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Abstract: Although the effects of growth hormone (GH) therapy on spinocerebellar ataxia type 3
(SCA3) have been examined in transgenic SCA3 mice, it still poses a nonnegligible risk of cancer
when used for a long term. This study investigated the efficacy of IGF-1, a downstream mediator
of GH, in vivo for SCA3 treatment. IGF-1 (50 mg/kg) or saline, once a week, was intraperitoneally
injected to SCA3 84Q transgenic mice harboring a human ATXN3 gene with a pathogenic expanded
84 cytosine–adenine–guanine (CAG) repeat motif at 9 months of age. Compared with the control
mice harboring a 15 CAG repeat motif, the SCA3 84Q mice treated with IGF-1 for 9 months exhibited
the improvement only in locomotor function and minimized degeneration of the cerebellar cortex as
indicated by the survival of more Purkinje cells with a more favorable mitochondrial function along
with a decrease in oxidative stress caused by DNA damage. These findings could be attributable to
the inhibition of mitochondrial fission, resulting in mitochondrial fusion, and decreased immunofluo-
rescence staining in aggresome formation and ataxin-3 mutant protein levels, possibly through the
enhancement of autophagy. The findings of this study show the therapeutic potential effect of IGF-1
injection for SCA3 to prevent the exacerbation of disease progress.

Keywords: spinocerebellar ataxia type 3; insulin-like growth factor-1; locomotor function; Purkinje
cells; mitochondrial function; autophagy

1. Introduction

Spinocerebellar ataxia (SCA) is one of the most common genetic neurodegenerative
diseases with multiple types. Among the different types of SCA, SCA type 3 (SCA3),
also known as Machado–Joseph disease, is highly expressed in the Asian population
and is the common type of autosomal dominant SCA in Taiwan [1]. Compared with
patients with SCA1 and SCA2, those with SCA3 have a later onset and present with
cerebellar ataxia, peripheral neuropathy, distal muscle atrophy, and hyporeflexia [2]. These
symptoms continue to worsen with time, and no known effective treatment is currently
available. The SCA3 locus responsible for SCA3 is located on chromosome 14q32.1 [3], and
its causative gene ATXN3 causes an abnormal expansion of cytosine–adenine–guanine
(CAG) trinucleotide repeats, leading to the production of the toxic protein polyglutamine
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(polyQ) [4]. PolyQ diseases, including SCA, spinal and bulbar muscular atrophy (SBMA),
and Huntington’s disease (HD), are currently identified as a group of neurodegenerative
disorders [5]. Because of the abnormal accumulation of polyQ, ataxin-3 loses the function of
deubiquitinating enzymes and affects the efficiency of proteasome degradation [6], leading
to imbalances in regulation pathways and ultimately neuronal apoptosis [7]. Aggregation
and toxicity caused by mutant ataxin-3 are the hallmarks of SCA3 [8]. Therefore, the
clearance of mutant ataxin-3 proteins is proposed as a promising therapeutic strategy [9].

Human growth hormone (GH), secreted by the anterior pituitary, is a signaling
molecule that affects the CNS, cell proliferation and differentiation, and metabolism [10,11].
Our previous study reported that intraperitoneal (IP) injection of GH restored locomotor
functions and preserved more Purkinje cells (PCs)/cerebellar cortex cells in SCA3 84Q
transgenic mice [12]. In addition to activating GH receptors, GH induces the liver or
cerebral and peripheral nerve cells to synthesize and secrete insulin-like growth factor 1
(IGF-1) [13]. GH and IGF-1 regulate cellular function. Impaired release of GH and IGF-1
can cause substantial changes in tissue structures and functions [14]. Compared with GH,
IGF-1 exerts multiple effects on the nervous system and has a stronger effect on motor and
sensory neurons and neurogenesis [15,16]. IGF-1 is not only involved in the regulation
of obesity, cancer, metabolism, and aging [17], but also affects the survival and matura-
tion of cells [18]. For tissue homeostasis, IGF-1 is an essential paracrine and autocrine
factor [19] with antiapoptotic and anti-inflammatory functions [20]. Moreover, IGF-1 has
been demonstrated to be beneficial in amyotrophic lateral sclerosis (ALS) [21,22].

Glypromate (glycine–proline–glutamate, GPE) is an N-terminal tripeptide of IGF-1
that exerts a neuroprotective effect, and its structure and biological function are similar
to those of IGF-1 [23,24]. GPE can not only easily cross the blood–brain barrier, but
also be naturally cleaved by an acid protease in the brain [25]. The efficacy of the daily
subcutaneous injection of IGF-1 in patients with SCA3 has been validated [26,27]. However,
these were open-label studies, and the effect of IGF-1 should be experimentally verified
because these studies included a limited number of patients, had a short follow-up period,
and did not elucidate the molecular mechanism of IGF-1. Moreover, the treatment efficacy
of IGF-1 when used for more than several months has not been studied in patients with
SCA3. In laboratory rodents, IP administration is safer, better tolerated, less stressful, and
more suitable for repeated administration as well as has a higher absorption rate [28]. Thus,
in this study, the protective effect and possible mechanisms of IGF-1, especially in the
regulation of mitochondrial function and autophagy in aggregate protein clearance, the
critical factors responsible for IGF-1 benefit in SCA3 treatment, were investigated in SCA3
84Q transgenic mice that were administered a weekly IP injection of IGF-1 for 9 months
(the same approach was used for GH intervention in our previous study).

