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ABSTRACT: The fruit extract of Melaleuca quinquenervia yielded a total of 19 compounds, including two novel spiro-biflavonoid
enantiomers (1a and 1b) and a chalcone derivative (3). Their structures were determined through spectroscopic analysis. The
enantiomers of the racemic mixture of compound 1 were successfully resolved into (+)-1 and (−)-1 using chiral-phase HPLC.
Single-crystal X-ray diffraction analysis was also used to confirm the structure of 1. The enantiomeric configurations of 1 and 2 were
determined through a comparison of the calculated and experimental electronic circular dichroism spectra. Compounds 2
(melanervin), 14 (methyl betulinate), 15 (3-O-acetylbetulinic acid), and 16 (pyracrenic acid) were found to be highly cytotoxic,
with compound 16 showing superior growth inhibition of nonsmall cell lung cancer cells (A549 cells) (IC50 2.8 ± 0.1 μM)
compared to cisplatin (IC50 3.3 ± 0.0 μM), a positive control chemotherapeutic drug. Both compound 16 and cisplatin were
significantly more cytotoxic toward A549 lung cancer cells compared to nontumorigenic Vero E6 cells.

1. INTRODUCTION
Melaleuca is a large evergreen tree that belongs to the Myrtaceae
family and has around 280 species distributed across eastern
Australia, Papua New Guinea, and New Caledonia.1 Melaleuca
leucadendron is cultivated for its ornamental value.1 Various parts
of these plants are used in traditional medicine. For example,
leaves of M. leucadendron have been used for treating gout,
respiratory ailments, inflammation, and dermatitis.2,3 Addition-
ally, the leaves of Melaleuca alternifolia have been used for
treating psoriasis,4 and the essential oil is used for skin and
microbial infections.5 The plant contains many phytochemicals
such as hydrolyzable tannins,6 polyphenols,6 flavonoids,7

triterpenes,8,9 and stilbenes.7 Some phytochemicals have
exhibited various biological activities, such as antiviral,10

antifungal,11 anti-inflammatory,12 antioxidant,13 and antihist-
amine properties.7

Melaleuca quinquenervia (Cav.) S. T. Blake, commonly known
as the “Cajeput tree”, is an evergreen plant that is tough and
adaptable. It is originally from Australia but has been introduced

to many other parts of the world, including Hawai’i, where it is
often used to protect against strong winds. The leaves of M.
quinquenervia have been used in Thai folk medicine to treat
microbial infections, gastrointestinal disorders, and skin
lesions.14 Previous phytochemical studies have identified
flavanones, monoterpene glucosides, polyphenols with anti-
oxidant potential, and compounds with antihyperglycemic
activities in M. quinquenervia.15,16 This report focuses on the
bioassay-guided fractionation and structure elucidation of an
ethyl acetate extract from M. quinquenervia fruits. The extract
showed inhibitory effects on the growth of the A549 cell line
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with an IC50 value of 35.8 ± 2.0 μg/mL, as demonstrated by the
sulforhodamine B (SRB) cytotoxic assay.29

2. RESULTS AND DISCUSSION
Bioassay-guided fractionation of the ethyl acetate extract from
M. quinquenervia fruits resulted in the isolation of two new
flavanones (1a and 1b), one new chalcone (3), along with 16
known compounds including (2S,11R) melanervin (2a),17,18

(2R,11S) melanervin (2b),17,18 pinocembrin (4),19 strobopinin
(5),20 cryptostrobin (6),21 cis-piceatannol (7),22 piceatannol
(8),22 (1,1′-biphenyl)-2,2′,4,4′,5-pentol,3,3′,5′-trimethoxy
(9),23 3,4,3′-tri-O-methylellagic acid (10),24 3-methoxy-5-
methyl-1,2-benzenediol (11),25 2-methoxy-1,3,5-benzenetriol
(12),26 lupenone (13),27 methyl betulinate (14),28 3-O-
acetylbetulinic acid (15),28 pyracrenic acid (16),29 and oleanolic
acid acetate (17).30 The structures were determined by
analyzing spectroscopic data such as UV, NMR, infrared (IR),
and MS and comparing them to literature values.
Compound 1 was isolated as a colorless solid that gave an [M

