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DNA repair mechanisms have been proven to be essential for cells, and abnormalities in
DNA repair could cause various diseases, such as cancer. However, the diversity and
complexity of DNA repair mechanisms obscure the functions of DNA repair in cancers. In
addition, the relationships between DNA repair, the tumor mutational burden (TMB), and
immune infiltration are still ambiguous. In the present study, we evaluated the prognostic
values of various types of DNA repair mechanisms and found that double-strand break
repair through single-strand annealing (SSA) and nonhomologous end-joining (NHEJ) was
the most prognostic DNA repair processes in gastric cancer (GC) patients. Based on the
activity of these two approaches and expression profiles, we constructed a HR-LR model,
which could accurately divide patients into high-risk and low-risk groups with different
probabilities of survival and recurrence. Similarly, we also constructed a cancer-normal
model to estimate whether an individual had GC or normal health status. The prognostic
value of the HR-LR model and the accuracy of the cancer-normal model were validated in
several independent datasets. Notably, low-risk samples, which had higher SSA and
NHEJ activities, hadmore somatic mutations and less immune infiltration. Furthermore, the
analysis found that low-risk samples had higher and lower methylation levels in CpG
islands (CGIs) and open sea regions respectively, and had higher expression levels of
programmed death-ligand 1 (PD-L1) and lower methylation levels in the promoter of the
gene encoding PD-L1. Moreover, low-risk samples were characterized primarily by higher
levels of CD4+ memory T cells, CD8+ naive T cells, and CD8+ TEM cells than those in high-
risk samples. Finally, we proposed a decision tree and nomogram to help predict the
clinical outcome of an individual. These results provide an improved understanding of the
complexity of DNA repair, the TMB, and immune infiltration in GC, and present an accurate
prognostic model for use in GC patients.
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INTRODUCTION

Gastric cancer (GC) is the sixth most prevalent cancer in the
world and the third leading cause of cancer-related deaths (Bray
et al., 2018). Despite remarkable progress in diagnostic and
therapeutic methods, GC remains a refractory malignancy. In
recent years, significant progress has been made in
understanding cancer-associated molecular genetics as a
result of the development of molecular biology methods.
Several studies have found that mutations in the genome
play an indispensable role in genomic maintenance and
evolution. Furthermore, studies have demonstrated that when
DNA repair mechanisms are disrupted or deregulated this may
increase rates of mutagenesis and genomic instability and
thereby mediate cancer progression (Bouwman and Jonkers,
2012; Wolters and Schumacher, 2013). The main DNA repair
mechanisms include direct repair, base excision repair, and
double-strand break repair, among which DNA double-
strand break (DSB) repair plays a crucial role in maintaining
genomic integrity (Gillyard and Davis, 2021). In addition, DSB
affects the prognosis of cancer by preventing disadvantageous
mutations (Stok et al., 2021). However, it remains unknown
whether DSB is valuable for predicting the clinical outcomes of
GC patients.

The tumor mutational burden (TMB) refers to the number of
somatic mutations per DNA megabase in tumor cells. TMB is
considered as the primary driver of antitumor adaptive immune
responses and serves as a positive predictive biomarker for immune
checkpoint inhibitors (Castle et al., 2012). Recently, various studies
have illustrated that the genomic instability resulting from the
inadequacy of DNA repair mechanisms is associated with high
TMBs. Preclinical studies identified that tumor cells with higher
TMB could produce more neoantigens, which are more easily
recognized by T cells, and thus activate stronger immune killing
activity (Parikh et al., 2019; Klempner et al., 2020). However, there
are some limitations to the use of the TMB as a biomarker for
clinical utilization. This is mainly because heterogeneity among
intratumoral neoantigens may also be important for
immunotherapy response (McGranahan et al., 2016).
Furthermore, it is also important to acknowledge that the cut-
off values of TMB lack standardization and consistency because
they are defined differently across studies, testing platforms, and
patient populations (Gibney et al., 2016). Thus, the development of
predictive biomarkers is urgently needed to benefit patients. In this
situation, an increasing number of oncologists have begun to focus
their studies on PD-L1 expression of tumor cells and found that
PD-L1 positivity has emerged as a major predictive marker
(Borghaei et al., 2015; Larkin et al., 2015). However, the
accuracy is not satisfactory based on PD-L1 as a single molecule
for GC patients (Patel and Kurzrock, 2015). This is mainly because
the expression of PD-L1 is also affected by other factors. For
example, its expression is associated with global hypomethylation
(Emran et al., 2019). To improve clinical outcomes in GC, it is
essential to explore emerging biomarkers through a comprehensive
multifaceted analysis involving DNA repair mechanisms, tumor-
infiltrating lymphocytes, TMB, mutational signatures, immune
microenvironments of tumors, and immune checkpoints.

In the present study, we constructed a HR-LR model to
improve the performance of the prognosis of overall survival
and recurrence of GC patients by integrating the DNA repair-
related GO processes from the MsigDB database and the clinical
data from TCGA stomach adenocarcinoma (GC) patients.
Moreover, we estimated the expression level of PD-L1 as an
immune checkpoint and methylation level of CpG sites in the
PD-L1 promoter region, TMB, and the systemic immune status.
To a certain extent, attempting to exploit a novel model based on
DNA repair mechanisms will significantly help select GC patients
who would benefit from predictions of clinical outcomes and
improve the accuracy of prognostic assessments.

