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Abstract: The domestic water (DW) quality of an island province in the Philippines that experienced
two major mining disasters in the 1990s was assessed and evaluated in 2021 utilizing the heavy
metals pollution index (MPI), Nemerow’s pollution index (NPI), and the total carcinogenic risk (TCR)
index. The island province sources its DW supply from groundwater (GW), surface water (SW), tap
water (TP), and water refilling stations (WRS). This DW supply is used for drinking and cooking
by the population. In situ analyses were carried out using an Olympus Vanta X-ray fluorescence
spectrometer (XRF) and Accusensing Metals Analysis System (MAS) G1 and the target heavy metals
and metalloids (HMM) were arsenic (As), barium (Ba), copper (Cu), iron (Fe), lead (Pb), manganese
(Mn), nickel (Ni), and zinc (Zn). The carcinogenic risk was evaluated using the Monte Carlo (MC)
method while a machine learning geostatistical interpolation (MLGI) technique was employed to
create spatial maps of the metal concentrations and health risk indices. The MPI values calculated
at all sampling locations for all water samples indicated a high pollution. Additionally, the NPI
values computed at all sampling locations for all DW samples were categorized as “highly polluted”.
The results showed that the health quotient indices (HQI) for As and Pb were significantly greater
than 1 in all water sources, indicating a probable significant health risk (HR) to the population of the
island province. Additionally, As exhibited the highest carcinogenic risk (CR), which was observed
in TW samples. This accounted for 89.7% of the total CR observed in TW. Furthermore, all sampling
locations exceeded the recommended maximum threshold level of 1.0 × 10−4 by the USEPA. Spatial
distribution maps of the contaminant concentrations and health risks provide valuable information to
households and guide local government units as well as regional and national agencies in developing
strategic interventions to improve DW quality in the island province.

Keywords: carcinogenic risk; domestic water; machine learning; metal pollution; spatial distribution maps

1. Introduction

The fundamental requirement for human growth and development is water. Around
71% of the world’s population relies on a clean drinking water supply that is readily
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available and free of contaminants, but 29% of the population still does not have safe and
uncontaminated water access. Over 785 million people, including 144 million who depend
on surface water, do not have access to a primary source of drinking water [1]. Accelerated
population growth, social and urban development, and industrialization all place enormous
demands on water resources, leading to an increased risk of contamination and depletion
in the future [2]. Natural geological factors and human-induced activities often affect
the quality of a region’s water resources. The presence of heavy metals and metalloids
(HMM) in water resources, for example, could be caused by natural phenomena such as
weathering, oxidation, water flow direction, topographical characteristics, hydrological
processes, and diverse rock types. Similarly, human activities impact water resources
through rapid growth in population, economic development, and improper management
of mining operations [3].

The HMM contamination of water resources is linked to increased toxicity, persistence,
and resistance to degradation, posing a threat to humans and causing substantial health
concerns [4]. In the Philippines, domestic water (DW) is commonly sourced from surface
water (SW) and groundwater (GW). Water distribution systems are standard where water
from a centralized treatment plant, tanks, or wells is brought to consumers free or with a
charge. In addition, hand pump wells, often utilized in rural regions for domestic purposes,
are used to extract GW [5]. A fraction of the population has also inclined to substitute
drinking water resources from refilling stations [6]. However, anthropogenic activities
such as mining, which are not well regulated and managed, have increased the possibility
of irreversible contamination and deterioration of SW and GW resources [7]. Activities
associated with mining operations such as mineral extraction, smelting and refining, and
tailings disposal could be a potential source of HMM pollution in the environment [8].

The Marinduque province in the Philippines is known for its abundant metallic and
nonmetallic deposits and is notable for having significant porphyry copper resources [9].
Between 1969 and 1996, the island was a site for mining operations [10]. The island province
was devastated by two mining catastrophes deemed two of the world’s most catastrophic
mining disasters. Since then, two abandoned open mine pits on the island, the Tapian and
the San Antonio mine pits, remained unrehabilitated and continue to adversely affect the
island’s environmental quality and water resources [11]. High concentrations of HMMs
were observed across the island in various media such as water and soils [12], SW and
sediments [10,13], agricultural food crops [11], and freshwater crustaceans and tilapia [14].

Although previous studies examined specific HMM and locations within the island
province, no comprehensive evaluation of HMM pollution and health risks (HR) linked to
GW resources has been conducted. Numerous rating systems were developed to assess
the water quality (WQ) and human HR instigated by HMM through exposure to elevated
HMM concentration [15]. The degree and impact of HMMs as they enter the human body
are quantified using health risk (HR) indicators. These indices include the hazard index,
which determines the overall risk of noncarcinogenic consequences caused by several
chemicals. It is determined using the chronic daily intake (CDI) and the reference dose
(RfD). It is noteworthy that many metals and metalloids are necessary for human health;
however, some of them are toxic even in trace concentration [16]. Toxic HMM deposits
in the environment can be dangerous to the population if not adequately controlled and
managed [14]. Humans are in greater danger from HMM since they may enter the body
through the food chain and various pathways with possible carcinogenic effects [17]. Hence,
special attention should be focused on the health concerns posed by HMM.

Risk assessment (RA) is a technique to determine the probable effects of pollutants
on target receptors such as humans. It is divided into two main categories: (i) RA for
human health, and (ii) RA for the environment [18]. Every RA of water quality (WQ) will
always have some uncertainty; thus, doing an uncertainty analysis as part of the RA process
would assist in more accurately identifying and analyzing target areas and environmental
compartments for better intervention and control [17].
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The Monte Carlo simulation (MCS) has been recognized by the United States Environ-
mental Protection Agency (USEPA) as a practical approach for uncertainty analysis of an
RA, and it is frequently used for HMM RAs. RAs for such environmental compartments
have become more significant as the levels of HMM in water supplies have increased [19,20].
Marinduque, which hosted catastrophic mining disaster events, has a limited study on
human HR analysis to exposure to HMM in the DW. Most of the population relies on
SW and GW for DW supply. Moreover, some water refilling stations (WRS) used SW and
GW as the source of water for their bottled and refilling business. Hence, an RA consid-
ering uncertainty analysis and probabilistic HR evaluation methodologies such as MCS
is essential.