+ Na]+ ion at m/z 549.1506 in its HRESIMS spectrum, which
corresponds to a molecular formula of C31H26O8 with 19
degrees of unsaturation. The IR spectrum displayed the
presence of hydroxy (3243 cm−1), carbonyl (1613 cm−1), and
aromatic ring (1545, 1339, and 1258 cm−1) functionalities.
Analysis of its 1HNMR spectral (CDCl3, 400MHz) data (Table
1) revealed the presence of a set of ABX-type protons [δH 5.46
(1H, dd, J = 12.0, 3.8 Hz, H-2), 2.97 (1H, dd, J = 17.1, 12.0 Hz,

H-3α), 2.89 (1H, dd, J = 17.1, 3.8 Hz, H-3β)], one H-bonded
hydroxy proton [δH 12.04 (1H, s, 5-OH)], two methyl singlets
[δH 2.22 (3H, s, 6-CH3), 1.49 (3H, s, 14-CH3)], one methoxy
proton [δH 3.90 (3H, s, 15-OCH3)], one olefinic proton [δH
5.30 (1H, s, H-16)], onemethine signal [δH 4.73 (1H, s, H-11)],
and two sets of phenyl groups [δH 7.30 (4H, m, H-20/28), 7.28
(2H, m, H-21/27), 7.14 (2H, m, H-25/29), 7.07 (2H, m, H-19/
23)]. The 13C NMR spectrum (CDCl3, 100 MHz) (Table 2)
and HMQC correlations showed signals of 31 carbon signals
that can be classified as three carbonyls (δC 196.6, 193.1, 164.7),
11 quaternary carbons (four sp2 oxygenated carbons at δC 185.6,

Table 1. 1H NMR (400 MHz) Spectroscopic Data of
Compounds 1−3 (δ in ppm, J in Hz)

position 1a 2a 3b

2 5.46 (dd, 12.0, 3.8) 5.20 (dd, 13.2, 2.7) 7.78
(d, 16.0)

3 2.97 (dd, 17.1, 12.0),
2.89 (dd, 17.1, 3.8)

3.22 (dd, 17.1, 13.2),
2.84 (dd, 17.1, 2.7)

8.29
(d, 16.0)

11 4.73 (s) 6.21 (s)
16 5.30 (s) 6.12 (s)
19 7.07 (m) 7.33 (m)
20 7.30 (m) 7.31 (m)
21 7.28 (m) 7.35 (m)
22 7.30 (m) 7.31 (m)
23 7.07 (m) 7.33 (m)
25 7.14 (m) 7.05 (m)
26 7.30 (m) 7.13 (m)
27 7.28 (m) 7.15 (m)
28 7.30 (m) 7.13 (m)
29 7.14 (m) 7.05 (m)
2′ 7.68 (m)
3′ 7.44 (m)
4′ 7.42 (m)
5′ 7.44 (m)
6′ 7.68 (m)
5″ 6.12 (s)
5-OH 12.04 (s) 12.41 (s)
6-CH3 2.22 (s) 2.10 (s)
14-CH3 1.49 (s) 2.04 (s)
15-OCH3 3.90 (s) 3.76 (s)
2″-OH 14.17 (s)
3″-CH3 1.97 (s)
4″-OH 9.50 (br s)
6″-OH 10.12 (br s)

aRecorded in CDCl3.
bRecorded in acetone-d6.