MATERIALS AND METHODS

Transcriptomic, Genomic, and Clinical
Datasets of the Cancer Genome Atlas
Cohort
Transcriptional profiles of cancer and normal tissues of patients
with GC were obtained from stomach adenocarcinoma (STAD)
patients of The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov), including 375 cancer samples and 32 normal samples
(Table 1). For cancer or normal samples, genes with FPKM
expression values of 0 in >70% of samples were removed, and the
remaining 0 values were imputed with K-Nearest Neighbors.
Then, expression values were log2 transformed for subsequent
analysis.

Mutational data of GC patients was also downloaded from the
TCGA database. After removing the synonymous variants, we
calculated the tumormutational burden (TMB), which was defined
as the number of somatic mutations per megabase of interrogated
genomic sequence. Mutation profiles were analyzed and visualized
by the R package “maftools” (Mayakonda et al., 2018).

We obtained clinical information of GC patients from the
TCGA database, including survival state, survival time,
recurrence state, recurrence time, disease stage, therapeutic
response, age, gender, and other clinical characteristics.

DNA Repair Related GO Terms and
Pathways
The genes of GO terms and pathways related to DNA repair
mechanism were downloaded from the Molecular Signatures
Database (MsigDB) (Liberzon et al., 2015). Based on the
transcriptional data of these genes in the TCGA cohort, we
calculated the score of each GO term or pathway using a
single-sample gene set enrichment analysis (ssGSEA). A
univariate Cox proportional-hazards regression model was
used to evaluate the prognostic significance of each GO term
or pathway in GC by R package “survival”. Taken the results of
DNA repair-related GO terms, KEGG pathways, and Reactome
pathways, double-strand break repair through single-strand
annealing (SSA) or nonhomologous end-joining (NHEJ) were
the most prognostic approaches. The result was validated in
GSE66254 (GPL570) dataset.
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The ssGSEA score of SSA or NHEJ GO term in normal
samples and good or poor outcome samples were also
calculated by the ssGSEA algorithm. Those samples that lived
more than 1 year were defined as good outcome samples while
dead samples in 1 year were defined as poor outcome samples.

Construction of HR-LR Model
We proposed a computational method to establish the HR-LR
model, which involved three steps. First, we randomly divided the
STAD TCGA cohort into training and test sets, including 242 and
106 samples, respectively (Table 1). The HR-LR model was
established based on the training set. Second, we selected those
genes with significant associations with a score of SSA and NHEJ
GO terms as the DNA repair-related marker genes (|R| > 0.4, BH-
FDR < 0.001). In total, we obtained 37 positive genes and 39
negative genes. Third, an SSA-NHEJ score was defined by the T
statistic of a two-sided t-test for each tumor sample by comparing
the expression values of the 37 positively correlated genes with the
expression values of the 39 negatively correlated genes (Table 2
and Supplementary Table S1).

The median SSA-NHEJ score of training samples was defined
as the cutoff (cutoff = 3.46). An SSA-NHEJ score >3.46
represented that those 37 positive genes were overexpressed
while the 39 negative genes were underexpressed. An SSA-
NHEJ score <3.46 meant the opposite. As SSA and NHEJ GO
terms were protective factors in GC, patients with higher SSA-
NHEJ scores were considered with a better outcome. Therefore,
the samples were divided into high-risk and low-risk groups, with

low and high SSA-NHEJ scores, respectively. The survival
hypothesis was validated in training, test sets of the TCGA
cohort, and other GEO cohorts. In addition, we found that
those high-risk samples were more likely to be recurrent,
compared with those low-risk samples.

Construction of Cancer-Normal Model
The model was established exactly like the HR-LR model.
However, the cutoff was changed. Using the R package
“pROC” (Robin et al., 2011), we selected 0.008 as the cutoff.
Samples with SSA-NHEJ score ≥0.008 were predicted as tumor
samples while other samples were predicted as normal
samples.

Transcriptomic and Clinical Datasets of
GEO Validation Cohorts
The independent validation datasets were downloaded from the
Gene Expression Omnibus database, including nine datasets. The
detailed information is shown in Table 1. We chose six datasets
with expression profiles and survival information to validate our
HR-LR model, including GSE62254, GSE26253, GSE84437,
GSE26899, GSE15460, and GSE13861. For validation of GC
recurrence, we selected four datasets with recurrence
information, including GSE62254, GSE26253, GSE13861, and
GSE26899. Finally, we chose the datasets with cancer and normal
samples to validate the cancer-normal model, including
GSE13861, GSE13911, GSE33335, and GSE66229.

TABLE 1 | Patient cohorts from TCGA and GEO databases.

Cohort Cancer samples Normal samples Recurrence GPL

TCGA 375a (242 training +106 test) 32 rb -
GSE62254 300 - R GPL570
GSE26253 432 - R GPL8432
GSE84437 433 - - GPL6947
GSE26899 96 - R GPL6947
GSE15460 248c - - GPL570
GSE13861 65 25 r GPL6884
GSE13911 38 31 - GPL570
GSE33335 25 25 - GPL5175
GSE66229 300 (GSE62254) 100 - GPL570

aIn total, we obtained 375 cancer and 32 normal samples from TCGA, database. Screening samples with survival data and deleting those samples died in 10 days, we finally obtained 348
samples. Then we selected 242 samples as the training set randomly while the remaining 106 samples were as the test set.
b
“r” in the table represented the datasets with recurrence information.

cThe dataset GSE15460 included GSE15455, GSE15456, GSE15459, GSE15537, GSE22183, GSE34942 datasets. Deleting those cell line datasets and the datasets sequenced by
GPL96, we finally obtained 248 samples, including GSE15459 and GSE34942.

