minor allele frequency (MAF) is 10% and 30% in null simulation.

https://doi.org/10.1371/journal.pone.0199692.g002
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Fig 3. G test Power of the conventional score test and the proposed methods at MAF 30%. G test Power of the

conventional score test (CST), the proposed method 1 (PM1), and the proposed method 2 (PM2) under missing rate

(2%, 5%, 10%), minor allele frequency (MAF) (30%), and the number of case/control (1,000, 5,000). The x-axis denotes

genetic odds ratios (ORg = exp(βg)). The significance level is 5 × 10−8.

https://doi.org/10.1371/journal.pone.0199692.g003
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Fig 4. G-GE test Power of the conventional score test and the proposed methods at the number of case/control is

1,000. G-GE test Power of the conventional score test (CST), the proposed method 1 (PM1), and the proposed method

2 (PM2) under genetic odds ratios (ORg = exp(βg) = 1.1, 1.2), missing rate (2%, 5%, 10%), minor allele frequency

(MAF) (30%), and the number of case/control is 1,000. The x-axis denotes gene-environment interaction odds ratios

(ORge = exp(βge)). The significance level is 5 × 10−8.

https://doi.org/10.1371/journal.pone.0199692.g004
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Fig 5. G-GE test Power of the conventional score test and the proposed methods at the number of case/control is

5,000. G-GE test Power of the conventional score test (CST), the proposed method 1 (PM1), and the proposed method

2 (PM2) under genetic odds ratios (ORg = exp(βg) = 1.1, 1.2), missing rate (2%, 5%, 10%), minor allele frequency

(MAF) (30%), and the number of case/control is 5,000. The x-axis denotes gene-environment interaction odds ratios

(ORge = exp(βge)). The significance level is 5 × 10−8.

https://doi.org/10.1371/journal.pone.0199692.g005
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Application to ADNI GWAS data

We applied our proposed methods to ADNI-GWAS dataset obtained from the publicly avail-

able data of the Alzheimer’s Disease Neuroimage Initiative (ADNI) database (adni.loni.usc.

edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-

gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment and early Alzheimer’s disease. For up-to-date informa-

tion, see www.adni-info.org. ADNI is an ongoing longitudinal study with the primary purpose

of exploring the genetic and neuroimaging information associated with late-onset Alzheimer’s

disease. The study recruited elderly subjects consisting about 400 subjects with mild cognitive

impairment (MCI), about 200 subjects with Alzheimer’s disease (AD), and about 200 healthy

controls (normal). Each subject was followed for at least 3 years. During the study period, the

subjects were assessed with MRI measures and psychiatric evaluation to determine the diagno-

sis status at each time point.

The ADNI-GWAS data were obtained from 818 DNA samples of ADNI participants using

the Illumina Human 610-Quad genotyping assay [15]. The data initially included 620,901

SNPs. We included the apolipoprotein E (APOE) SNP rs429358 on chromosome 19 known to

affect AD in our analysis. We used data from 684 non-Hispanic Caucasian samples after we

excluded one pair showing cryptic relatedness (revealed by the PLINK pairwise p̂ statistic

being greater than 0.125) [4], and we excluded subjects whose reported sex did not match the

sex inferred from X-chromosome SNPs. The total number of remaining SNPs was 528,916,

and the demographic variables include gender and age. The distribution of missing rate is

shown in the S6 Fig. Of the 528,916 SNPs, 45% of them have missing genotypes. In our work,

we used 684 subjects: the status at the baseline of normal, MCI, and AD were 192, 329, and

163, respectively. We defined the following phenotype as an outcome: normal (= 0), MCI

(= 0), and AD (= 1) as binary traits. We also included the following covariates in a logistic

regression model: gender and age. We compared the proposed methods separately for two

subsets of SNPs stratified by missing rate, low missing SNPs (43.9%) with 0%< Missing

rate< 1%, and high missing SNPs (11.3%) with Missing rate� 1%.