Table 2. 13C NMR (100 MHz) Spectroscopic Data of
Compounds 1−3 (δ in ppm)

position 1a 2a 3b

1 192.4
2 79.0 80.4 141.4
3 43.8 42.5 128.0
4 196.6 196.3
5 159.9 161.0
6 106.2 107.7
7 154.8 162.9
8 106.3 107.2
9 155.5 156.2
10 105.1 103.2
11 42.2 35.1
12 78.5 106.0
13 164.7 152.5
14 65.0 105.3
15 185.6 158.0
16 102.9 93.7
17 193.1 152.9
18 138.4 139.7
19 128.5 128.8
20 127.4 128.6
21 128.8 129.4
22 127.4 128.6
23 128.5 128.8
24 138.3 136.5
25 125.4 126.7
26 128.8 126.8
27 127.6 126.3
28 128.8 126.8
29 125.4 126.7
1′ 135.8
2′ 128.2
3′ 128.9
4′ 129.9
5′ 128.9
6′ 128.2
1″ 104.6
2″ 164.9
3″ 102.8
4″ 162.6
5″ 94.4
6″ 159.6
6-CH3 7.3 7.7
14-CH3 24.6 8.3
15-OCH3 59.4 55.7
3″-CH3 6.6

aRecorded in CDCl3.
bRecorded in acetone-d6.
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159.9, 155.5, 154.8, five sp2 carbons at δC 138.4, 138.3, 106.3,
106.2, 105.1, and two sp3 carbons at δC 78.5, 65.0), 12 methines
(one olefinic at δC 102.9 and two sp3 at δC 79.0, 42.2), one
methylene (δC 43.8), and three methyls (one sp3 oxygenated at
δC 59.4). The 1H−1H COSY correlations of H-2 through H2-3,
as well as the HMBC correlations (Figure 2) fromH-2 (δH 5.46)

to C-3 (δC 43.8), C-4 (δC 196.6), C-9 (δC 155.5), and C-25/C-
29 (δC 125.4); from 5-OH (δH 12.04) to C-5 (δC 159.9), C-6
(δC 106.2), and C-10 (δC 105.1); and from 6-CH3 (δH 2.22) to
C-5, C-6, and C-7 (δC 154.8), indicated the presence of a phenyl
group and methyl group at C-2 (δC 79.0) and C-6, respectively.
These signals resemble those of strobopinin,20 a flavanone
previously isolated from Leptospermum scoparium. A 4-hydroxy-
3-methoxy-4-methylcyclopent-2-en-1-one moiety was con-
structed from the HMBC correlations from H-16 (δH 5.30) to
C-12 (δC 78.5), C-14 (δC 65.0), C-15 (δC 185.6), and C-17 (δC
193.1); from 15-OCH3 (δH 3.90) to C-15; and from 14-CH3 (δH

1.49) to C-12, C-14, and C-15. Furthermore, the HMBC
correlations fromH-11 (δH 4.73) with C-7, C-8 (δC 106.3), C-9,
C-12, C-13 (δC 164.7), C-14, C-17, and C-19/C-23 (δC 128.5)
connected the other phenyl group and 4-hydroxy-3-methoxy-4-
methylcyclopent-2-en-1-one subunit at C-11 and C-12,
respectively. As mentioned above, these data accounted for 18
out of 19 degrees of unsaturation, requiring the presence of an
additional ring. This finding implied that the oxygen and
carbonyl groups at C-13 should be connected to form a δ-
lactone. The relative configuration of 1 was established by the
analysis of the NOESY data. The NOE correlations of H-11 to
14-CH3 suggested that these protons were cofacial. The optical
rotation of 1 was zero, and there were no Cotton effects in its
electronic circular dichroism (ECD) spectrum, suggesting that 1
was a racemic mixture. Compound 1 was subjected to chiral-
phase HPLC (Lux cellulose-1 column, Phenomenex) which
afforded the two enantiomers (−)-1 [tR 13.8 min, [α]D −19.6 (c
0.1, CHCl3)] and (+)-1 [tR 16.9 min, [α]D +20.2 (c 0.1,
CHCl3)]. A single crystal was obtained, and the structure of 1
was confirmed by single-crystal X-ray diffraction (Figure 3). The
ECD curve of (+)-1 (1b) showed positive Cotton effects at 257
and 232 nm, whereas (−)-1 (1a) had opposite Cotton effects at
the aforementioned wavelengths (Figure 4). Two putative
structures of compound 1 (Figure 1) were optimized using the
M06-2X/6-31+G* level in methanol and the ECD spectra for
(2S,11R,12R,14S)-1 and (2R,11S,12S,14R)-1 were calculated at
the M06-2X/def2-TZVPP level in methanol (Figure 5). Of
these, the experimental ECD spectrum of (+)-1 (1b) was similar
t o t h a t o f t h e c ompu t e d ECD sp e c t r um o f
(+)-(2S,11R,12R,14S)-1 (Figure 5). Accordingly, the structures
o f c ompound s 1 a and 1 b we r e p r opo s ed a s