TABLE 2 | Positive and negative genes used in the HR-LR model and Cancer-Normal model.

Gene symbols

Positive genes BRIP1, CDC45, CDC7, CDCA2, CENPK, CLSPN, DDIAS, DLGAP5, DTL, E2F7, EZH2, FANCA, HELLS, HIST1H2AH,
KIF11, KIF15, KIF18A, KIF23, KIF2C, KNTC1, LMNB1, MCM10, MND1, NCAPG, ORC1, PCNA, PLK4, POLE2, POLQ,
POLR3G, RAD51AP1, RAD54L, RFC4, RRM2, TYMS, UHRF1, XRCC2

Negative genes ADCY5, APOD, C15orf59, C16orf89, C1QTNF2, C1QTNF7, CGNL1, CRYAB, DAAM2, DACT3, DCN, ELN, FAM110B,
FMOD, GHR, GREM2, GSTM5, HSPA2, HSPB8, KCNK3, LRRN4CL, MFAP4, NDNF, NEGR1, NFATC4, PDE2A,
PPP1R14A, PPP1R3C, SAMD11, SCN4B, SCUBE2, SLC22A17, SMARCD3, SRPX, TCEAL7, TMEM100, TMOD1,
TNFAIP8L3, ZCCHC24
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Generation of ImmuneScore, StromalScore,
EstimateScore, and
MicroenvironmentScore
For each patient sample, ImmuneScore, StromalScore,
EstimateScore, and MicroenvironmentScore were generated by
R package “estimate” (Yoshihara et al., 2013) and R package
“xCell” (Aran et al., 2017). The higher the respective score, the
larger the ratio of the corresponding component in the tumor
microenvironment (TME). The infiltration of immune and
stromal cell types in an individual sample was evaluated by R
package “xCell”.

Calculation of DNA Hyper- and
Hypomethylation Scores in Tumor Samples
DNA methylation dataset of STAD patients detected by
Illumina Infinium HumanMethylation450 BeadChip array
was also downloaded from the TCGA data portal. After
selecting the promoter CpG islands (CGIs) and open sea
regional clusters on the genome, we calculated the aberrant
hypermethylation (over CGI probes) and hypomethylation
(over open sea probes) values for each tumor sample
compared with normal samples according to one of the
previous studies (Yang et al., 2015). The scores of hyper- and
hypomethylation were calculated as follows: 1) all genome CpG
sites were classified into different regional classes, then CGI and
open sea regions were selected to be grouped into regional
clusters by boundedClusterMaker in R-package bumphunter
(maximum cluster width of 1500bp and maximum gap of 500bp
between any two neighboring regional classes), respectively; 2)
the methylation in each cluster was defined as the mean beta
value of the sites within the cluster; 3) for each cluster in a
certain cancer sample, the relative methylation was calculated as
the beta value of this cluster in single cancer sample subtracting
the mean value and further dividing the standard value of beta
value of this cluster in all normal samples; 4) since, cluster
regions in promoter CGIs and open sea usually show
hypermethylated and hypomethylated in cancer samples, we
calculated the hyper- and hypomethylation for a cancer sample
as the mean of positive and negative relative methylation value
in all region clusters, respectively.

Survival Analysis
Kaplan–Meier survival plots and log-rank tests were used to
evaluate the survival differences between groups of patients. The
univariate Cox proportional-hazards regression model and
multivariate Cox proportional-hazards regression model were
used to evaluate the prognostic significance of factors. This
process was performed using the R package “survival”.

Decision Tree
Combining the HR-LR model and patient stage information, a
decision tree was established to predict the single sample into
low-risk, moderate-risk, and high-risk groups. The relationship
between predicted results and the sample real tags was plotted as a
Sankey diagram, using the R package “networkD3”.

Nomogram Plot
A nomogram was built with SSA-NHEJ score and other clinical
features to quantify the risk assessment for the individual patient,
using the R package “rms” (Zhang and Kattan, 2017).

RESULTS

The Single-Strand Annealing and
Nonhomologous End-Joining DNA Repair
Approaches ere Identified as the Primary
Predictive Factors for Overall Survival in
Gastric Cancer Patients
On the basis of the expression profiles of the TCGA STAD cohort
and the gene lists extracted from the MSigDB, we calculated the
performance score (ssGSEA score) for each DNA repair-related
GO term, KEGG pathway, and Reactome pathway
(Supplementary Table S2). The univariate Cox coefficient and
significance of each GO term and pathway were determined.
Summarizing the results, we found that DSB repair was the most
effective prognostic factor (Supplementary Figures S1A–C).
Among the DSB repair mechanisms, SSA and NHEJ were
found to be the primary predictive factors for outcomes in the
TCGA STAD cohort (Figure 1A). Because DNA repair
mechanisms are described in more detail by GO terms, we
then selected “double-strand break repair via single-strand
annealing,” “positive regulation of double-strand break repair
via nonhomologous end joining,” and “regulation of double-
strand break repair via nonhomologous end joining,” for
subsequent analysis (HR = 0.009, 0.002, and 0.004,
respectively; p = 8.01e−03, 1.05e−02 and 4.33e−02,
respectively). Kaplan–Meier survival plots showed that patients
with higher ssGSEA scores have better outcomes (Figure 1B; log-
rank p = 4.3e−04, 4.35e−02, and 9.98e−03, respectively). These
results were validated in the independent GSE62254 dataset
(Figure 1C). This dataset was selected because there are
relatively more genes corresponding to the three
abovementioned GO terms in data from the GPL570 platform.