2. Materials and Methods
2.1. Animal Model

SCA3 15Q transgenic mice were a generous gift from Prof. Henry L. Paulson (Depart-
ment of Neurology, University of Michigan, Ann Arbor, MI, USA), and SCA3 84Q transgenic
mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA). The genome of
transgenic mouse strains contains a yeast artificial chromosome transgene that expresses the
human ataxin-3 gene modified with expanded 15 and 84 CAG repeat motifs that mimic the
health and SCA3 in humans, respectively. All the mice were of C57BL/6J background, and
the identities of the SCA transgenic mice were confirmed through the PCR of a DNA sample
obtained from the mouse tail. The primers used for the detection of the CAG repeat in
the ataxin-3 gene were as follows: forward primer 5′-TGGCCTTTCACATGGATGTGAA-3′

and reverse primer 5′-CCAGTGACTACTTTGATTCG-3′. The 163 bp molecule belongs to
SCA3 15Q, whereas that 430 bp molecule refers to SCA3 84Q. All the mice were housed
under a 12 h light/dark cycle. All the animal experiments were approved by the Institu-
tional Animal Care and Use Committee of the Changhua Christian Hospital (approval
No. CCH-AE-106-017, 2 February 2018). The transgenic mice were divided into three
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groups: SCA3 15Q mice as the normal control group (n = 6), SCA3 84Q mice treated with
saline as the sham control group (n = 8), and SCA3 84Q mice treated with IGF-1 as the
study group (n = 8). A low dosage of IGF-1 was used in this study following the method
reported by Deacon et al. [29]. Each IGF-1- and saline-treated SCA3 84Q mouse intraperi-
toneally received 50 mg/kg of IGF-1 (GPE, Sigma-Aldrich, St. Louis, MO, USA) and saline,
respectively, weekly from postnatal age of 9 months to 18 months. The body weight of the
mice was recorded once a week to monitor their health.

2.2. Rotarod Test

Motor coordination and balance were evaluated using a rotarod apparatus (Acceler-
ating Model, Ugo Basile Biological Research Apparatus, Varese, Italy) in the mice once a
month during the intervention period. The mice were put on a rod (6 cm in diameter) at a
preliminary speed of 5 rpm. The speed of the rod was linearly increased from 5 to 40 rpm
within 300 s. The latency to fall (height = 20 cm) was defined as the period (in seconds) for
which a mouse persisted on the rod, and the maximal period for each mouse was 5 min.
After a mouse was removed from the rod, it was allowed to rest for 20 min before the next
trial to prevent exhaustion. Each mouse underwent six trials, and the latency to fall was
recorded and analyzed statistically.

2.3. Open Field Test

Behavioral experiments were conducted using a carton with opaque bottom (carton
size: 45 cm long × 45 cm wide × 65 cm high). An infrared sensitive camera was placed
on the top of the carton and operated using the EthoVision XT 7.0 (Noldus Information
Technology, Wageningen, The Netherlands) software. This video-tracking software auto-
matically tracked mouse activities, namely the move distance, movement time, walking
distribution, and velocity in 10 min. The walking distribution was calculated by dividing
the field of view into four quadrants and counting the number of times the mouse crossed
the quadrant. Behavioral analysis was performed before the mice were euthanized.

2.4. Catwalk Gait Analysis

Gait analysis was performed before the mice were euthanized, and the method used
was described previously [30]. Briefly, the gait of the mice was analyzed using the CatWalk
automated gait analysis system (Noldus Information Technology, Wageningen, The Nether-
lands). The apparatus consisted of a long glass plate as the walkway floor for the mouse to
traverse voluntarily. Under the glass plate, a high-speed camera was placed. When a mouse
traversed from one end to the other, its footsteps were illuminated by fluorescent light
emitted from below and recorded by the camera. Each mouse was subjected to 8–10 trials,
and the statistics of multiple parameters, namely step cycle (time between two consecutive
initial contacts of the same paw), stride length (the distance between successive placements
of the same paw), stand (duration of contact of a paw with the glass plate), and average
speed, were recorded and analyzed using CatWalk XT 9.0.

2.5. Histological Tissue Section Preparation

The mouse hemibrain was harvested at 18 months of age, fixed with 4% paraformalde-
hyde for 48 h, and then dehydrated. The tissue was soaked in xylene to remove alcohol
and fat. Subsequently, the tissue was submerged in molten paraffin in a mold. After the
hardening of paraffin, the embedded tissue was removed from the mold. A microtome was
used to obtain 5 µm-thick tissue sections, which were then transferred to a glass slide.

2.6. Hematoxylin and Eosin Staining

To observe the cerebellar molecular layer (ML), granular layer (GL), and PCs, the tis-
sues were stained with H&E. The sections were deparaffinized and sequentially rehydrated
in xylene and 100%, 95%, 80%, and 75% ethanol and water, followed by staining with H&E.
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Subsequently, the sections were immersed in 80%, 95%, and 100% ethanol and xylene for
dehydration and then sealed.