Figure 1. Structures of compounds 1−17 isolated from M. quinquenervia fruits.

Figure 2. Key 1H−1H COSY and HMBC correlations of compounds 1
and 3.
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(−)-(2R ,11S ,12S ,14R)-spiroquinquenerin (1a) and
(+)-(2S,11R,12R,14S)-spiroquinquenerin (1b).
Compound 2 was initially obtained as a racemic mixture and

was later separated into its pure enantiomers, 2a and 2b, using
chiral-phase HPLC. TheHRESIMS spectra of 2a and 2b gave an
[M + H]+ ion at m/z 513.1902 and 513.1910, respectively,
indicating a molecular formula of C31H29O7 (calcd for
C31H29O7, m/z 513.1913).17,18 To determine the absolute
configuration, we made a comparison between experimental and

predicted ECD spectra. The experimental ECD curve for 2a
closely aligned with the predicted ECD curve of (2S,11R),
exhibiting positive and negative Cotton effects at 230 and 300
nm, respectively. These findings support the absolute config-
urations of C-2 and C-11 being 2S and 11R, respectively. In
contrast, 2b displayed opposite Cotton effects at the same
wavelengths (Figure S20).
Compound 3, a dark yellow powder, gave the molecular

formula C16H14O4 from the molecular ion peak atm/z 271.0962

Figure 3. ORTEP drawings of spiroquinquenerin (C31H26O8·CH3OH); displacement ellipsoids are drawn at the 50% probability level at 298 K;
methanol solvent molecule is not shown. Left: unlabeled and uncluttered view; right: labeled view.

Figure 4. Experimental ECD spectra of 1a and 1b.

Figure 5. Calculated ECD spectra of 1.
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[M + H]+ in the Q-TOFMS spectrum. The UV and IR spectra
displayed the same pattern as those of chalcone core
structures.21 The 13C NMR (acetone-d6, 100 MHz) (Table 2)
spectrum and HSQC correlations showed resonances of 16
carbon signals comprising one methyl, eight methines (two
olefinics at δC 141.4, 128.0), and seven quaternary sp2 carbons
(one carbonyl at δC 192.4). In the 1H and 13C NMR spectra
(Tables 1 and 2), the resonances for a trans-α,β-unsaturated
ketone [δH 8.28 (1H, d, J = 16.0 Hz, H-3)/δC 128.0, 7.78 (1H, d,
J = 16.0 Hz, H-2)/δC 141.4, and δC 192.4], a monosubstituted
benzene ring [δH 7.68−7.42 (5H, m)], indicated that 3 has a
chalcone skeleton. The location of the methyl group [δH 1.97
(3H, s)] at position 3 was deduced by HMBC correlations
(Figure 2) from 2″-OH (δH 14.17) to C-1″ (δC 104.6), C-2″ (δC
164.9), and C-3″ (δC 102.8) and from 3″-CH3 to C-2″, C-3″,
and C-4′′ (δC 162.6). A singlet aromatic proton [δH 6.12 (1H,
s)/δC 94.4] was determined to be located at C-5″ by the HMBC
correlation of H-5″ with C-1″ and C-3′′. Furthermore, the
HMBC spectrum exhibited interactions of H-3 (δH 8.28) with
C-1′ (δC 135.8) and C-2′/C-6′ (δC 128.2) and correlation of H-
2 with C-1′ and C-1″ confirming the attachment of a
monosubstituted benzene ring at C-3. On the basis of these
spectroscopic studies, the structure of 3 was defined as
quinquenerin B.
Bioassay-guided fractionation was utilized to guide the