To examine the performance of these three prognostic DNA
repair-related GO terms, we then compared their ssGSEA scores
between three groups from the TCGA cohort, namely, normal
samples, good-outcome samples, and poor-outcome samples.
Here, we defined the good-outcome samples as those patients
who had a survival time of greater than 1 year, while those
patients who died within 1 year were regarded as poor-
outcome samples. The results showed that the ssGSEA scores
of SSA and NHEJ were the lowest in normal samples (Figure 1D).
This suggests that the SSA and NHEJ repair patterns have higher
activity in cancer cells in comparison with normal cells, which
may be caused by the fact that more DNA replication and more
errors occur in cancer cells. On the other hand, among cancer
samples, good-outcome samples had significantly higher ssGSEA
scores in comparison with poor-outcome samples (Figure 1D).
This result was consistent with the result of univariate Cox
regression as shown in Figure 1A. Because repair by SSA and
NHEJ could lead to an accumulation of mutations, we then
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calculated the TMB for each cancer sample and compared the
TMBs of samples with high and low ssGSEA scores. As was
expected, samples with higher ssGSEA scores had significantly
higher TMBs (p = 1.75e−05, 2.77e−08, and 8.47e−11 for SSA,
NHEJ, and NHEJ2, respectively; Figure 1E).

Combining these results, we suggest that the SSA and NHEJ
repair mechanisms were enhanced when normal cells were
converted into cancer cells and that those patients with
stronger SSA and NHEJ repair mechanisms had more
mutations, which may have resulted in the production of
more new antigens, and thus finally had better outcomes.

The HR-LR Model Is a Highly Effective
Prognostic Factor for Gastric Cancer
Patients
We developed the HR-LRmodel in three steps, as described in the
Materials and Methods section. Using the HR-LR model, we

calculated the SSA-NHEJ score for each sample in the training
and test sets. Kaplan–Meier survival plots were generated and
log-rank tests were executed for samples with high- and low-
SSA-NHEJ scores (with the median score as the cut-off) in the
training set (n = 242). As a result, we found that samples with
higher SSA-NHEJ scores had better clinical outcomes (log-rank
p = 5.06e−03; Figure 2A). Then, we validated the predictive effect
of the SSA-NHEJ score in the test set (n = 106, log-rank p =
4.07e−02; Figure 2B). The cut-off remained unchanged in the
test set.

To characterize the functions of genes in the HR-LR model, a
functional statistical analysis was performed on them. Among the
37 positively correlated genes, 8, 15, and 20 genes were associated
with DSB repair, DNA repair, and cancer hallmarks, respectively.
Of the 39 negatively correlated genes, 12 were associated with
cancer hallmarks (Figure 2C, Table 2, and Supplementary Table
S1). Furthermore, we have listed the associated cancer hallmarks
in detail in Figure 2D, including several well-known examples

FIGURE 1 | SSA and NHEJ DNA repair approaches are primary protection factors for overall survival in GC patients. (A) The prognostic value of SSA and NHEJ
DNA repair process evaluated by univariate Cox proportional-hazards regression model. (B,C) Samples with higher ssGSEA scores of SSA or NHEJ have better clinical
outcomes in the TCGA cohort and GSE62254 dataset. (D) ssGESA scores of SSA and NHEJ processes increase first and then decline in normal, good outcome, and
poor outcome samples. (E) Samples with a higher ssGSEA score of SSA or NHEJ are with more somatic mutations.
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such as DNA repair, apoptosis, hypoxia, glycolysis, the
epithelial–mesenchymal transition, the p53 pathway, and
KRAS signaling (Supplementary Table S1). These results
suggested that these 76 genes were associated with not only
DNA repair by SSA and NHEJ but also significant biological
mechanisms in the body and, thus, ultimately affected the
development of GC and clinical outcomes in patients.

Comparing the performance of the SSA and NHEJ GO terms,
we found that high-risk samples had significantly lower ssGSEA
scores in both the training set and the test set (Figure 2E).
Furthermore, we found that high-risk samples had significantly
lower TMB or fewer somatic mutations (Figure 2F). These results
were consistent with previous studies, as samples with higher
TMBs had better outcomes owing to the generation of more new
antigens (Parikh et al., 2019; Klempner et al., 2020). Analyzing the
clinical features of samples, we found that high-risk samples had
more deaths, higher disease stages, and poor responses to therapy
(Figure 2G). The probability of patients achieving complete
response was significantly correlated with the SSA-NHEJ score
(Figure 2H; Pearson correlation coefficient r = 0.63, p = 0.049).

To validate the prognostic effect of the SSA-NHEJ score, we
first performed a multivariate Cox regression modeling analysis
involving the SSA-NHEJ score, age, gender, disease stage and
grade, lymph node count, and family history of stomach cancer.
The results showed that the SSA-NHEJ score was the most

effective prognostic factor (HR = 0.50 and p = 0.002 for low-
risk samples), which indicated that the SSA-NHEJ score was an
independent prognostic factor for GC patients (Figure 3A).In
addition, patients with stage IV disease and older ages were found
to have poor outcomes. To investigate the applicability of the HR-
LR model and validate its prognostic effect, we collected several
independent datasets involving GC patients from the GEO
database (Table 1). Using the expression of genes in the HR-
LR model and the cut-off derived from the TCGA training set in
each GEO dataset, we calculated the SSA-NHEJ score for each
sample and further divided the samples into high-risk and low-
risk groups. The results showed that in six independent GEO
datasets from different GEO platforms the HR-LR model had a
significant prognostic effect (Figure 3B). These results confirmed
the prognostic value of the HR-LRmodel and established that this
model could be applied in different datasets, including RNA-Seq
data and microarray data from different platforms.