Firstly, Fig 6 showed Manhattan plots for all SNPs using CST, PM1, PM2, the Wald test and

the likelihood ratio test. All figures were similar in shape, and the APOE SNP was statistically

significant in most tests (CST, PM1, and PM2 give P-values of 3.640 × 10−8 because of the

absence of missing genotypes at the APOE SNP. The Wald and the likelihood ratio tests give

P-values of 7.686 × 10−8 and 5.372 × 10−8, respectively.). Manhattan plots for two SNPs strati-

fied by missing rate are shown in the S7 and S8 Figs and these figures were also similar in

shape.

Secondary, Fig 7 illustrated scatter plots for two SNPs stratified by missing rate comparing

top 1,000 P-values of the proposed methods and CST. The Pearson’s correlation coefficient in

the low missing SNPs between PM1 and CST was 0.9974 (Fig 7A). On the other hand, the cor-

relation between PM2 and CST was 1.0000 (Fig 7B), showing much higher concordance. Simi-

larly, the Pearson’s correlation coefficient in the high missing SNPs between PM1 and CST

was 0.9837 (Fig 7C), and the correlation between PM2 and CST was 1.0000 (Fig 7D). The

above results show that the equivalence between test statistics of PM2 and CST and the differ-

ence between PM1 and CST (or PM2) as described in the Material and Methods section.

Finally, we compared the run times from the proposed methods, the CST, the Wald test,

and the likelihood ratio test on a personal computer (four CPU cores at 4.0 GHz Intel i7) using

all SNPs. We implemented all tests in R without using built-in functions (e.g. glm function in

Fast score test for genome-wide scan

PLOS ONE | https://doi.org/10.1371/journal.pone.0199692 July 5, 2018 12 / 19

http://www.adni-info.org
https://doi.org/10.1371/journal.pone.0199692


R) for fair comparison of execution speed. Table 2 shows the run times. CST showed similar

run times to the Wald test as both tests need a single iterative optimization for MLE for each

SNP, i.e. MLE under the null model for CST and MLE under the full model for the Wald test.

Likelihood ratio test requires two iterative optimizations for MLE under both null and full

models, which make run times about twice longer compared with CST or the Wald test. PM1

and PM2 resulted in about 6–18 times faster than the CST, Wald test and likelihood ratio test.

A slightly longer run time was observed for PM2 compared to PM1 because PM2 needs more

matrix calculation processes than PM1. Based on these findings, we confirmed that the pro-

posed methods have much lower computational cost than the CST, Wald test, and likelihood

ratio test.

Discussion

In this paper, we presented two new fast score tests, PM1 and PM2, that require only a single

global null estimator for all SNPs for genome-wide scan when missing genotypes are present.

We confirmed that our proposed methods can significantly reduce the computational cost

compared to conventional tests for genome-wide scans (e.g. Wald test in PLINK) in an appli-

cation to ADNI-GWAS data. Run time of PM2 is slightly slower than PM1 because PM2 needs

more matrix calculation processes. We theoretically proved that PM2 and CST have an equiva-

lent asymptotic power and that the power of PM1 is lower than that of PM2. Additionally, we

evaluated the power of CST, PM1, and PM2 by simulation studies and confirmed theoretical

results. Therefore, when even higher power is required in studies, PM2 should be used rather

than PM1, although PM2 is slightly slower than PM1 in computation. Our approach can speed

up the computation by 6–18 times faster than CST, the Wald test, and the likelihood ratio test

Fig 6. Manhattan plots of each chromosome for ADNI-GWAS dataset with all SNPs. Manhattan plots of each

chromosome for ADNI-GWAS dataset. P-values using the conventional score test (CST), the proposed method 1

(PM1) test, the proposed method 2 (PM2) test, the Wald test, and the likelihood ratio test are shown in order from the

top. The black and gray points highlight different chromosomes.