chromatographic separation process. All fractions and isolated
compounds, except for compound 1, were evaluated for their
cytotoxicity using a SRB assay in human nonsmall lung cancer
A549 cells (Table 3). Cisplatin was used as a positive control and
exhibited an IC50 value of 3.3 ± 0.0 μM in the A549 cells.
Fractions C−F generated during chromatographic separation
showed considerable cytotoxic activity. Their IC50 values ranged
from 12.5 to 65.9 μg/mL. Among these fractions, C, D, E, and F
showed noteworthy cytotoxicity toward the A549 cells, with

IC50 values of 22.4, 17.1, 12.5, and 65.9 μg/mL, respectively. In
contrast, fractions A and B were devoid of cytotoxicity, even at
the highest concentration (100 μg/mL) tested (Figure 6). The
isolated compounds (2, 14, 15, and 16) were cytotoxic to
nonsmall cell lung cancer (A549) cells with IC50 values of 13.5±
0.3, 11.0± 0.5, 11.0± 0.6, and 2.8± 0.1 μM, respectively (Table
3). Pyracrenic acid (16) was 2.6-fold more cytotoxic toward
A549 lung cancer cells compared to nontumorigenic Vero E6
cells (selectivity index, SI = 2.6) (Figure 7). These results are
encouraging, as pyracrenic acid (16) showed a level of selectivity
similar to that of the chemotherapeutic drug cisplatin (SI = 3.0).
In contrast, melanervin (2), methyl betulinate (14), and 3-O-
acetylbetulinic acid (15) were almost equally cytotoxic toward
A549 and Vero E6 (SI = 1.0−1.3). Pyracrenic acid (16), which is
3β-O-trans-caffeoylbetulinic acid, was found to be more
cytotoxic toward A549 cells than 3-O-acetylbetulinic acid
(15). These findings suggest that the isolated compounds
have the potential to be developed further to improve their
selectivity as lead compounds for anticancer drug discovery.47

3. CONCLUSIONS
In conclusion, 19 compounds with varying structures were
isolated from the fruits of M. quinquenervia. By analyzing the
calculated and experimental CD data for compounds 1a, 1b, 2a,
and 2b, we can determine the absolute configurations of
enantiomers 1 and 2, respectively. Due to insufficient sample
quantity, compounds 1, 1a, and 1b were not tested for
cytotoxicity. It was noted that the naturally occurring racemate
had a greater cytotoxic activity than each of the two pure isolated
enantiomers of compound 2. The two enantiomers might target
different molecular pathways in A549 cells, resulting in a
synergistic effect.