The HR-LR Model Can Also Predict
Recurrence in Gastric Cancer Patients
As the HR-LRmodel had a robust prognostic effect with regard to
overall survival in GC patients, we then tested its predictive effect
on recurrence in GC patients. Integrating the training and test
sets, we found that the HR-LR model could divide samples into

FIGURE 2 | Using HR-LR model to predict survival risk of samples. (A) Top panel shows the expression profile of the SSA and NHEJ-related marker genes in the
TCGA training set. The middle panel shows the score of each training sample by the HR-LR model. The bottom panel represents the Kaplan–Meier survival plot of high-
risk and low-risk samples in the training set. (B) Expression profile, sample score, and Kaplan–Meier survival plot for TCGA test samples. (C) The statistic of 76 marker
genes. (D)Marker genes related to cancer hallmarks. (E) Low-risk samples are with significantly higher SSA and NHEJ ssGSEA scores in training and test sets. (F)
Low-risk samples have significantly more somatic mutations. (G) Low-risk samples are with more alive, low stage, and complete response samples. (H) Correlation of
SSA-NHEJ score with complete response. Samples were divided into ten groups according to their scores. Samples with higher scores are with a higher probability of
complete response.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8970966

Wang et al. DNA Repair-Related Analysis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 3 | The prognostic effect of the HR-LR model. (A) Multivariate Cox proportional-hazards regression result of SSA-NHEJ score and other clinical
characteristics. (B) Validation of the prognostic effect of the SSA-NHEJ score in six GEO cohorts. n represents the number of samples in each GEO dataset.

FIGURE 4 | The predictive ability of SSA-NHEJ score for recurrence of GC patients. (A) New Tumor Event probability of patients in TCGA cohort. (B) Multivariate
Cox proportional-hazards regression result for recurrence prognosis of the SSA-NHEJ score and other clinical characteristics. (C–F)Recurrence probability of patients in
four GEO cohorts.
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high recurrence risk and low recurrence risk groups in the TCGA
cohort (Figure 4A; log-rank p = 1.11e−03, Cox p = 1.55e−03).
Multivariate Cox regression modeling analysis showed that the
SSA-NHEJ score was a prognostic factor for recurrence of GC
that was independent of clinical features (Figure 4B; HR = 0.45
and Cox p = 0.019 for low-risk samples). In addition, the
prognostic effect of the HR-LR model with regard to
recurrence was also validated in four other GEO datasets
(Figures 4C–F; log-rank p = 6.53e−04, 1.33e−02, 2.52e−02 and
1.32e−01 and Cox p = 2.82e−06, 3.15e−03, 4.01e−03 and

8.26e−02 for the GSE62254, GSE26253, GSE13861, and
GSE26899 datasets, respectively).

Low-Risk Samples Had Higher TMBs
We utilized the maftools package to visualize the results on the
basis of somatic mutation data from the TCGA STAD cohort.
These somatic mutations included point mutations and
insertions/deletions. An oncoplot plot showed that missense
mutations occupied an absolute position among total
mutations and that the number of mutations in low-risk

FIGURE 5 |Mutation information of high-risk samples and low-risk samples. (A,B) Statistic of variant classification and mutation type of samples with high-risk (top
panel) and low-risk (bottom panel) survival. (C) Driver mutation genes in high-risk and low-risk samples (top and bottom panel respectively). (D) Mutational signatures
were identified in high-risk and low-risk samples, respectively. The plot title indicates the best match against validated COSMIC signatures (left and right panel
respectively).
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samples was higher than that in high-risk samples (Figure 5A).
Then, a transition and transversion plot was used to classify
single-nucleotide variants into six categories (i.e., T > G, T > C, T
>A, C > T, C >G, and C >A; Figure 5B). Moreover, it was found
that C > T had the highest frequency among single-nucleotide
variants in both low-risk and high-risk samples.

Cancer driver genes could provide an advantage for the
selective growth of cancer cells. Therefore, we applied the
OncodriveCLUST algorithm in the TCGA STAD cohort,
which detected a majority of the activating mutations and
identified seven well-known oncogenes as significantly mutated
in 348 samples (false discovery rate <0.01). MYCT1, RHOA,
JAK1, and FBXW7 were identified in high-risk samples. Likewise,
we identified FAM26E, C7orf50, and PAX2 in low-risk samples
(Figure 5C). Whereas the Oncodrive algorithm was more
advantageous in terms of sensitivity in identifying oncogenes
with mutational hotspots, in contrast, the Oncodrive algorithm
underperformed in identifying potential tumor suppressor genes
(Mayakonda et al., 2018). In consequence, we did not identify
potential tumor suppressor genes, such as TP53.