Regarding the stated difficulties of HMM contamination of water resources, in situ,
precise, and real-time detection of HMMs in water are needed. Laboratory-based methods
such as inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic
absorption spectroscopy (AAS) have drawbacks, as these methods need several days to
complete the analyses. These laboratory analytical techniques are also costly, involve
complicated sample preparation, and are inapplicable in field environments [21]. The
utilization of portable X-ray fluorescence (pXRF) and metals analysis systems (MASs) for
in situ metals detection addresses these limitations by providing a speedy and reliable
analysis. This in situ HMM detection and analysis, coupled with the MCS and mapping,
produces a rapid and reliable RA. Hence, the primary purpose of this research was to
provide new knowledge to the population of the quality of their DW supply, the available
onsite detection, and analysis technology. The specific objectives of this study were to:
(1) assess HMM pollution at specific sites using various indices such as MPI and NPI;
(2) evaluate the carcinogenic and noncarcinogenic HRs with the application of MCS to
analyze the uncertainty in the results; and (3) create a machine learning—geostatistical
interpolation (MLGI)—based spatial interpolation maps of pollution and health risk index
of DW in Marinduque. The significance of this study is the provision of benchmark data for
local DW quality monitoring specifically the HMM concentrations and the health risks to go
along with the DW supply quality. In addition, this information provides the groundwork
for the development, utilization, and protection of water resources.

2. Materials and Methods
2.1. Study Area

The DW samples were gathered across the island province of Marinduque, Philip-
pines, as shown in Figure 1. Marinduque is located about 200 km south of Manila, the
capital city of the Philippines, covering about 96,000 hectares of land [22]. It comprises six
municipalities: Boac, Buenavista, Gasan, Mogpog, Sta. Cruz, and Torrijos. It is a tropical
and warm island with an annual mean temperature of 23 to 28 ◦C [23]. The geology of
the island is characterized by permeable volcanic and sedimentary rocks, which allow
groundwater to flow through across the island [14,24].
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Figure 1. A map of the Philippines showing Marinduque Island as a zoomed-in inset, including 

domestic water sampling locations for this study. 

 

Figure 2. Analysis of HMMs using Accusensing MAS G1 and pXRF. 

Figure 1. A map of the Philippines showing Marinduque Island as a zoomed-in inset, including
domestic water sampling locations for this study.

2.2. Water Samples Collection, Preparation, and Analysis

One hundred grab samples in a 500 mL volume were collected using the suggested
standard procedure [25]. Twenty-five water samples from WRS, twenty-six groundwater
(GW) samples, and twenty-one tap water (TW) samples were collected and placed in
polyethylene (PE) bottles. All water samples were either used for drinking and/or used
for cooking by households. The PE bottles were washed with distilled water or Type 1
water [26] to remove contaminants. Physicochemical parameters such as temperature, pH,
total dissolved solids (TDS), and electrical conductivity (EC) were evaluated and recorded in
situ using a Hannah Multiparameter HI 9811-5 portable meter [27]. The portable handheld
Olympus Vanta X-ray fluorescence spectrometer and Accusensing Metals Analysis System
(MAS) G1 were utilized for the HMM concentration analysis. Both analyzers are high-
performance and on-site elemental analyzers that may be used with various environmental
media, including water. The pXRF spectrometer was calibrated using the Olympus Vanta
blank and set to Geochem mode before analysis [21]. The Accusensing MAS G1 was used
for analyzing HMMs which registered “limits of detection” (LOD) in the pXRF such as As,
Cu, Ni, and Pb. Figure 2 shows the metals analyzed using the two analyzers.
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2.3. HM Pollution and HR Assessment

The detected elements in the water samples were assessed and compared to the
Philippine National Standards for Drinking Water (PNSDW) 2017 [28]. A HMM pollution
assessment utilizing several indices such as the MPI, NPI, non-CR Index, and CR Index
was implemented in this study to comprehensively assess the degree of pollution in the
DW considering HMMs.

2.3.1. HMM Pollution Index (MPI)

The MPI describes the WQ state and determines whether it is suitable for drinking
concerning HMMs. The MPI is established on the weighted arithmetic mean quality
procedure as presented in Equation (1).

MPI =

n
∑

i=1
QiWi

n
∑

i=1
Wi

(1)

where Wi is denoted as the weight unit, which can be computed as 1/Si where Si is the
suggested level of the pertinent HMM, “n” is the value of the evaluated HMMs, and Qi is
the distinctive quality rating of the “ith” metal and specified by Equation (2).

Qi =
Ci
Si

× 100 (2)

Ci is the detected value of the ith metals in micrograms/liter. The standard allowable
value (Si) for each constraint was acquired from the Philippine water quality standards [29].
The categorization of the WQ using MPI is demonstrated in Table 1.

Table 1. Categorization of WQ using MPI [30].

Method of Indexing Range Degree of Pollution

Heavy Metal Pollution Index (MPI)
<90 Low

90–180 Medium
>180 High

2.3.2. Single-Factor Pollution Index (SFPI)

The Single Factor Pollution Index (SFPI) was employed to calculate and describe the
effect of an individual HMM as it contaminates the DW at a specific sampling location. The
SFPI is computed using Equation (3) presented below:

SFPI =
Ci
Si

(3)

where Ci denotes the observed intensity of the pollutant “i” in the groundwater (in mg/L)
and Si is the evaluation standard of the contaminant “i” in the surface and groundwater
(in mg/L). An SFPI value greater than 1 signifies that the heavy-metal pollutant exceeds
the standard [31].