4. EXPERIMENTAL SECTION
4.1. General Experimental Procedures.Optical rotations

were recorded in CHCl3 on a Rudolph Research AUTOPOL IV
multiwavelength polarimeter (Rudolph Research Analytical,
Hackettstown, NJ, USA). Ultraviolet spectra were measured
with a Shimadzu PharmaSpec-1800 UV−visible spectropho-
tometer (Shimadzu Scientific Instruments, Columbia, MD,
USA). The ECD spectra were obtained on a JASCO J-815
spectropolarimeter (JASCO Inc., Tokyo, Japan). IR radiation
spectra were measured on a Thermo Scientific Nicolet iS 10 FT-
IR spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA). X-ray data were collected at 298 K using a Bruker D8
VENTURE four circle κ-geometry diffractometer equipped with
an Incoatec IμS 3.0 microfocus sealed tube (Cu Kα radiation; λ
= 1.54178 Å) with a multilayer mirror monochromator and a
Photon III M14 area detector. NMR spectra, including
bidimensional, were collected on a Bruker AVANCE DRX-
400 NMR spectrometer (Bruker, Billerica, MA, USA) at 400
MHz (1H) and 100 MHz (13C), and the data were processed
using MestReNova version 14.2.1-27684 software with CDCl3
(δH 7.23, δC 77.16) or MeOD (δH 3.31, δC 49.0) as solvents.
High-resolution electrospray ionization mass spectra were
recorded on an Agilent 6530 LC-qTOF high mass accuracy
mass spectrometer (Santa Clara, CA, USA) in positive ion
mode. Silica gel (230−400 mesh, 480−800 mesh, Sorbent
Technologies, Atlanta, GA, USA) and Sephadex LH-20 (GE
Healthcare, Piscataway, NJ, USA) were used for column
chromatography. Preparative HPLC was performed on a
Thermo Scientific Ultimate 3000 system equipped with a

Table 3. Cytotoxicity of Compounds 2−17 against A549
Cells Was Determined by an SRB Cytotoxicity Assaya

compounds IC50 value (μM)

2 13.5 ± 0.3
2a 77.4 ± 2.9
2b 46.6 ± 1.1
3 131.1 ± 3.7
4 169.2 ± 2.1
5 285.8 ± 4.2
6 166.5 ± 2.0
7 215.7 ± 6.1
8 85.2 ± 4.0
9 97.0 ± 3.6
10 184.0 ± 3.9
11 IC50 > highest test concentration

b

12 367.9 ± 10.2
13 IC50 > highest test concentration

b

14 11.0 ± 0.5
15 11.1 ± 0.6
16 2.8 ± 0.1
17 143.3 ± 1.7
cisplatin 3.3 ± 0.0

aThe IC50 values were calculated by treating the cells with isolated
compounds or cisplatin for 72 h. The results of three independent
experiments are shown as mean ± standard deviation values. bThe
IC50 value falls beyond the concentration range tested.
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photodiode array detector, using a reversed-phase C18 chiral
column (250 × 10 mm, 5 μm, cellulose-1), with a flow rate of 2
mL/min.

4.2. Plant Material. The fresh fruits of M. quinquenervia
were collected from Hilo, Hawai‘i Island (Big Island), Hawaii,
USA, in April 2022 and were identified by L. C. Chang. A
voucher specimen (no. MQF01) was deposited at the Natural
Product Chemistry Laboratory, Daniel K. Inouye College of
Pharmacy, University of Hawai‘i at Hilo.

4.3. Extraction and Isolation. The dried fruits of M.
quinquenervia (1.4 kg) were extracted with EtOAc (3 L) at room
temperature (3 days × thrice) and concentrated under reduced
pressure to give an EtOAc extract (120.6 g). The extract was
further separated by CC eluting with the gradient solvent
systems of hexanes−EtOAc (1:0 to 0:1, v/v) and EtOAc−
MeOH (1:0 to 0:1, v/v) to afford six fractions (A−F). Fractions
C−Fwere active in the SRB cytotoxic assay (IC50 17.7−65.9 μg/
mL), while fractions A and B were inactive and were not
investigated further. Fraction C (12.6 g) was washed with
MeOH to yield 15 (1.7 g) and 17 (53.7 mg). Fraction D (6.2 g)
was further separated by Sephadex LH-20 CC with 100%
MeOH to afford four subfractions (Da−Dd). Purification of Dd