As cancer progresses, a characteristic mutational pattern may
be left behind at various points in time, which may reveal its
underlying mutagenic process (Alexandrov et al., 2013).
Therefore, we further analyzed mutational signatures on the
STAD TCGA cohort by performing signature enrichment. In
total, we identified six and eight signatures in high-risk and low-
risk samples, respectively (Figure 5D). Interestingly, we identified
the common signature associated with DNA mismatch repair in
both types of samples was associated with high numbers of small
(shorter than 3bp) insertions and deletions at mono/
polynucleotide repeats. The deficiency in base excision repair
due to inactivating mutations in NTHL1 was specific to the
mutational signature of high-risk samples and primarily
caused predominantly C > G mutations. This may be due to
the generation of abasic sites after removal of uracil by base
excision repair. In addition, polymerase epsilon exonuclease
domain mutations were specific to the mutational signature of
low-risk samples and exhibited strand bias for C >Amutations in
the TpCpT context and T > G mutations in the TpTpT context.
The mutational process underlying this signature was altered
activity of the error-prone polymerase POLE. It has been
proposed that the presence of large numbers of this signature
was associated with recurrent POLE somatic mutations. The
observations from signature enrichment suggest that DNA
mismatch repair mechanisms play a crucial role in the
development of malignant tumors, in accordance with
previous reports (Belfield et al., 2018; McCarthy et al., 2019).

Low-Risk Samples Were Associated With
Less Immune Cell Infiltration
To further clarify the intrinsic biological differences between
high-risk and low-risk samples, the ESTIMATE algorithm was
used for the estimation of stromal cells and immune cells in
malignant tumors by calculating the corresponding scores. A
higher immune score or stromal score represents a larger amount
of immune or stromal components in the tumor

microenvironment. To investigate correlations between the
stromal score, immune score, and ESTIMATE score and the
SSA-NHEJ score, Pearson’s correlation coefficient were used to
measure the strength of the respective correlations. The results
indicated that the stromal score, immune score, and ESTIMATE
score were negatively correlated with the SSA-NHEJ score and
decreased significantly with an increase in the SSA-NHEJ score
(Figures 6A–C). We then determined the differences in the
immune score, stromal score, and ESTIMATE Score between
high-risk and low-risk samples. The results showed that the
average immune score (Figure 6D), stromal score (Figure 6E),
and ESTIMATE score (Figure 6F) were significantly higher in
high-risk samples than in low-risk samples.

We further compared the enrichment levels of different types of
cells from gene expression data for 64 types of immune and stromal
cells in the two types of samples (Figure 7A, Supplementary Table
S3). The results showed that the low-risk samples had more
infiltrating adaptive immune cells including CD8+ TEM cells,
CD8+ naive T cells, CD4+ TCM cells, Th1 cells, and Th2 cells,
and the scores of infiltration immune cells were also higher, which
might be a key factor for favorable prognosis of the low-risk samples.
Recent studies have shown that CD8+ T cells are regarded as the
main driver of anti-tumor immunity (Reiser and Banerjee, 2016;
Fang et al., 2020). Additionally, we found infiltration scores of
stromal cells, such as endothelial cells, fibroblasts, and pericytes,
were relatively high in high-risk samples compared to low-risk
samples. Subsequently, on the basis of data for the high-risk and
low-risk samples, we generated a heatmap of immune cells with
significant differences and performed a differential analysis of gene
expression of the immune checkpoint PD-L1 (Figures 7B–D).
Using the HR-LR model, the low-risk samples were associated
with a favorable prognosis with a median survival time of
2,197 days, while the high-risk samples had a median survival
time of 635 days. The low-risk samples were characterized
primarily by infiltration of high levels of CD4+ memory T cells,
CD8+ naive T cells, CD8+ TEM cells, natural killer cells, plasma cells,
pro-B cells, Th1 cells, and Th2 cells. Subjects in the high-risk samples
had shorter overall survival times and exhibited significant increases
in the infiltration of CD4+ naive T cells, CD4+ T cells, CD4+ TCM
cells, megakaryocytes, dendritic cells, and eosinophils. PD-L1 has
been found to be an immune checkpoint. A previous study found
that global hypomethylation of DNA could contribute to the
upregulation of PD-L1 in melanoma cells and had an impact on
DNA repair pathways (Emran et al., 2019). We selected CpG islands
and open-sea regions to measure methylation levels in each STAD
sample by the method described in the Materials and Methods
section. The results showed that high-risk samples had lower
methylation levels in CpG islands and higher methylation levels
in open-sea regions in comparison with low-risk samples (Wilcoxon
p = 2.37e−11 and 1.66e−10, respectively; Figure 7C). In addition,
high-risk samples were characterized by a significantly lower
expression level of PD-L1 (Wilcoxon p = 5.65e−04; Figure 7D).
This might have been caused by the higher methylation level of CpG
sites in the promoter region of the gene encoding PD-L1 (Wilcoxon
p = 4.19e−05; Figure 7D). The relationships between global
methylation, promoter methylation, and expression of PD-L1 and
DNA repair processes need to be further studied. Moreover, we also
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calculated the expression of other immune checkpoints. We found
that high-risk samples were characterized by a significantly higher
expression level of immune checkpoint genes including CD27,
CD40, and CD160. A previous study found that tumor samples
with high levels of CD8+ tumor-infiltrating lymphocytes were
associated with good outcomes in bladder cancer and had
significantly higher levels of genes encoding immune checkpoints,
such as PD-L1 (Vidotto et al., 2019). Several studies have shown that
tumors with a higher TMB can produce more neoantigens, which
are more easily recognized by T cells and induce greater immune
cytotoxic activity (Rooney et al., 2015). In addition, multiple studies
have shown that patients with positive expression of PD-L1 in
tumors and infiltration of CD8+ T cells have longer overall survival
times (Wang et al., 2018; Wang et al., 2021), as was observed in our
analysis.