2.7. Immunohistochemical Staining of Ataxin-3 and 8-OHdG

After deparaffinization and rehydration, antigen retrieval was performed using an
antigen retriever apparatus with heat and pressure. The sections were washed in 1× PBS
(10 mM Tris–HCl, 150 mM NaCl, 0.05% (v/v) Tween 20, pH 8.0) and blocked with
3% hydrogen peroxide at room temperature (RT) for 10 min. Subsequently, the sections
were incubated with the anti-ataxin-3 or anti-8-OHdG monoclonal antibody diluted in the
blocking solution (1:300) for 40 min at RT. After washing with 1× PBS, the sections were
incubated with a secondary antibody diluted in the blocking solution (1:1000) for 40 min at
RT. After washing, the sections were incubated with peroxidase-conjugated streptavidin for
20 min at RT. To achieve an appropriate level of staining, the sections were developed under
a microscope by using diaminobenzidine for approximately 1 min. Then, the sections were
counterstained with hematoxylin, dehydrated through sequential immersion in alcohol
and xylene, and coverslipped. Ten microscopic fields of posterior lobules were examined
in each section and analyzed using the ImageJ software (Rasband, W.S., National Institutes
of Health, Bethesda, MD, USA).

2.8. Immunofluorescence Staining

Paraffin-embedded tissue sections were deparaffinized before staining. The sections
were immersed in xylene twice every 10 min to dissolve paraffin. Before the final wash with
water, a series of decreasing alcohol concentrations was used to remove xylene. The sections
were then fixed with 4% formaldehyde in PBS at 37 ◦C for 15 min. The sections were placed
in 0.01 M citrate buffer and heated to 95 ◦C for 40 min to retrieve the antigen. Subsequently,
the sections were washed with deionized water and cooled for 15 min. The sections
were then stained with the ProteoStat® dye (1000× in PBS from a ProteoStat® Aggresome
Detection Kit, Enzo Life Sciences, Farmingdale, NY, USA) for 3 min. The sections were
immersed in deionized water and destained in 1% acetic acid for 20 min and then blocked
in PBS containing 3% BSA at RT for 30 min. Subsequently, the sections were incubated
with anti-ataxin-3 (Abcam, Cambridge, MA, USA, ab175265, 1:50) at 4 ◦C overnight. After
washing with PBS three times, the sections were incubated with goat anti-rabbit secondary
antibodies conjugated to DyLight 488 (1:200, Jackson ImmunoResearch, West Grove, PA,
USA) and 10µg/mL Hoechst 33,342 (Invitrogen Molecular Probes, Paisley, UK) for 1 h.
The sections were then washed three times with PBS and cooled for 15 min. Finally,
the coverslips were mounted on slides by using 50% glycerol. Imaging was performed
using a phase-contrast microscope (IX81, Olympus, Tokyo, Japan) with a 400× digital
camera (DP72, Olympus). Images were obtained from different parts of the cerebellum and
analyzed using the ImageJ software.

2.9. Western Blot Analysis

The mouse cerebellum was lysed in the T-PERTM Tissue Protein Extraction Reagent
(Thermo Fisher Scientific, Rockford, USA) supplemented with Phosphatase Inhibitor Cock-
tail Set V (Millipore, Darmstadt, Germany) and Protease Inhibitor Cocktail Set I (Millipore)
at 4 ◦C for 2 h. After centrifugation at 14,000 rpm at 4 ◦C for 30 min, the supernatant
was collected. The protein concentration was measured and quantified using the PierceTM

BCA Protein Assay Kit (Thermo Fisher Scientific). The proteins were denatured in 6× SDS
loading dye (AllBio, Taichung, Taiwan) at 95 ◦C for 5 min. Then, 15–40 µg of proteins
from each sample were loaded on 10% or 12% SDS–PAGE gels (Bio-Rad Laboratories,
Richmond, CA, USA) and then transferred onto a PVDF membrane (Millipore). The mem-
branes were blocked in a BlockPRO Blocking Buffer (Visual Protein, Taipei, Taiwan) at
RT for 2 h and then incubated at 4 ◦C with the following primary antibodies overnight:
Calbindin (Cell Signaling, Danvers, Massachusetts, USA, #2173, 1:1000), Drp1 (Abcam,
ab154879, 1:500), p-Drp1 (Cell Signaling, #3455, 1:250), Opa1 (BD Biosciences, San Jose, CA,
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USA, #612607, 1:500), Mfn2 (Sigma-Aldrich, M6319, 1:500), Ataxin-3 (Abcam, ab175265,
1:500), Beclin 1 (Novusbio, NB110-87318, 1:1000), p62 (Sigma-Aldrich, P0067, 1:1000), Atg7
(Abcam, ab133528, 1:2500), LC3A/B (Cell Signaling, #4108, 1:500), and Lamp2 (Proteintech,
Rosemont, USA, 10397-1-AP, 1:500). After washing three times with TBS (0.1% Tween 20),
the membrane was incubated with anti-mouse or anti-rabbit secondary antibodies (Jackson
Immuno Research Laboratories, Pennsylvania, USA, 1:10,000) at RT for 1 h. Chemilu-
minescent signals were detected using the Immobilon Western Chemiluminescent HRP
Substrate (Millipore) on a Fusion-FX7-826.WL Superbright Transilluminator instrument
(Vilber Lourmat, Eberhardzell, Germany). The band intensities were normalized to the
total expression of proteins and quantitated using the ImageJ software.