2.3.3. Nemerow’s Pollution Index (NPI)

The NPI was utilized to calculate and explain the influence of several HMMs as they
pollute the water resource at a particular sampling location. The NPI is the most usual
method and thorough pollution assessment approach that reflects the single factor index
Pi, highlights the impact of elevated levels of HMMs on the environmental quality, and
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removes the insufficiency of the mean value on assessment. The NPI is calculated using
Equation (4), shown below:

NPI =

√
(SFPImax)

2 + (SFPIave)
2

2
(4)

where SFPImax indicates the highest SFPI of a pollutant and SFPIave denotes the mean SFPI
of the pollutants considered [32,33]. The classification of NPI values is shown in Table 2.

Table 2. Classification of NPI values [34].

NPI Contamination Degree

<1.0 Unpolluted
1.0 ≤ PN < 2.5 Slightly polluted
2.5 ≤ PN < 7.0 Moderately polluted

≥7.0 Heavily polluted

2.3.4. Non-CR and CR Index

HMMs are introduced into the body by various pathways, with ingestion—the most
frequent route of water consumption—as a common pathway resulting from oral human
exposure. The CDI quantifies the extent of pollution absorbed by the human body and
specifies the pollutant dosage per kilogram of body weight per day as received by direct
eating, dermal absorption, or inhalation, as suggested by the USEPA. The CDI of water
ingestion can be calculated using Equation (5) [35]:

CDIin =
ci × IR × EF × ED

BW × AT
(5)

where CDIin is the exposure doses from ingestion of water in gram/kilogram-day and Ci
is the mean concentration of the ith HMM in water (micrograms/liter) [36]. Additional
amounts and units of other parameters in the computation of CDI are presented in Table 3.

Table 3. Parameters included in the calculation of CDIin.

Parameter Unit Oral Values Investigator(s)

Ingestion rate (IR)
X Adult Liters/day 2.20 [37]
X Child Liters/day 1.00 [38]
Exposure frequency (EF) Days/year 365 [39]
Exposure duration (ED)
X Adult Year 70 [40]
X Child Year 10 [40]
Body weight (BW)
X Adult Kilograms 70 [37]
X Child Kilograms 25 [38]
Average time (AT)
X Adult Days 25,550 [41]
X Child Days 3650 [42]

The relevant RfD was compared to the exposure or mean intake of hazardous elements
to determine the probability on noncarcinogenic substances. The noncancer risk was
quantified using the hazard quotient (HQ) for a single chemical or the hazard index (HI)
for multiple substances and exposure routes. Concerns about possible noncarcinogenic
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consequences may arise if exposure to a chemical exceeds the corresponding RfD, i.e., if
HQ exceeds 1 [43] as shown as Equation (6).

HQ =
CDI
R f D

(6)

Table 4 presents the toxicity reactions of HMMs for RfD values for both oral and
dermal exposure route as well as the oral slope factor (SF).

Table 4. Oral RfD and oral SF of HMMs.

Heavy Metal Oral RfD
(mg/kg/day)

SF
(mg/kg/day)−1 Reference

Arsenic 3 × 10−4 1.5 [44]
Barium 2 × 10−1 - [45]
Copper 0.04 - [46]

Iron 7 × 10−1 - [47]
Manganese 1.4 × 10−1 - [47]

Nickel 0.02 0.84 [46]
Zinc 0.3 - [46]
Lead 0.0014 8.5 × 10−3 [46]

The total potential for non-CRs influenced by calculating chemicals can be evaluated
by the HI, which is the sum of each computed HQ. Equation (7) displays the formula for
calculating the hazard index.

HI = ∑ HQ (7)

It is recommended to have even greater probabilities of harmful health effects when
the HI is greater than 1. At the same time, no chronic risks were expected to transpire at the
site when HI was less than 1 [48].

The USEPA defined CRs as the cumulative risk of a person developing cancer be-
cause of exposure to a probable cancer-causing agent. The cancer risk was calculated by
Equation (8):

CR = CDI × SF (8)

The total cancer risk (TCR) is the sum of the cancer risks due to the ingestion exposures
to multiple HMMs of concern. The TCR can be evaluated through Equation (9), and the
risk value levels are shown in Table 5.

TCR = ∑ CR (9)

Table 5. Carcinogenic risk assessment scale [49].

Risk Level TCR Value Cancer Risk

1 TCR < 10−6 Very low
2 10−6 < TCR < 10−5 Low
3 10−5 < TCR < 10−4 Medium
4 10−4 < TCR < 10−3 High
5 TCR > 10−3 Very high

2.4. MCS and SA

The sensitivity analysis (SA) approach was used to establish the impact of changing
the values of the input variables on the CR estimate under a set of assumptions [50]. The
SA was implemented using Oracle Crystal Ball® version 11.1.34,190, (Redwood, CA, USA)
utilizing the MCS approach with 10,000 iterations in Excel software version 16.0.5332.1000
(Redmond, WA, USA).
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2.5. Statistical Analysis

Using Excel software, descriptive statistics linked to the physicochemical parameters
and HMM concentrations in the DW were evaluated to calculate the mean, standard devia-
tion (SD), and coefficient of variance (CV). The CV was utilized to evaluate the dataset’s
variability as follows: CV ≤ 15%, low; 15% < CV ≤ 35%, intermediate; and CV ≥ 35%,
high [51–53]. A Pearson rank-order correlation analysis coupled with correlation matrix
plots was also implemented utilizing IBM SPSS Statistics Version 26.0 and R Studio. Data
on the metals concentrations in the domestic water were subjected to a hierarchical cluster
analysis (CA) to find homogeneous groups. A dendrogram was likewise produced to
analyze the cohesion of the clusters produced, in which relationships among components
may easily be identified [54,55].