https://doi.org/10.1371/journal.pone.0199692.g006
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for genome-wide scans. The CST, Wald, and likelihood ratio tests require re-computation of

null MLE for each SNP because the pattern of missing genotypes differs across loci. Our test

statistics only use a single global MLE under the null for all SNPs, which avoids re-computing

null MLE for each SNP, and the speed-up is independent of the proportion of missing

Fig 7. Comparisons of the proposed methods and the conventional score test P-values with the subset SNPs with missing genotypes. Comparisons of the

proposed methods (PM1 and PM2) and the conventional score test (CST) P-values that displays only top 1,000. SNPs are stratified by missing rate (low missing SNPs:

0%<Missing rate< 1%, high missing SNPs: Missing rate� 1%).

https://doi.org/10.1371/journal.pone.0199692.g007
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genotypes. The more the number of covariates is, the more computational speed-up is pro-

nounced. Our framework is more valuable for more complicated analyses which require

enormous number of hypotheses to be tested such as gene-environment or/and gene-gene

interaction analyses.

Missing genotypes may be imputed by the genetic imputation which is a method to predict

the genotypes at the SNPs that are not directly assayed in a sample of individuals. It is achieved

by using known haplotype reference panel, for example from the HapMap or the 1000

Genomes Project in humans [16, 17]. However, the accuracy of genotype imputation and

boosting power of the subsequent association analyses depends on the quality of reference

panel. Moreover, genetic imputation requires a lot of computational resources [18–20]. Even if

imputation is applied, there usually remain uncertain genotypes that are hard to call, which are

often set to missing. Therefore, missing genotype problem is unavoidable even after genetic

imputation.

In this study we have assumed MCAR for the proposed methods, which is a reasonable

assumption in the case where simply discarding the missing observations (i.e. complete case

analysis in the CST) is not too problematic [21]. Although our proposed method worked in

real GWAS data from ADNI, there may be a case where missing genotypes cannot be consid-

ered as MCAR [22]. Then, simply ignoring missing genotypes from analysis may lead to severe

bias [21]. By the same reason, in this case, our theoretical results regarding type I error and

power for the proposed methods may not hold. Further work remains to be done in this

important topic.

In this paper, we focused only on the logistic regression model for binary traits. However,

our framework is general and is extensible to other different score tests, e.g. in survival

analysis.

Supporting information

S1 Appendix. Details of the method. More details of the materials and methods section

including formulas, derivations, and additional descriptions.

(PDF)

S2 Appendix. Program code. A program code of simulations.

(PDF)

S1 Fig. Q-Q plot of the conventional score test and the proposed methods at missing rate

2%. Chi-squared (1-df or 2-df) Q-Q plot of the top 500 conventional score test, the proposed

method 1, and the proposed method 2 score statistics for missing rate is 2% and minor allele

frequency (MAF) is 10% and 30% in null simulation.

(EPS)

S2 Fig. Q-Q plot of the conventional score test and the proposed methods at missing rate

10%. Chi-squared (1-df or 2-df) Q-Q plot of the top 500 conventional score test, the proposed

Table 2. Run times (CPU sec) from the proposed methods and the conventional tests.

CST PM1 PM2 Wald LRT

452.9 49.2 74.6 460.6 874.5

Run times (CPU sec) from the proposed methods (PM1 and PM2), the conventional score test (CST), the Wald test,

and the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0199692.t002
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method 1, and the proposed method 2 score statistics for missing rate is 10% and minor allele

frequency (MAF) is 10% in null simulation.

(EPS)

S3 Fig. G test Power of the conventional score test and the proposed methods at MAF 10%.

G test Power of the conventional score test (CST), the proposed method 1 (PM1), and the pro-

posed method 2 (PM2) under missing rate (2%, 5%, 10%), minor allele frequency (MAF)

(30%), and the number of case/control (1,000, 5,000). The x-axis denotes genetic odds ratios

(ORg = exp(βg)). The significance level is 5 × 10−8.