(456.2 mg) by silica gel CC eluting with EtOAc−hexane (2:8, v/
v) gave 4 (5.8 mg), 5 (12.8 mg), 2 (17.1 mg), and D1.
Compound 2 was further purified by preparative chiral HPLC
(acetonitrile−H2O, 80:20, flow rate 2 mL/min) to furnish 2a (tR
20.3, 5.1 mg) and 2b (tR 22.1, 4.9 mg). Subfraction D1 (193.4
mg) was subjected to silica gel CC using EtOAc−DCM (1:49,
v/v) to yield 1 (1.4 mg), 5 (6.6 mg), and 6 (9.3 mg). Compound
1was further purified by preparative chiral HPLC (acetonitrile−
H2O, 60:40, flow rate 2 mL/min) to furnish 1a (tR 13.8, 0.4 mg)
and 1b (tR 16.9, 0.3 mg). Fraction E (4.8 g) was purified by
Sephadex LH-20 CC (100% MeOH) and followed by silica gel
CC eluting with EtOAc−hexane (3:7, v/v) to 3 (2.1 mg), 9 (1.6
mg), 11 (11.3 mg), 13 (4.6 mg), and 16 (284.4 mg). Fraction F
(6.1 g) was further purified on a Sephadex LH-20 CC (100%
MeOH) and followed by silica gel CC eluting with MeOH−
DCM (1:9, v/v) to yield 7 (8.2 mg), 8 (257.4 mg), 10 (2.7 mg),
12 (8.1 mg), and 14 (11.6 mg).
4.3.1. (−)-Spiroquinquenerin (1a). Colorless amorphous

solid; UV (MeOH) λmax (log ε): 220 (3.81), 274 (2.94) nm; CD
(CH3CN) λmax (Δε): 250 (−0.24), 225 (−0.018) nm; IR (neat)
νmax: 3246, 2962, 1613, 1545, 1262, 1018, 795 cm−1; see Table 1
for 1H NMR (CDCl3, 400 MHz) and 13C NMR (CDCl3, 100

Figure 6.Cytotoxicity ofM. quinquenervia: the EtOAc extract and chromatographic fractions were evaluated. Compounds 2, 14, 15, and 16 had highly
cytotoxic effects with lower IC50 values.

Figure 7. (A) IC50 values of compounds 2, 14, 15, 16, and cisplatin toward A549 cells. Data was obtained using a cytotoxicity assay based on the
protein-binding dye, SRB. Cells were treated with increasing concentrations of test samples for 72 h. (B) The comparative cytotoxicity of compounds
2, 14, 15, 16, and cisplatin toward nonsmall cell lung cancer (A549) and Vero E6 (nontumorigenic) cells was analyzed. The SI values are shown in
boxes above the bars. Results are shown as the mean± standard deviation values of three independent experiments. ns = not significant, *p < 0.05, **p
< 0.01, and ***p < 0.001 between two groups indicated.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00769
ACS Omega 2024, 9, 18516−18525

18521

https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00769?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


MHz); HRESIMS m/z: 549.1506 [M + Na]+ (calcd for
C31H26NaO8, 549.1525).
4.3.2. (+)-Spiroquinquenerin (1b). Colorless amorphous

solid; UV (MeOH) λmax (log ε): 224 (3.87), 279 (3.25) nm; CD
(CH3CN) λmax (Δε): 257 (0.37), 232 (−0.01) nm; IR (neat)
νmax: 3243, 2948, 1607, 1551, 1258, 1012, 794 cm−1; see Table 1
for 1H NMR (CDCl3, 400 MHz) and 13C NMR (CDCl3, 100
MHz); HRESIMS m/z: 549.1500 [M + Na]+ (calcd for
C31H26NaO8, 549.1525).
4.3.3. (2S,11R) Melanervin (2a). Light yellow solid; mp 153−

154 °C; see Table 1 for 1H NMR (CDCl3, 400 MHz) and 13C
NMR (CDCl3, 100MHz); HRESIMSm/z: 513.1902 [M +H]+
(calcd for C31H29O7, 513.1913).
4.3.4. (2R,11S) Melanervin (2b). Light yellow solid; mp 148−