2.6. Spatial Concentration Mapping of Risk Indices Using Machine Learning Geostatistical
Interpolation (MLGI) Method

A hybrid neuro-particle swarm optimization (NN-PSO) technique coupled with the em-
pirical Bayesian kriging (EBK) method was utilized to generate spatial maps of the risk indices
of domestic water samples from the risk indices calculated at each sampling location [21].

3. Results
3.1. HMM Concentration in Water Samples

Table 6 shows the average mean, SD, and CV of the DW’s physicochemical parameters
and HMM concentrations. These were assessed with WQ standards for drinking water
regulated by WHO [1] and PNSDW [56]. The mean pH and TDS of all water samples,
except for the mean TDS of TW, were below or within the standards. High TDS may affect
the taste and palatability of drinking water [57]. The CV for the TDS and EC of all water
samples were higher than 35%, indicating a greater dispersion around the mean and a
relatively high variability in the data sets [51].

Table 6. Mean values of physicochemical parameters and HMM concentrations.

Parameters Unit
WRS (n = 25) GW (n = 26) TW (n = 49)

WHO [1] PNSDW [48]
Mean SD CV Mean SD CV Mean SD CV

Temperature ◦C 26.6 3.69 13.9 29.3 1.99 6.78 29.4 1.61 5.48 - -
pH - 6.74 0.89 13.2 7.03 0.48 6.78 6.91 1.03 14.9 6.5–9.5 6.5–8.5
EC µS/cm 51.6 84.6 164 680 735 108 378 286 75.7 - -

TDS ppm 19.2 38.8 202 328 367 112 180 143 79.0 - 600
As mg L−1 0.515 1.86 361 0.106 0.19 184 1.05 3.84 365 0.01 0.01
Ba mg L−1 0.027 0.02 70.2 0.025 0.02 60.7 0.023 0.02 80.8 0.70 0.70
Cu mg L−1 0.038 0.08 222 0.025 0.06 250 0.027 0.09 319 2.00 1.00
Fe mg L−1 0.178 0.31 173 0.901 2.93 325 0.138 0.31 225 0.30 1.00
Pb mg L−1 0.371 0.59 158 1.23 3.03 247 0.432 0.80 184 0.01 0.01
Mn mg L−1 0.009 0.004 41.8 0.009 0.01 68.2 0.010 0.01 49.3 0.40 0.40
Ni mg L−1 0.082 0.02 30.5 0.077 0.04 55.2 0.208 0.58 277 0.07 0.07
Zn mg L−1 0.029 0.01 47.7 0.035 0.03 93.6 0.030 0.02 50.7 3.00 5.00

The measured HMM concentrations in the DW shown in Figure 3 varied between 0
and 19.0 mg/L for WRS, 0 and 13.4 mg/L for GW, and 0 and 9.31 mg/L for TW. The mean
concentrations of As, Pb, and Ni in WRS, GW, and TW were higher than the acceptable
limits of the WHO and PNSDW standards. These elevated concentrations of HMM were
attributed to the existing two abandoned open mine pits that are located at a higher eleva-
tion and sit on permeable volcanic and sedimentary rocks [14,24] that allow groundwater
to pass through.
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The observed HMM concentrations trend, shown in Table 7, for WRS, GW and TW
were As > Pb > Fe > Ni > Cu > Zn > Ba > Mn, Pb > Fe > As > Ni > Zn > Ba > Cu > Mn,
and As > Pb > Ni >Fe > Zn > Cu > Ba > Mn, respectively. It was recorded that As had
the highest concentration detected in both the WRS and TW, while Mn had the lowest
concentration observed in all DW sources.

Table 7. Trends of HMM concentrations (from highest to lowest) in the DW of Marinduque Province,
Philippines.

Water Sources Trend

WRS As > Pb > Fe > Ni > Cu > Zn > Ba > Mn
GW Pb > Fe > As > Ni > Zn > Ba > Cu > Mn
TW As > Pb > Ni > Fe > Zn > Cu > Ba > Mn

Continuous subsurface flow of HMM into inland waters contributes to the increased
metal concentration in water resources. In addition, the weathering of rocks that leached
HMMs may contribute to the concentration of these HMM.

3.2. MPI and NPI Results

MPI and NPI were broadly utilized to evaluate the total HMM contamination in water
resources [4]. The MPI calculated in all DW sampling locations was observed to have
a high degree of pollution. The average MPI value for the TW samples was 37.5 times
more than the minimum MPI value. This is classified as having a high degree of pollution,
while the average MPI values for the GW and WRS samples were 33.6 times and 22.3 times
greater, respectively. Moreover, the NPI values observed in the DW samples were 8.4 times
to 13.6 times higher than the minimum NPI value. These NPI values are categorized as
heavily polluted.

3.3. Human HR Assessment

Table 8 presents the mean CDI of metals through the oral route from DW. The CDI
values calculated for adults ranged from 0.0003 to 0.0386 for all DW sources. At the same
time, the CDI values for children were observed to range from 0.0004 to 0.0491. The highest
mean CDI, illustrated in Figure 4, for adults and children was observed for As for TW
and WRS and Pb for GW. The smallest mean CDI for adults was observed for Mn for
all DW samples. The study of de Jesus et al. (2021) in Marinduque also revealed high
concentrations of Pb in the GW samples [58].
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Table 8. The mean CDI of metals (mg/L) through oral route from water.