2.10. Cerebellar Mitochondrial Functional Measurement

After euthanizing the mice, a part of their cerebellum was ground immediately, and a
high-resolution respirometry device (Oxygraph-2k (O2k); Oroboros, Innsbruck, Austria)
was used to detect cerebellum mitochondrial respiration data. To examine mitochondrial
respiration, 0.5 mM malate and 10 mM L-glutamate were added to obtain complex I-linked
LEAK respiration. Subsequently, 2.5 mM ADP was added to induce complex I-linked
oxidative phosphorylation (OXPHOS). Then, 10 mM succinate was added to observe
CI + II-linked OXPHOS. Subsequent injections of the ATP synthase inhibitor oligomycin
(5 µM) and the uncoupler FCCP (1.5 µM) allowed examining the LEAK respiration in the
presence of adenylates and the maximum noncoupled respiration, respectively. Finally,
the electron transport chain inhibitor rotenone (10 µM) and antimycin A (6.25 µM) were
added to inhibit CI and CIII, respectively, to completely shut down mitochondrial oxygen
consumption and obtain a measure of residual oxygen consumption (ROX).

2.11. Plasma Neurofilament Light Chain Measurement

Blood samples were taken into anticoagulation tubes (BD Microtainer, Becton, Dickin-
son and Company, Baltimore, USA) and centrifuged at 2500 rpm for 10 min at RT within
2 h of collection. Plasma supernatants were collected and divided into aliquots, then frozen
at −80 ◦C until used for analyses. The plasma level of the neurofilament light chain (Nf-L)
was measured using a competitive Nf-L ELISA kit (10-7002, UmanDiagnostics, Umeå,
Sweden), in which a monoclonal antibody specific for Nf-L had been precoated onto a
microplate according to the manufacturer’s instructions.

2.12. Statistical Analysis

All the data were presented as the means ± SEM. Graphics were generated using the
GraphPad Prism software (version 7.0, Graph Pad Software, San Diego, CA, USA). The
SPSS (SPSS Statistics for Windows, Version 17.0, SPSS Inc., Chicago, CA, USA) or GraphPad
software was used for statistical analysis. Statistical analysis was determined by one-way
analysis of variance (ANOVA) followed by the Bonferroni multiple comparisons post hoc
test or two-way repeated measures ANOVA followed by the Bonferroni multiple compar-
isons post hoc test (rotarod test). A difference with p < 0.05 was considered statistically
significant and is indicated with an asterisk.

3. Results
3.1. IGF-1 Maintained the Motor Ability of SCA3 mice

To examine the motor coordination and gait performance of the transgenic mice with
or without treatment for 9 months, we performed rotarod, behavior box, and CatWalk
gait tests. The rotarod test was performed once a month to evaluate motor coordination
and endurance in the mice. Throughout the experimental process, the saline-treated SCA3
84Q mice displayed a shorter time of latency to fall than did the SCA3 15Q and IGF-1-
treated SCA3 84Q mice (Figure 1a). After 9 months of treatment, the average latency to
fall was longer in the IGF-1-treated SCA3 84Q mice than in the saline-treated SCA3 84Q
mice (128.50 ± 11.95 s vs. 93.06 ± 10.35 s, p > 0.05) (Figure 1a), but did not reach statistical
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significance. After normalization to the pretreatment point, the percentage of relative
latency to fall in the IGF-1-treated SCA3 84Q mice was still higher than that in the saline-
treated SCA3 84Q mice (93.40% ± 15.31% vs. 55.91% ± 4.07%; p > 0.05), but did not reach a
significant level (Figure 1b). This trend continued throughout the 9-month treatment.

Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 20 
 

 
Figure 1. IGF-1 prevented impairment of the motor function in the SCA3 mice. (a) Latency to fall 
(time in seconds for which the mice persisted on the rotarod) for the SCA3 15Q mice and the saline- 
and IGF-1-treated SCA3 84Q mice during the 9 months of treatment. (b) Within the same group, the 
latency to fall at pretreatment was normalized to 100%. (c) EthoVision XT 7.0 software was used to 
analyze trajectories of the mice in the behavioral test. (d) The distance of movement, time of move-
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Captured images of the single stance for each paw. (f) Catwalk parameters included the step cycle, 
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denotes statistical significance in the saline-treated SCA3 84Q mice compared with the SCA3 15Q 
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Figure 1. IGF-1 prevented impairment of the motor function in the SCA3 mice. (a) Latency to fall
(time in seconds for which the mice persisted on the rotarod) for the SCA3 15Q mice and the saline-
and IGF-1-treated SCA3 84Q mice during the 9 months of treatment. (b) Within the same group, the
latency to fall at pretreatment was normalized to 100%. (c) EthoVision XT 7.0 software was used
to analyze trajectories of the mice in the behavioral test. (d) The distance of movement, time of
movement, frequency of zone change, and average velocity were included in transformed indices.
(e) Captured images of the single stance for each paw. (f) Catwalk parameters included the step cycle,
stride length, stand, and average speed. The data are presented as the means ± SEM. Note: # p < 0.05
denotes statistical significance in the saline-treated SCA3 84Q mice compared with the SCA3 15Q
mice; * p < 0.05 indicates a significant difference.
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The behavior box test was conducted at the end of the study when the mice were
18 months old. As shown in Figure 1c, the Etho-Vision XT 7.0 software was used to record
and analyze the mouse movement path and the autonomous movement ability. In all
the locomotor activities, the performance of the IGF-1-treated SCA3 84Q mice was more
favorable than that of the saline-treated SCA3 84Q mice in the ninth month including
the distance moved (1903.26 ± 277.98 cm vs. 1113.99 ± 219.42 cm; p < 0.05), movement
(257.66 ± 28.38 s vs. 156.73 ± 35.67 s), frequency of zone change (59.50 ± 7.80 times vs.
37.33± 9.82 times), and velocity (3.71± 0.62 cm/s vs. 2.00± 0.39 cm/s; p < 0.05) (Figure 1d).