Cancer-Normal Model Was Developed to
Predict the State of an Individual
As described in the first Results subsection, we found that SSA and
NHEJ have low activity in normal cells because less replication
occurs in normal cells in comparison with cancer cells. As the SSA-
NHEJ score is related to the activity of the SSA and NHEJ repair
mechanisms, we inferred that normal samples should have lower

SSA-NHEJ scores in comparison with cancer samples. This
hypothesis was validated, as shown in Figure 8A. Normal
samples had the lowest SSA-NHEJ scores, while cancer samples
associated with good outcomes had the highest SSA-NHEJ scores
(Figure 8A; all p < 0.05). From the receiver operating characteristic
plot, we selected 0.008 as the cut-off value for distinguishing cancer
samples from normal samples, as 0.008 corresponded to high
sensitivity and specificity (Figure 8B; AUC = 0.918). The
forecasting performance of the Cancer–Normal model was
validated in four other independent datasets obtained from the
GEO database (Figure 8C; AUC = 0.855, 0.902, 0.917, and 0.949
for the GSE13861, GSE139911, GSE33335, andGSE66229 datasets,
respectively). Five measures were utilized to evaluate the
performance of the Cancer–Normal model, namely, the true
positive rate (or sensitivity), 1—the false positive rate (or
specificity), accuracy, precision, and the F-measure. All these
measures showed that the Cancer–Normal model gives good
predictions of the status of individuals (Figure 8D).

Evaluation of the HR-LR and
Cancer-Normal Models
The prognostic effect of the HR-LR model and the predictive
accuracy of the Cancer–Normal model with regard to cancer or

FIGURE 6 | Immune-related score by “estimate”. (A–C)Correlation between SSA-NHEJ score and StromalScore (A), ImmuneScore (B), and ESTIMATEScore (C)
in TCGA samples. R and P were calculated by the Pearson test. (D–F) Low-risk samples have lower StromalScore (D), ImmuneScore (E), and ESTIMATEScore (F)
compared with high-risk samples. p values were calculated by Wilcoxon test.
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normal health status were validated in the TCGA cohort and
various GEO cohorts. We then evaluated these two models by
comparing their predictive accuracy with that of random models.
By randomly selecting 76 genes from the expression profiles,
computing random scores, and selecting a cut-off as in the case of
the real models, we constructed a random HR-LR model and
Cancer–Normal model. By repeating this process 1000 times, we
obtained 1000 random HR-LR models and Cancer–Normal
models. We compared the prognostic effects of the random
HR-LR models with that of the real HR-LR model. The results
showed that the SSA-NHEJ score and the derived class (high-risk
vs. low-risk class) were significantly more accurate prognostic

factors (Figure 9A; p = 0.03, p < 0.001, and p < 0.001 for
univariate Cox p of SSA-NHEJ score, univariate Cox p of class
and log-rank p of class, respectively). On the other hand, we
compared the AUC values of the 1000 random Cancer–Normal
models with that of the real Cancer–Normal model. The results
showed that the SSA-NHEJ-related Cancer–Normal model had a
significantly higher AUC value (Figure 9B; p = 0.003). Together,
these results validated the effectiveness of our HR-LR model and
Cancer–Normal model and confirmed that their predictive
accuracy was not randomly achieved.

From previous results, we found that the patient disease stage
also had a significant prognostic value as well as the SSA-NHEJ

FIGURE 7 | Immune-related score by “xCell”. (A) The infiltration of immune and stromal cell types as well as the immune-related scores in high-risk and low-risk
samples. p values less than 0.05, 0.01, and 0.001 are marked with “*”, “**”, and “***”. (B) The heatmap of infiltration degree of those immune and stromal cell types with
significantly different infiltration in high- and low-risk samples. Cell typesmarked with orange color represent higher infiltration in high-risk samples while cell typesmarked
with green color represent higher infiltration in low-risk samples. Samples are sorted by SSA-NHEJ score. (C) Genome-wide hypermethylation in CGI regions and
hypomethylation in open sea regions. (D) Promoter methylation and expression of PD-L1 in high-risk and low-risk samples. p values were evaluated by Wilcoxon test.
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score (Figure 3A). We, therefore, combined the HR-LR model
and patient disease stage and obtained three classes of samples
with more significantly different clinical outcomes (Figure 9C;
log-rank p = 2.29e−04). On the basis of this result, we constructed
a decision tree to help predict the clinical outcome for an
individual (Figure 9D). In addition, a nomogram was
constructed to quantify the survival probability for individual
GC patients (Figure 9E). The SSA-NHEJ-derived class (high-risk
or low-risk) and several clinicopathological features were

included in the nomogram, such as age, gender, disease stage,
and disease grade. The C-index reached 0.702 after 1000
bootstrap iterations in the TCGA cohort (0.734 and 0.728 for
the training and test sets, respectively). The calibration curve also
indicated good agreement between the estimates and
observations, which suggested that our nomogram had a high
level of accuracy (Supplementary Figure S2). The decision tree
and nomogram could contribute to the prognosis in the case of an
individual.