Water Sources
HMMs

As Ba Cu Fe Pb Mn Ni Zn

TW (adult) 0.0331 0.0007 0.0009 0.0043 0.0136 0.0003 0.0065 0.0010
GW (adult) 0.0033 0.0008 0.0008 0.0283 0.0386 0.0003 0.0024 0.0011
WRS (adult) 0.0162 0.0008 0.0011 0.0056 0.0117 0.0003 0.0026 0.0009
TW (child) 0.0421 0.0009 0.0011 0.0055 0.0173 0.0004 0.0083 0.0012
GW (child) 0.0042 0.0010 0.0010 0.0360 0.0491 0.0004 0.0031 0.0014
WRS (child) 0.0206 0.0011 0.0015 0.0071 0.0148 0.0004 0.0033 0.0011
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The HQ indices of metals through water intake in the study area are elaborated in
Table 9. The average HQ indices of As for adults and children in TW and WRS were highest,
while the mean HQ index value for Pb was the highest for GW samples both for adults
and children. The HQ index trend of HMM for adult and children in TW and WRS were
observed to be As > Pb > Ni > Cu > Fe > Ba > Zn > Mn, while the HQ index in GW for
adult is Pb > As > Ni > Fe > Cu > Ba > Mn > Zn. The HQ index trend of GW for children
was Pb > As > Ni > Fe > Cu > Ba > Zn > Mn. Furthermore, the HQ indices of As and Pb
for all water sources were greater than 1, indicating potential health risks to the human
population. It must be emphasized that exposure to HMM may also come from various
sources and through other pathways of exposure [59].

Table 9. Mean non-CR parameters (HQ and HI) of HMMs in the water.

Water Sources
HQ

HI
As Ba Cu Fe Pb Mn Ni Zn

Tap water (adult) 110 * 0.004 0.022 0.006 9.71 * 0.002 0.327 0.003 120 *
GW (adult) 3.14 * 0.004 0.006 0.011 35.0 * 0.002 0.123 0.002 38.2 *
WRS (adult) 30.6 * 0.005 0.015 0.005 7.50 * 0.002 0.129 0.003 38.3 *
Tap water (child) 140 * 0.005 0.028 0.008 12.4 * 0.003 0.416 0.004 153 *
GW (child) 14.2 * 0.005 0.025 0.052 35.1 * 0.003 0.155 0.005 49.5 *
WRS (child) 68.7 * 0.005 0.037 0.010 10.6 * 0.003 0.164 0.004 79.5 *

* Potential high HR to human population.

The TCR to residents through water intake from TW, GW, and WRS is summarized in
Table 10. Among the studied target contaminants, only As, Pb, and Ni are categorized as
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carcinogenic metals by the International Agency for Research on Cancer (IARC) [60,61]. The
adult carcinogenic risk for As ranged from 1.41 × 10−3 to 4.96 × 10−2; Pb from 8.92 × 10−5

to 4.16 × 10−4; and Ni from 2.07 × 10−3 to 5.50 × 10−3. The child carcinogenic risk for As
ranged from 1.80 × 10−3 to 1.50 × 10−1; Pb from 1.14 × 10−4 to 5.29 × 10−4; and Ni from
2.35 × 10−3 to 2.76 × 10−3. The mean TCR was 2.51 × 10−2 and 5.95 × 10−2 for adults
and children, respectively. All these risks were greater than the threshold value proposed
by USEPA, which is 1 × 10−4 [62,63]. Having recorded these values, certain interventions
and control measures are required to reduce the level of concentrations of HMM in the
province and limit the population’s exposure. Adequate remediation and prompt onsite
treatment to safeguard people’s health are necessary [64]. The TCR of the carcinogenic
metals in all water sources were seen in the order As > Ni > Pb, and the TCR was in the
order TW > WRS > GW both for adult and children, as shown in Figure 5.
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Table 10. Mean total carcinogenic risk parameters (TCR) of metals in the domestic water.

Water Sources
CR

TCR
As Pb Ni

Tap water (adult) 4.96 × 10−2 1.16 × 10−4 5.50 × 10−3 5.53 × 10−2

Groundwater (adult) 1.41 × 10−3 4.16 × 10−4 2.07 × 10−3 3.90 × 10−3

WRS (adult) 1.38 × 10−2 8.92 × 10−5 2.16 × 10−3 1.60 × 10−2

Tap water (child) 1.50 × 10−1 3.32 × 10−4 2.35 × 10−3 1.53 × 10−1

Groundwater (child) 1.80 × 10−3 5.29 × 10−4 2.63 × 10−3 4.96 × 10−3

WRS (child) 1.75 × 10−2 1.14 × 10−4 2.76 × 10−3 2.04 × 10−2

3.4. Monte Carlo Simulation and Sensitivity Analysis

The carcinogenic risk (adults and children) related to As, Pb, and Ni in all residential
water sources in Marinduque, Philippines was evaluated using the Monte Carlo method.
The likelihood of lifetime cancer risk (adults) for As in all water samples is shown in
Figure 6. The mean TCR for As was 3.18 × 10−2, while the risks of 5% and 95% were as
high as 2.38 × 10−2 and 4.10 × 10−2, respectively. This risk is very high compared to the
indicated maximum acceptable risk of 1.00 × 10−4 for As.
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Figure 6. Predicted probability of TCR (adults) for As in water.

The factors included in the lifetime carcinogenic risk (LTCR) estimate was then de-
termined using a sensitivity analysis (SA). The As in water demonstrated that the two
components involving HMM content and body weight (BW) had the most significant effect
on the LTCR values. Compared to other factors, an As concentration of 36.4 percent and
a BW concentration of 13.0 percent had the highest positive and negative impacts on the
LTCR calculation (Figure A1).

The average likelihood of the LTCR for Ni was 6.86 × 10−3, while the risks of 5% and
95% were equal to 5.18 × 10−3 and 8.82 × 10−3, respectively (Figure 7). The SA for the LTCR
estimate regarding Ni indicated that the two parameters including a Ni concentration of
36.8% and an AT of −12.6%, respectively, had the highest positive and negative influences
on the carcinogenic hazard value, as shown in Figure A2.
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Figure 7. Predicted probability of TCR (Adult) for Ni in water.