In the catwalk gait analysis, mouse footprints were captured and converted into
images (Figure 1e). The measurements of the footprints contained the step cycle, stride
length, stand, and average speed (Figure 1f) and were analyzed using the software that
was linked to the apparatus. For these four parameters, the test values of the saline-treated
SCA3 84Q mice significantly differed from those of the SCA3 15Q mice for the leg sets,
indicating a change in gait performance owing to SCA3. Although no significant change
after treatment was observed in the IGF-1-treated SCA3 84Q mice compared with the
saline-treated SCA3 84Q mice, an improved trend in step cycle and stand was still observed
in the IGF-1-treated SCA3 84Q mice. This finding indicated that IGF-1 treatment might
confer partial protective effects on the SCA3 mice.

3.2. IGF-1 Restored the Loss of PCs and the Thickness of GL and ML in The Mouse Cerebellum

After the motor ability tests, the 18-month-old mice were euthanized. Their brains
were harvested and used for histocytological analysis, which involved the visualization
of the PC layer (PCL), GL, and ML. The number of PCs along the PCL of the posterior
lobules of the cerebellum was counted. The average number of PCs per 100 µm in the PCL
was quantified. The saline-treated SCA3 84Q mice had a significantly lower number of
PCs than did the SCA3 15Q mice (2.20 ± 0.05 vs. 3.04 ± 0.15; p < 0.05); the number of
PCs was restored to a normal level after the IGF-1 treatment (IGF-1-treated SCA3 84Q vs.
saline-treated SCA3 84Q, 2.57 ± 0.06 vs. 2.20 ± 0.05; p < 0.05) (Figure 2a). The results of the
Western blot revealed that the calbindin level was increased in the cerebellum extracts of
the IGF-1-treated SCA3 84Q mice (Figure 2b).

The average thickness of the GL in the saline-treated SCA3 84Q mice was significantly
lower (saline-treated SCA3 84Q vs. SCA3 15Q, 217.66 ± 11.78 µm vs. 257.15 ± 7.94 µm;
p < 0.05); however, significant restoration was noted in the IGF-1-treated SCA3 84Q mice (IGF-
1-treated SCA3 84Q vs. saline-treated SCA3 84Q, 246.61 ± 4.81 µm vs. 217.66 ± 11.78 µm;
p < 0.05) (Figure 2c). The average thickness of the ML in the saline-treated SCA3 84Q mice
was lower than that in the SCA3 15Q mice (119.79 ± 2.69 µm vs. 129.18 ± 2.69 µm; p > 0.05).
However, the thickness of the ML was restored in the IGF-1-treated SCA3 84Q mice compared
with the saline-treated SCA3 84Q mice (137.24 ± 4.07 µm vs. 119.79 ± 2.69 µm; p < 0.05)
(Figure 2d).

3.3. IGF-1 Reduced Mutant Ataxin-3 Protein Expression in the SCA3 Mice

Our previous data indicated that ataxin-3 immunohistochemical (IHC) staining demon-
strated strong immunoreactivity to the SCA3 84Q mice. Consistent with the previous
findings, we observed that ataxin-3 expression was significantly increased in the PCs of
the saline-treated SCA3 84Q mice. After the IGF-1 treatment, the immunoreactivity pat-
terns of ataxin-3 were moderately reduced in the IGF-1-treated SCA3 84Q mice, while the
protein expression level of ataxin-3 was significantly decreased. Although the SEM was
higher in the saline-treated SCA3 84Q and IGF-1-treated SCA3 84Q groups, there was still
a significant change comparison (Figure 3a,b). Toxicity of the mutant ataxin-3 protein may
be attributable to misfolding and abnormal aggregation [4]. Therefore, protein aggregation
detected using the ProteoStat® dye colocalized with ataxin-3 was evaluated through im-
munofluorescence staining. Compared with the SCA3 15Q mice, the saline-treated SCA3
84Q mice demonstrated a significant increase in the aggregation signal in PCs. After the
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IGF-1 treatment, the mean intensity of the aggregation signal was significantly decreased
and returned to the same level as that in the SCA3 15Q mice (Figure 3c).
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in the posterior lobules of the cerebellum is presented in the bar graph (mean ± SEM) (left panel).
SCA3 15Q, n = 6; SCA3 84Q, n = 8; SCA3 84Q + IGF-1, n = 8. (b) Western blot analysis of calbindin
(left panel). Relative expression levels of calbindin in the cerebellum (mean ± SEM) (right panel).
SCA3 15Q, n = 4; SCA3 84Q, n = 4; SCA3 84Q + IGF-1, n = 4. (c) The lines indicate the distance
from the tip of the granular layer (GL) to the white matter (right panel). Histogram showing the
thickness of the GL (mean ± SEM) (left panel). SCA3 15Q, n = 5; SCA3 84Q, n = 6; SCA3 84Q + IGF-1,
n = 8. (d) The frames are the sampling area of the Figure and the lines refer to the distance from the
PCL to the edge of the molecular layer (ML) (right panel). Histogram showing the thickness of the
ML (mean ± SEM) (left panel). SCA3 15Q, n = 5; SCA3 84Q, n = 6; SCA3 84Q + IGF-1, n = 8. Note:
* p < 0.05 indicates a significant difference.
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munochemical staining of ataxin-3 in the cerebellum. The black arrows indicate PCs (right panel).
Histograms show the means± SEM (left panel). SCA3 15Q, n = 4; SCA3 84Q, n = 4; SCA3 84Q + IGF-1,
n = 5. (b) Western blot confirming ataxin-3 expression in the mouse cerebellum (left panel). Quan-
tification of the ataxin-3 level relative to the total protein level (mean ± SEM) (right panel). SCA3
15Q, n = 4; SCA3 84Q, n = 4; SCA3 84Q + IGF-1, n = 5. (c) Slices of the cerebellum of two mice in
each group were selected and double-labeled using an aggresome detection kit (red) and an Alexa
488-conjugated secondary IgG against the anti-ataxin-3 antibody (green), and fluorescence intensities
of 30–40 PCs in each mouse were examined using the ImageJ software. The white arrows indicate
PCs. SCA3 15Q, n = 2; SCA3 84Q, n = 2; SCA3 84Q + IGF-1, n = 2. Note: * p < 0.05 indicates a
significant difference.
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3.4. IGF-1 Enhanced the Autophagy Pathway