FIGURE 8 | Constructing Cancer-Normal model and predicting the status of samples. (A) SSA-NHEJ score of a normal, good outcome, and poor outcome
samples. p values were evaluated by Wilcoxon test. (B) ROC curve of predicting TCGA STAD cancer and normal samples. 0.008 is selected to be the cutoff to predict a
sample as normal or cancer status. (C) ROC curves of predicting sample status in four independent GEO cohorts. AUC values are listed. (D) Five measures of predictive
effect for TCGA and four GEO cohorts are listed, including true positive rate, 1—false-positive rate, accuracy, precision, and F-measure.
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DISCUSSION

DNA repair is a vital biological process in normal physiological
conditions and includes various types of repair approaches, such
as base excision repair, mismatch repair, and DSB repair. Some
repair methods could reduce the number of mutations in
individuals, while other repair approaches such as SSA and
NHEJ might result in fairly large errors and lead to the
accumulation of many somatic mutations (Negrini et al., 2010;
Lu et al., 2014). In this study, we extracted GO processes and
pathways related to DNA repair from the MSigDB. By combining
clinical data from patients in the TCGA STAD cohort, we found
that clinical outcomes in GC patients were significantly associated
with DSB repair and were especially strongly correlated with the
SSA and NHEJ approaches. By the Pearson correlation test, we
selected 76 genes with significant correlations with the ssGSEA
scores of SSA and NHEJ. These 76 genes comprised 37 positively
correlated genes and 39 negatively correlated genes, which were
further subjected to the t-test to obtain the value of the t-statistic

for each sample. We referred to the value of the t-statistic as the
SSA-NHEJ score. Follow-up analyses showed that the SSA-NHEJ
score was a valuable prognostic factor for overall survival and
recurrence in GC patients. In addition, the SSA-NHEJ score could
also predict whether an individual had GC.

Numerous studies have demonstrated that the SSA and
NHEJ approach in DSB repair would lead to the
accumulation of somatic mutations in comparison with
homologous recombination repair (Turner et al., 2004; Yang
et al., 2011). In our study, we further confirmed this conclusion.
Samples with higher SSA and NHEJ activities (or ssGSEA
scores) were found to have higher TMBs. On the other hand,
we found that SSA and NHEJ activities were significantly higher
in cancer samples with good outcomes in comparison with
normal samples, but the increase was significantly less in cancer
samples with poor outcomes. On the basis of this phenomenon,
we suggest that in normal physiological conditions biological
activities such as DNA replication are maintained within
normal limits, and hence the SSA and NHEJ approaches are

FIGURE 9 | Evaluation of two models and combing clinical features to predict risk assessment for individuals. (A) The prognosis of 1000 random HR-LR models
based on the expression of random gene sets. (B) AUC values of 1000 randomCancer-Normal models based on the expression of random gene sets. (C) Survival plot of
TCGA STAD patients classified by stage and SSA-NHEJ score. (D) Decision tree to predict the patient’s clinical outcome. The result of samples in the TCGA cohort is
listed at to bottom. (E) A nomogram plot is constructed to quantify risk assessment for an individual patient.
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not much needed. However, in cancer cells, DNA replication
and other activities increase rapidly, which leads to increases in
the activities of the SSA and NHEJ processes. On the other hand,
the higher activities of SSA and NHEJ and the higher TMB
would lead to the apoptosis of cancer cells (Lu et al., 2014; Hu
et al., 2019) or the production of new antigens and finally result
in good outcomes in patients (Klempner et al., 2020). In
contrast, in other GC patients lower activities of SSA and
NHEJ finally, lead to poor outcomes.

There have also been many studies that focused on the
relationship between TMB and immune infiltration. Some studies
found that a higher TMB is associated with more immune
infiltration, while some studies obtained the opposite result. In
this study, low-risk samples were found to have a higher TMB
but less infiltration of general immune cells. However, significantly
higher abundances of CD8+ T cells and CD4+ memory T cells were
observed in low-risk samples. In addition, we found that PD-L1 had
higher expression levels in low-risk samples. Similarly, other
investigators also found that CD8 positivity is significantly
associated with PD-L1 expression (Vidotto et al., 2019). The
relationship between the TMB and immune infiltration and their
roles in GC needs to be further investigated.

The HR-LRmodel was constructed on the basis of the training
set of sequencing data from the Illumina platform. The predictive
accuracy of the model was validated in the test set, which also
comprised sequencing data. Furthermore, the prognostic value of
the HR-LR model was validated in several GEO datasets, which
contained microarray data from different platforms. Similarly,
the Cancer–Normal model was also constructed on the basis of
Illumina sequencing data and validated in microarray data from
different platforms. In addition, we validated the accuracy of the
two models by comparing them with random models. These
results proved that our HR-LR model and Cancer–Normal model
had stable accuracy and could be used universally on different
platforms. Combining the models with clinical features will
contribute to the prognosis in GC patients.

In summary, we found that SSA and NHEJ are vital prognostic
factors in GC, proposed two models to help predict clinical
outcomes in GC patients, and investigated the relationships
among the SSA and NHEJ approaches, the TMB and immune
infiltration, and their roles in GC. The present study aims to
provide an improved understanding of the complexity of DNA
repair, the TMB, and immune infiltration in GC and to contribute
to the development of clinical diagnosis and treatment.

CONCLUSION

In summary, we found that SSA and NHEJ were the most
prognostically effective DNA repair processes in GC patients.
On the basis of the activities of these two approaches and
expression profiles, in this study, we proposed two models to
help predict clinical outcomes in GC patients and investigated the
relationships among the SSA and NHEJ approaches, the TMB
and immune infiltration, and their roles in GC. Moreover, we
estimated methylation levels in each STAD sample. The present
study aims to provide novel insights for the understanding of the
complexity of DNA repair, the TMB, and immune infiltration in
GC and for further investigation of their diagnostic value.
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