Moreover, the average likelihood of lifetime CR for Pb was 1.67 × 10−4, while the
risks of 5% and 95% were equal to 1.25 × 10−4 and 2.15 × 10−4, respectively, as shown
in Figure 8. The SA for the LTCR computation concerning Pb demonstrated that the two
parameters consisting of a Pb concentration of 36.0% and a BW of −13.5% had the highest
positive and negative impacts on the carcinogenic hazard value as shown in Figure A3.
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Figure 8. Predicted probability of TCR (Adult) for Pb in water.

For children, the average likelihood of LTCR of As was observed to be 4.06 × 10−2,
while the risks of 5% and 95% were equivalent to 3.06 × 10−2 and 5.24 × 10−2, respectively,
as shown in Figure 9. The SA for the LTCR (children) computation on As demonstrated
that the two parameters comprising an As concentration of 36.8% and a BW of −13.6% had
the highest positive and negative impacts on carcinogenic hazard computation as shown in
Figure A4.
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Figure 9. Predicted probability of TCR (children) for As in water.

The average likelihood of LTCR of Ni for children was observed to be 8.72 × 10−3,
while the risks of 5% and 95% were equivalent to 6.56 × 10−3 and 1.13 × 10−2, respectively
as shown in Figure 10. The SA for the LTCR (children) computation involving Ni explained
that the two parameters containing a Ni concentration of 36.0% and a BW of −13.3% had
the highest positive and negative impacts on the carcinogenic hazard calculation, as shown
in Figure A5.
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Figure 10. Predicted probability of TCR (children) for Ni in water.

Furthermore, the LTCR of Pb for children was observed to be 2.10 × 10−4, while the
risks of 5% and 95% were equivalent to 1.60 × 10−4 and 2.70 × 10−4, respectively as shown
in Figure 11. The SA for the LTCR (children) computation involving Pb revealed that the
two parameters consisting of a Pb concentration of 37.5% and an AT of −12.9% had the
highest positive and negative impacts on the carcinogenic hazard calculation, as shown in
Figure A6.
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3.5. Relationship of WQ Parameters in the Domestic Water Samples

The relationships between the selected WQ parameters, especially metals, in the water
provided interesting information on their potential sources and pathways. Figure 12a
presents the correlation plot for the WQ parameters obtained from the TW samples. It can
be seen that there are significant positive correlations between EC and TDS as well as Pb
and Cu. For the GW samples, the correlation matrix plot of each WQ parameter is presented
in Figure 12b. It is observed that significant positive correlations exist between EC and TDS
and Fe and Zn. Moreover, the correlation matrix plot of WQ parameters obtained for WRS
is exhibited in Figure 12c. It is observed that significant positive correlations exist between
EC and TDS, Fe and Cu, Pb and Cu, and Pb and Fe.

1 
 

 
Figure 12. Correlation matrix plots of WQ parameters obtained for (a) TW samples, (b) GW samples,
and (c) WRS samples.

The observed relationships of metals in all water sources were further supported by a
hierarchical cluster analysis (CA) dendrogram. The primary clusters found in WRS were
(1) Mn-Zn-Ba-Ni-Cu-Fe, (2) Pb, and (3) As (Figure 13a). The primary clusters for GW were
(1) Ba-Mn-Zn-Cu-Ni-As, (2) Fe, and (3) Pb, as shown in Figure 13b. Lastly, the primary
clusters found in TW were (1) Ba-Mn-Zn-Cu-Fe-Ni, (2) Pb, and (3) As (Figure 13c).
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3.6. Pollution and Health Risk Mapping Using the MLGI Method

The results of the simulation for the MPI mapping of the DW samples using the NN-
PSO technique integrated with the EBK method are presented in Table 11. The validation
and testing plots of the MPI for the DW samples are shown in Figure A7 in Appendix B.
As shown in Figure 14a, the highest MPI for TW was observed in Brgy. Market Site,
Municipality of Mogpog. The highest MPI was observed in Brgy. Bicas-Bicas, Municipality
of Buenavista for the GW samples (Figure 14b). Moreover, it was observed that the highest
MPI for WRS was in Brgy. Janagdong, Municipality of Mogpog as shown in Figure 14c.

Table 11. NN-PSO simulation results for the MPI mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

TW 27 10 2000 179.07227 0.00946 0.99943 0.97347
GW 29 6 2000 158.96334 0.00269 0.98592 0.95757
WRS 25 10 2000 118.08149 0.00240 0.99995 0.99063
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and (c) WRS samples.

Table 12 shows the simulation results for the NPI mapping of DW samples using the
NN-PSO approach combined with the EBK method. The validation and testing plots for the
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NPI maps are illustrated in Figure A8 in Appendix B. As seen in Figure 15a, Brgy. Buangan,
Torrijos reported the highest NPI for TW. The highest NPI values for GW were found in
Brgy. Bicas-Bicas, Municipality of Buenavista as shown in Figure 15b. Additionally, the
highest NPI for WRS was recorded in Brgy. Janagdong, Mogpog Municipality, as shown in
Figure 15c.

Table 12. NN-PSO simulation results for the NPI mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

TW 28 2 2000 156.89022 0.004781 0.99111 0.98528
GW 26 8 2000 160.20618 0.001309 0.97545 0.98381
WRS 29 10 2000 162.05585 0.001384 0.99959 0.96495
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The findings of a simulation for the HI (adults) mapping of domestic water samples
using the NN-PSO approach with the EBK technique are shown in Table 13. The validation
and testing plots for the HI (adults) maps are illustrated in Figure A9 in Appendix B. As
shown in Figure 16a, Brgy. Buangan, Torrijos reported the highest HI (adults) for tap
water. As seen in Figure 16b, the highest HI (adults) values for GW were observed in Brgy.
Bicas-Bicas, Municipality of Buenavista. Additionally, the highest HI (adults) for WRS was
recorded in Brgy. Janagdong, Mogpog Municipality as shown in Figure 16c.