To determine whether the IGF-1-caused reduction in the mutant ataxin-3 protein
expression was related to autophagy, we measured the expression of autophagy-related
proteins, namely Beclin1, p62, Atg7, and LC3-II, and the lysosomal marker Lamp2. We
found that the expression levels of Beclin1 and LC3-II but not of p62, Atg7, and Lamp2
were significantly decreased in the saline-treated SCA3 84Q mice compared with the SCA3
15Q mice, indicating that the autophagy mechanism of the SCA3 84Q mice was impaired.
However, the expression levels of Beclin1 and LC3-II were significantly increased after the
IGF-1 treatment, indicating the possible restoration of the autophagy inducement (Figure 4).
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3.5. IGF-1 Enhanced the Mitochondrial Function in the SCA3 Mouse Cerebellum

After euthanizing the mice, a part of their cerebellum was ground immediately, and
O2k was used to detect mitochondrial respiration in the cerebellum. The mitochondrial
function of the IGF-1-treated SCA3 84Q mice was more satisfactory than that of the saline-
treated SCA3 84Q mice, with the IGF-1-treated SCA3 84Q mice having more OXPHOS,
higher maximal mitochondrial phosphorylation respiration capacity (Max-Ox), and better
electronic delivery system (Max-U) (Figure 5a). Formation of 8-hydroxy-2′-deoxyguanosine
(8-OHdG) is a marker of mitochondrial DNA oxidative damage [31]. The arrangement
of PCs could be clearly observed in IHC staining. The ImageJ software was used to
determine the expression of the 8-OHdG protein in each PC. The cerebellar sections were
selected from 4–5 mice in each group, and 10 microscopic fields were examined in each
section accordingly. We observed that the 8-OHdG level was significantly increased in
the PCs of the saline-treated SCA3 84Q mice. After the IGF-1 treatment, the 8-OHdG
level was moderately reduced (Figure 5b). To investigate the effects of IGF-1 on mouse
cerebellar mitochondria, we performed the Western blot analysis of the mitochondrial
dynamics-related proteins. Dynamin-related protein 1 (Drp-1), optic atrophy protein 1
(Opa1), and mitofusin-2 (Mfn2) were used to detect mitochondrial dynamics. SCA3 exhibits
more mitochondrial fission [32]. As shown in Figure 5c, we observed a slight increase
in the fission protein phospho-Drp1 (p-Drp1) in the saline-treated SCA3 84Q mice but a
significant decrease in the fusion protein Mfn2. However, the expression levels of these
proteins were recovered after the IGF-1 treatment, indicating that mitochondria tended to
undergo more fusion.
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Figure 5. Expression of the mitochondrial function in the SCA3 mice. (a) Typical trace of respirometry
measurements recorded using an Oroboros O2k with 2 mg/mL of the cerebellum. The blue curve
indicates the oxygen concentration in the sealed chamber, whereas the red curve shows the oxygen
consumption of tissue cells (left panel). Oxygen consumption of cells at different mitochondrial stages
was corrected for ROX, and the respiratory capacities in the routine, OXPHOS, Max-Ox, and Max-U
states were plotted as the means ± SEM (right panel). SCA3 15Q, n = 3; SCA3 84Q, n = 3; SCA3
84Q + IGF-1, n = 2. (b) The 8-OHdG protein expression in the cerebellum sections by IHC staining
analysis; the arrows indicate PCs (left panel). Histogram shows the mean ± SEM (right panel). SCA3
15Q, n = 4; SCA3 84Q, n = 5; SCA3 84Q + IGF-1, n = 5. (c) Western blot was performed to analyze the
expression of mitochondrial dynamics-related proteins (right panel). Quantification of mitochondrial
dynamics-related proteins (left panel). SCA3 15Q, n = 4; SCA3 84Q, n = 4; SCA3 84Q + IGF-1, n = 4.
Note: * p < 0.05 indicates a significant difference.