(EPS)

S4 Fig. G-GE test Power of the conventional score test and the proposed methods at the

number of case/control is 1,000 and MAF 10%. G-GE test Power of the conventional score

test (CST), the proposed method 1 (PM1), and the proposed method 2 (PM2) under genetic

odds ratios (ORg = exp(βg) = 1.1, 1.2), missing rate (2%, 5%, 10%), minor allele frequency

(MAF) (10%), and the number of case/control is 1,000. The x-axis denotes gene-environment

interaction odds ratios (ORge = exp(βge)). The significance level is 5 × 10−8.

(EPS)

S5 Fig. G-GE test Power of the conventional score test and the proposed methods at the

number of case/control is 5,000 and MAF 10%. G-GE test Power of the conventional score

test (CST), the proposed method 1 (PM1), and the proposed method 2 (PM2) under genetic

odds ratios (ORg = exp(βg) = 1.1, 1.2), missing rate (2%, 5%, 10%), minor allele frequency

(MAF) (10%), and the number of case/control is 5,000. The x-axis denotes gene-environment

interaction odds ratios (ORge = exp(βge)). The significance level is 5 × 10−8.

(EPS)

S6 Fig. Missing rate distribution of ADNI. The y-axis denotes the number of SNPs. The x-

axis denotes Missing rate.

(EPS)

S7 Fig. Manhattan plots of each chromosome for ADNI-GWAS dataset with the low miss-

ing SNPs. The y-axis denotes the number of SNPs. The x-axis denotes Missing rate. Low miss-

ing population include SNPs with missing (0%< Missing rate< 1%).

(PNG)

S8 Fig. Manhattan plots of each chromosome for ADNI-GWAS dataset with the high miss-

ing SNPs. The y-axis denotes the number of SNPs. The x-axis denotes Missing rate. High

missing population include SNPs with missing (Missing rate� 1%).

(PNG)

S1 Table. Type I error rates of the conventional score test and the proposed methods at the

scenarios with smaller sample sizes and unbalanced case-control samples. Type I error

rates of the conventional score test (CST), the proposed method 1 (PM1), and the proposed

method 2 (PM2) at a significance level of α = 5 × 10−5.

(PDF)

S2 Table. G test and G-GE test Power. G test Power of the conventional score test (CST), the

proposed method 1 (PM1), and the proposed method 2 (PM2) under missing rate (2%, 5%,

10%, 30%), minor allele frequency (MAF) (10%, 30%), and the number of case/control (1,000,

5,000). The x-axis denotes genetic odds ratios (ORg = exp(βg)). The significance level is

5 × 10−8. G-GE test Power of CST, PM1, and PM2 under genetic odds ratios (ORg = exp(βg) =

1.1, 1.2), missing rate (2%, 5%, 10%, 30%), minor allele frequency (MAF) (10%, 30%), and the
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number of case/control is 1,000. The x-axis denotes gene-environment interaction odds ratios

(ORge = exp(βge)). The significance level is 5 × 10−8.

(PDF)

S3 Table. G test and G-GE test Power at the scenarios with smaller sample sizes and unbal-

ance case-control samples. G test Power of the conventional score test (CST), the proposed

method 1 (PM1), and the proposed method 2 (PM2) under missing rate (2%, 5%, 10%, 30%),

minor allele frequency (MAF) (10%, 30%), and the number of case/control (1,000, 5,000). The

x-axis denotes genetic odds ratios (ORg = exp(βg)). The significance level is 5 × 10−8. G-GE test

Power of CST, PM1, and PM2 under genetic odds ratios (ORg = exp(βg) = 1.1, 1.2), missing

rate (2%, 5%, 10%, 30%), minor allele frequency (MAF) (10%, 30%), and the number of case/

control is 1,000. The x-axis denotes gene-environment interaction odds ratios (ORge = exp

(βge)). The significance level is 5 × 10−8.

(PDF)
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