Table 13. NN-PSO simulation results for the HI (adults) mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

TW 30 5 2000 175.55656 0.00275 0.99856 0.99881
GW 25 5 2000 168.88374 0.00386 0.97732 0.99998
WRS 28 9 2000 124.37414 0.00142 0.99935 0.99994
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Table 14 summarizes the results of a simulation for the HI (children) mapping of
residential water samples using the NN-PSO methodology integrated with the EBK method.
Figure A10 in Appendix B illustrates the validation and testing plots for the HI (children)
maps. Brgy. Buangan, Torrijos recorded the highest HI (children) for tap water, as seen
in Figure 17a. As seen in Figure 17b, the highest HI (children) values for GW were found
in Brgy. Bicas-Bicas, Buenavista Municipality. Additionally, as shown in Figure 17c, the
highest HI (children) for WRS was obtained in Brgy. Janagdong, Mogpog Municipality.

Table 14. NN-PSO simulation results for the HI (children) mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed Time
(sec) MSE

R

Validation Testing

TW 28 10 2000 159.46539 0.00585 0.99913 0.99628
GW 30 6 2000 178.66654 0.00237 0.99985 0.99978
WRS 26 3 2000 186.69597 0.00173 0.99637 0.99758
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Figure 17. Spatial maps of HI (children) developed using MLGI approach for (a) TW samples, (b) GW
samples, and (c) WRS samples.
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The findings of a simulation for the TCR (adults) mapping of domestic water samples
using the NN-PSO approach with the EBK method are shown in Table 15. The validation
and testing plots for the TCR (adults) maps are illustrated in Figure A11 in Appendix B.
As shown in Figure 18a, Brgy. Buangan, Torrijos reported the highest TCR (adults) for TW.
As illustrated in Figure 18b, the highest TCR (adults) levels for GW were found in Brgy.
Bagacay, Buenavista. Additionally, the highest TCR (adults) for WRS was recorded in Brgy.
Janagdong, Mogpog Municipality as shown in Figure 18c.

Table 15. NN-PSO simulation results for the TCR (adult) mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

TW 30 7 2000 132.47061 0.00082 0.99628 0.99924
GW 26 7 2000 169.82680 0.00002 0.99950 0.99589
WRS 29 6 2000 169.27427 0.00001 0.99957 0.99629
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samples, and (c) WRS samples.

Table 16 summarizes the simulation results for the TCR (children) mapping of do-
mestic water samples using the NN-PSO methodology integrated with the EBK method.
Figure A12 in Appendix B illustrates the validation and testing plots for the TCR (children)
maps. Brgy. Buangan, Torrijos reported the highest TCR (children) for TW, as seen in
Figure 19a. As illustrated in Figure 19b, the highest TCR (children) levels for GW were
found in Brgy. Bagacay, Buenavista. Additionally, the highest TCR (children) for WRS was
recorded in Brgy. Janagdong, Mogpog Municipality as shown in Figure 19c.

Table 16. NN-PSO simulation results for the TCR (children) mapping of domestic water samples.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

Tap Water 29 7 2000 166.27182 0.00028 0.99871 0.94267
GW 26 7 2000 169.06680 0.00002 0.99873 0.99979
WRS 29 6 2000 130.73092 0.00001 0.97401 0.98393
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Figure 19. Spatial maps of TCR (child) developed using MLGI approach for (a) TW samples, (b) GW
samples, and (c) WRS samples.

The association between the number of neurons simulated from 1 to 30 and the AIC
(Akaike information criterion) values calculated for the pollution and risk indices (MPI,
NPI, HI (adults), HI (children), TCR (adults), and TCR (children)) in TW, GW, and WRS are
exhibited in Figure 20a, Figure 20b, and Figure 20c, respectively. These figures provide the
AIC values for all NN-PSO models used in this research for each hidden neuron simulated.
The best models for the tap water models had 27, 28, 30, 28, 30, and 29 hidden neurons for
MPI, NPI, HI (adults), HI (children), TCR (adults), and TCR (children), respectively. For the
groundwater, the best models were observed with 29, 26, 25, 30, 26, and 26 hidden neurons
for MPI, NPI, HI Adults, HI (children), TCR (adults), and TCR (children), respectively.
Moreover, for the WRS, the best models observed were found with 25, 29, 28, 26, 29,
and 29 hidden neurons for MPI, NPI, HI (adults), HI (children), TCR (adults), and TCR
(children), respectively.
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Figure 20. Akaike information criterion (AIC) values for pollution and risk indices in (a) TW, (b) GW,
and (c) WRS.

4. Discussion

Identifying the parameters influencing the GW chemistry is vital for the sustainability
of water resources [65]. In this study, it was observed that the mean concentrations of As, Pb,
and Ni in domestic water resources in the province of Marinduque were above the limit set
by the WHO. The relationship of water quality parameters was likewise determined, and it
was recorded that there was a substantial positive correlation between EC and TDS in tap
water samples, which agrees with the results of the study by Qureshi et al. [66]. Moreover,
a high positive correlation was also seen between Pb and Cu in TW and Pb and Fe in WRS,
which is similar to the findings of Varghese and Jaya [67]. For WRS, Fe and Cu had a
significant positive correlation that agreed with the results of Kuisi and Abdel-Fattah [68].
A positive correlation among these metals suggests a possible shared origin [69].

The MPI and NPI were broadly utilized in the evaluation of the total HMM contam-
ination in GW. The MPI covers the weight of different HMMs in the computation of the
overall quality of drinking water [4,70]. In the present study, HMM including As, Ba, Cu,
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Fe, Pb, Mn, Ni, and Zn were considered. The findings showed that all sampling locations
recorded MPI values classified as having a high degree of pollution. Similarly, all sampling
points were heavily polluted based on the calculated NPI values. As, Pb, and Ni in all
water sources exceeded both the water quality standards of WHO and PNSDW. Similar
findings were observed by Agarin et al. [14], who investigated the concentration of metals
in the surface and groundwater of the island province in 2021.