Biomedicines 2022, 10, 505 12 of 18

3.6. Nf-L Concentration in Plasma

Since an increase in Nf-L is associated with brain injury and atrophy [33], we evaluated
the concentration of Nf-L in mouse plasma. A significant increase was observed in the
saline-treated SCA3 84Q mice compared with the SCA3 15Q mice (p < 0.05). After the
IGF-1 administration, the Nf-L concentration in the IGF-1-treated SCA3 84Q mice declined
slightly, and there was no significant difference between the SCA3 15Q and IGF-1-treated
SCA3 84Q mice (Figure 6).
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3.7. Histopathological Findings in the Major Organs

GH might increase the occurrence of liver, lung, and kidney cancer. However, IGF-1 is
the downstream promotor of GH. To ensure that the administration of IGF-1 is relatively
safe, we performed H&E staining to determine whether the pathological sections of the liver,
lung, and kidney were abnormal. As shown in Figure 7, irrespective of IGF-1 treatment, no
obvious histopathological findings were noted.
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4. Discussion

The results of the present study revealed that the IGF-1 treatment restored motor
function, reduced neuronal cell death, and effectively prevented cerebellar atrophy in the
SCA3 84Q transgenic mice. The mechanism of neuroprotection involves the enhancement
of the autophagy process and the restoration of mitochondrial dynamics or oxidative
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phosphorylation after the IP injection of IGF-1. However, although the course of treatment
was the same, IGF-1 was not as effective as GH [12]. This difference might be associated
with the different levels of regulation between GH and IGF-1. In contrast to the downstream
promotor IGF-1, GH directly supports growth and metabolism and increases muscle mass
and strength [34].

IGF-1 inhibits cell apoptosis and stimulates cell proliferation to promote cancer devel-
opment. Many epidemiological studies have reported that circulating IGF-1 is positively
correlated with various primary cancers such as those of the breast, colon, and prostate [35].
IGF-1 induces the growth and metastasis of hepatocellular carcinoma by inhibiting protease-
induced cathepsin B degradation [36]. Stimulation of the IGF-1 receptor (IGF-1R) could
promote malignant transformation, cell proliferation and differentiation, and apoptosis
inhibition [37]. However, systemic IGF-1 treatment did not alter tumor development in
the mice injected with the naturally occurring densities of IGF-1R fibroblasts; this effect
was dependent on the dose and the IGF-1R expression level [38]. Grimberg indicated that
circulating IGF-1 may be related to the risk of different types of cancer but does not have a
causal role in cancer formation; local changes in mechanisms controlling cell growth are
required [39]. The findings of the present study indicated that treatment with IGF-1 for
9 months did not increase the circulating IGF-1 concentration; however, the expression lev-
els of IGF-1 and IGF-1R were restored to those observed in the normal SCA3 15Q mice [40].
Furthermore, no carcinogenicity was noted in the pathological sections of the liver, lungs,
and kidneys. These results indicated that the dosage of IGF-1 was safe (50 mg/kg) and did
not interfere with IGF-1 metabolism and gene expression during the 9-month treatment in
the SCA3 84Q mice.

Our previous study reported that behavioral functions were restored in the SCA3 84Q
transgenic mice after 9 months of GH intervention, including those examined using the
rotarod and locomotor tests [12]. This finding implied that after GH therapy, gait function
was restored even if the disease was already progressing to a symptomatic stage in the SCA3
mice aged > 9 months. IGF-1, a downstream molecule, might exert some effect on the SCA3
mice model. Saenger et al. reported that polyethylene glycol-modified IGF-1 treatment
in a SOD1-G93A ALS mouse with a low transgene copy number significantly delayed
symptom onset, increased forelimb grip strength, and improved rotarod performance [41].
Eleftheriadou et al. used the αCAR-targeted vector to investigate the neuroprotective
effects of IGF-1 on the SOD1-G93A mouse model. Their results indicated that αCAR IGF-1
LV treatment significantly prolonged the motor function in SOD1-G93A mice. The rotarod
performance of the female mice treated with αCAR IGF-1 LV was more favorable than
that of the control group. The findings of a footprint analysis showed that αCAR IGF-1
LV-treated mice had more satisfactory walking patterns [42]. Pristerà et al. reported that the
distance traveled by the IGF-1 conditional KO mice was smaller than that traveled by the
control mice, indicating a decrease in spontaneous locomotive activity [43]. In the present
study, IGF-1 treatment for 9 months gradually improved the latency to fall, especially after
the age of 17–18 months. In the behavioral and locomotor tests, the distance moved and
the frequency of zone changes were more favorable. In the digital footprint analysis, the
balance capability of the IGF-1-treated SCA3 84Q mice was similar to that of the SCA3 15Q
control mice; however, this result was not statistically significant.

IGF-1, an anabolic and neuroprotective agent, promotes the survival of neurons by
blocking apoptosis [44]. IGF-1 overexpression in transgenic mice increased the number of
neurons in the GL and ML, the total number of neurons, and the total number of synapses
in the ML [45]. The increased number of neurons in the dentate gyrus during the postnatal
period not only prevented neuronal death, but also increased neurogenesis [46]. These
results are consistent with those reported by Chrysis et al. [47]. IGF-1 is necessary for the
survival of PCs in the neonatal cerebellum [44]. Disruption of PC viability alters the func-
tion of the whole cerebellum, leading to cerebellar ataxia [48]. The findings of the present
study indicated that IGF-1 exerted neuroprotective effects by preserving PCs and increasing
the thickness of the cerebellar cortex in the IGF-1-treated SCA3 84Q mice; this finding is



Biomedicines 2022, 10, 505 14 of 18

consistent with that observed in GH-treated SCA3 84Q mice in our previous study [12].
IGF-1 exerts neuroprotective effects through mitochondrial activation [49]. Mitochondrial
dysfunction is related to various neurodegenerative diseases, including polyQ diseases
such as SBMA and HD [50]. In our SCA3 cell model, the basal respiratory rate and ATP-
linked respiration and respiratory capacity were significantly decreased [51]. Liver IGF-1
knockout (LID) mice demonstrated a decline in OXPHOS capacity and OXPHOS coupling
efficiency in hippocampal neurons [52]. IGF-1 might exert neuroprotective effects on SCA3
by supporting mitochondrial function accompanied with a significant increase in 8-OHdG,
a biomarker of oxidative damage. Similar findings were observed in an IGF-1-treated
nonalcoholic steatohepatitis mouse model [53]. Dynamic mitochondrial homeostasis plays
a crucial role in neuron survival and age-related neurodegeneration [54,55]. The damaged
mitochondria expressing abnormally increased fission in contrast to fusion are cleared
through mitophagy, and the disruption of the mitophagy clearance of dysfunctional mito-
chondria induces cell death [56]. Drp1 is responsible for regulating fission, whereas Opa1
and Mfn1/2 regulate fusion. Shirendeb et al. reported that in HD, a polyQ disease, the
inhibition of the interaction of mutant Htt with Drp1 reduced mitochondrial fission and
increased mitochondrial fusion in neurons [57]. Furthermore, Ribeiro et al. reported that
low doses of IGF-1 reduced Drp1 phosphorylation in HD striatal cells [58]. The dysfunction
of cerebellar coordination and balance as well as early death might be observed in mice
with the knockout of Opa1 and Mfn2 [59,60]. Thus, these findings are in accordance with
our result that the cerebellar mitochondria of the IGF-1-treated SCA3 84Q mice underwent
more fusion. Thus, the improvement of mitochondrial dynamics could be involved in the
restoration of mitochondrial function and the reduction in the death of cerebellar neurons
under IGF-1 treatment.

In our previous study, GH treatment exerted a neuroprotective effect and reduced
ataxin-3 expression in SCA3 84Q mice [12]. In the present study, IGF-1, the downstream
promotor of GH, reduced the immunoreactivity and protein expression of ataxin-3 in the
cerebellum of the SCA3 84Q mice. Palazzolo et al. reported that IGF-1 could reduce an-
drogen receptor (AR) aggregation and increase AR clearance in cells expressing AR65Q,
a cell model of SBMA, a polyQ neurodegenerative disease. Simultaneously, the over-
expression of IGF-1 in the muscles of SBMA mice prolonged their lifespan and rescued
behavioral abnormalities [61]. Regulation of the autophagic flux might ameliorate the
progression of neurodegenerative diseases including SCA3 [30,62]. In the animal models of
SCA3 and HD, the dysregulation of autophagy caused the accumulation of toxic mutant
proteins [62,63]. Autophagy can clear aggregated misfolding proteins by inducing the
expression of autophagy-related proteins including Beclin1, p62, and LC3. IGF-1 induces
autophagy by upregulating the Beclin1 and LC3-II levels [64]. Wen et al. reported that the
intramuscular injection of human IGF-1 with a self-complementary adeno-associated virus
vector in the cells and mouse models of ALS could upregulate mitochondrial autophagy
and suppress mitochondrial apoptosis [22]. Nevertheless, Beclin1 and p62 played different
roles in the pathogenesis of autophagy. Beclin1 induces autophagosome formation while
p62 acts as an adaptor protein and delivers ubiquitinated substrates to the proteasome [65].
More specifically, overexpression of Beclin1 has previously been reported to be associ-
ated with neuroprotection [66]. In this study, the IGF-1-treated SCA3 84Q mice exhibited
increased autophagy, as indicated by the upregulation of Beclin1 and LC3-II. Thus, IGF-1-
related autophagy might be a mechanism through which mutant proteins are cleared and
cerebellar degeneration is prevented. However, the detailed correlation between IGF-1 and
autophagy flux using autophagy inhibitors in SCA3 mice remains to be investigated.

In addition, in recent years, researchers have been working to find biomarkers for SCAs.
Neurofilaments are the main components of the neuron cytoskeleton protein, composed
of three subunits called Nf-L, neurofilament medium chain, and neurofilament heavy
chain [67]. There is a lot of evidence that the level of Nf-L in the blood can be used
as a biomarker for neurodegenerative diseases. Nf-L levels also reflect disease severity,
longitudinal disease progression, CAG repeat length and age [68]. In other words, the Nf-L
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levels increase with proximity to the estimated onset [69]. Therefore, Nf-L is a potential
candidate biomarker for therapeutic response. Indeed, this study showed a significant
increase in the saline-treated SCA3 84Q mice compared with the SCA3 15Q mice. The
Nf-L concentration in the IGF-1-treated SCA3 84Q mice declined slightly after the IGF-1
treatment, and there was no significant difference compared with the SCA3 15Q mice.

In summary, the findings of the present study revealed that IGF-1 ameliorated the
impairment of motor functions, suppressed the degeneration of PCs, preserved the thick-
ness of ML and GL, enhanced the function of mitochondria, and reduced oxidative stress
and the mutant ataxin-3 protein expression including protein aggregate formation in the
cerebellum. IGF-1 was not found to be carcinogenic in the SCA3 84Q mice at the dose and
time used in the present study. Considering the benefits of early treatment [41], treatment
efficacy can be improved in SCA3 mice before 7.5 months of age because the balance and
coordination ability of SCA3 84Q mice start to decline at the age of 7.5–13 months and
their limb position starts becoming abnormal at the age of 6 months [70]. On the basis of
the results of this study, future studies should investigate the most appropriate treatment
approaches involving the use of IGF-1 and validate its in vivo efficacy for SCA3 treatment.
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