The total carcinogenic risk computed through the ingestion route exceeded the max-
imum threshold level of 1.00 × 10−4 [71] for all DW samples. The results indicated that
children were more vulnerable to CR than adults, as shown by the observation that the TCR
values for children were all greater than the TCR values calculated for adults, consistent
with the results of Pervez et al. [35]. Therefore, it is essential to determine the As levels
because exposure may cause either acute or chronic poisoning. Acute As toxicity is often
characterized by nausea, vomiting, abdominal discomfort, and severe watery diarrhea [72].
Chronic arsenic effects may arise due to prolonged exposure to lower arsenic levels, al-
though latent toxicity, such as cancer, can persist even after exposure has ended. Chronic
arsenic toxicity may gradually develop, making it more difficult to identify. Skin manifesta-
tions and peripheral neurologic complaints are often more apparent than gastrointestinal
symptoms, with chronic exposure and concerns also centering on an increased future risk
of cancer [73]. Early skin indicators include hyperpigmentation or hypopigmentation of the
skin. Hyperkeratosis and scaling, especially on the palms and soles, highly indicate arsenic
exposure [74]. Carcinomas of the skin and Bowen’s disease are connected with latent
arsenic toxicity. Additionally, a peripheral vascular condition known as a Blackfoot disease
accompanying gangrene has been related to chronic arsenic exposure [75,76]. Numerous
research and case reports have also shown a link between arsenic exposure and cancer.
Arsenic exposure has been linked to skin [77], lung [78], liver [79], kidney [80], bladder [81],
and prostate cancers [82].

Similar to As toxicity, Pb toxicity can have acute or chronic effects. Acute Pb toxicity
symptoms associated with Pb include dullness [83], restlessness [84], irritability [85], short
attention span [86], headaches [87], muscular tremor [88], abdominal pain [89], renal
damage [90], hallucinations [91], memory loss [92], and encephalopathy [93]. Moreover,
signs of chronic Pb toxicity include tiredness [94], sleeplessness [95], headaches [96], joint
pain [97], and gastrointestinal symptoms [89]. Furthermore, Pb exposure raises the risk of
lung, stomach, and bladder cancer [98]. Additionally, Ni toxicity causes headaches [99],
gastrointestinal manifestations [100], cardiovascular diseases, and cancer [101]. In 2020,
the provincial health office of the island province reported cancer deaths mainly from the
municipalities of Mogpog and Sta. Cruz. Although there is no report on the pathogenesis
of these cancer cases, environmental quality influences the development and severity of
diseases such as cancer.

The different pollution and health risk indices were mapped using the MLGI approach,
which combines NN-PSO with EBK [21]. The governing MLGI models were found to be
established from the AIC measure values that were the lowest among the observable hidden
neurons. As the AIC value approached its minimal value, it was revealed that increasing
the quantity of hidden neurons resulted in an increased AIC value. This indicated that the
network had reached a state of generalization [58].

The concentrations of HMM do not necessarily reflect the actual pollution state of a
water resource since it only assesses each heavy metal separately and with equal severity
in terms of its biological effects. The application of pollution and health risk indices could
provide a more conclusive assessment of the pollution and health risk status of a region
since it compares the concentrations of each heavy metal to their acceptable levels [102]. It
also indicates the total amount of pollution a region is facing. These indices were applied
to an island province that was hit by two mine tailing disasters and it could be adopted in
other locations across the world that experienced similar mining disasters.

The utilization of pollution and health risk indices is critical for ensuring the quality
of water resources consumed and used by residents. These indices can be employed to
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determine the current risk to which the community may be exposed and recommend
potential mitigation measures to limit the level of exposure of community members [103].
The incorporation of the MLGI approach enables the creation of spatial maps of various
indices to provide remediation strategies and decision-making processes.

5. Conclusions

This study examined the spatial variability of the MPI, the NPI, the HI and the TCR
(for children and adults) by HMM such as As, Ba, Cu, Fe, Pb, Mn, Ni, and Zn in an
island province’s DW sources, i.e., TW, GW, and WRS. Moreover, it highlighted the use
of portable devices for in situ detection of HMMs in water, providing accurate and real-
time results. It was recorded that As, Pb, and Ni concentrations were much higher than
the WHO’s permissible levels. The correlation analysis and dendrogram revealed that
the link between the HMMs detected indicated a common origin. The computed MPI
values in all sampling sites for all domestic water samples were characterized as highly
polluted. Additionally, the NPI values estimated at all sampling stations for all DW samples
were categorized as heavily polluted. The HQ indices for As and Pb were significantly
greater than 1 for all water sources, indicating a potentially significant health risk to
the human population. Moreover, As had the highest CR observed in the tap water
samples and accounted for 89.7% of the total CR in TW. Additionally, all sample sites
exceeded the USEPA’s suggested maximum threshold level of 1.00 × 10−4, which indicates
a high carcinogenic risk. The sensitivity analysis results using MCS showed that the most
influential variable in the LTCR was the contaminant concentration. Further, reducing the
metal concentration reduced the carcinogenic risk. The calculated indices and MLGI-based
maps can be utilized as a benchmark for future research by local government units. It would
be helpful in the creation and implementation of remediation and mitigation strategies to
promote sustainable development in the protection of domestic water resources. Prompt
intervention is required, as well as a regular monitoring of the quality of domestic water
sources in the island province. This is to reduce the negative health impacts of these
elevated HMM to the local population. Priority and special attention shall be given to the
HMM that have elevated concentration and exceed the permissible limits by WHO and
PNSDW. In addition, a regular monitoring of water resources quality for domestic supply
shall be carried out, the development of policies based on these results shall be pursued,
and the enforcement of existing policies shall be effectively conducted to reduce adverse
health effects to the population of the island province.
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