149 °C; see Table 1 for 1H NMR (CDCl3, 400 MHz) and 13C
NMR (CDCl3, 100MHz); HRESIMSm/z: 513.1910 [M +H]+
(calcd for C31H29O7, 513.1913).
4.3.5. Quinquenerin B (3). Dark yellow powder; mp 177−

178 °C; UV (MeOH) λmax (log ε): 240 (3.21), 275 (2.82) nm;
IR (neat) νmax: 3253, 1614, 1557, 1447, 1339, 1097, 972 cm−1;
see Table 1 for 1H NMR (acetone-d6, 400 MHz) and 13C NMR
(acetone-d6, 100 MHz); HREIMS m/z: 271.0962 [M + H]+
(calcd for C16H15O4, 271.0970).

4.4. Cell Lines. A549 human lung carcinoma epithelial cells
(CCL-185) and Vero E6 (CRL-1586, African green monkey
kidney cells) were procured from the American Type Culture
Collection (ATCC, Manassas, Virginia, USA). Cells were
cultured in Dulbecco’s modified Eagle’s medium supplemented
with heat-inactivated fetal bovine serum (FBS, 10%) and
antibiotics (penicillin 1000 IU/mL and streptomycin 1000 μg/
mL) at 37 °C in a humidified incubator with 5% CO2.

4.5. SRB Cytotoxicity Assay. Cytotoxic activity was
measured by an in vitro SRB assay as previously described.31

A549 cells (6000 cells/well) or Vero E6 cells (8000 cells/well)
were seeded in a 96-well plate for 24 h, followed by incubation
for 72 h in the presence of test sample at increasing
concentrations (1.25−50 μg/mL) or 0.5% DMSO (control).
Cisplatin, at concentrations of 0.5−20 μM,was used as a positive
control compound. After the incubation, cells were fixed with 50
μL of 10% trichloroacetic acid for 60 min at 4 °C. Next, the plate
was washed repeatedly with water, dried, and stained with 100
μL of 0.4% SRB in 1% v/v acetic acid solution for 30 min. The
plate was washed repeatedly with 1% acetic acid to remove the
excess unbound dye and allowed to dry at room temperature.
The protein-bound dye was solubilized in 200 μL of 10 mMTris
buffer (pH 10.0), and the optical density was recorded at 515
nm. Experiments were performed in triplicate. Percent cell death
was calculated with the following equation

% Cell death
(OD OD ) (OD OD )

(OD OD )
100C 0 S 0

C 0
= ×

OD0 = optical density of cells before adding test sample/
standard (0 day). This serves as the background reading. ODC =
optical density of cells in the control well at 72 h in the absence
of test sample. ODS = optical density of cells after 72 h of
incubation with test sample/standard compound.
Themedian inhibitory concentration (IC50) at which 50% cell

death was observed was calculated by plotting % cell death
against test sample concentration, after which nonlinear curve fit
analysis was applied using the graphing and curve fitting
software, GraphPad Prism. The SI was calculated using the

following equation: SI = IC50 Vero E6 cells/IC50 A549
cells.32−46

4.6. Statistical Analysis. All data were presented as the
mean ± standard error of the mean and were obtained from
three separate experiments. Statistical analyses were performed
by Student’s t-test or ANOVA followed by Tukey’s multiple
comparisons test; *p < 0.05, **p < 0.01, and ***p < 0.001
denote statistical significance. IC50 values of A549 cells were
calculated by nonlinear curve fit analysis using Prism software
(GraphPad 10.0.2, San Diego, USA) with R2 > 0.9 and P > 0.5
(runs test) as parameters of goodness of fit.

4.7. Computational Methods. For ECD prediction,
conformers were searched using the experimental-torsion basic
knowledge distance geometry (ETKDG)48 conformer generator
from RDkit with the Merck molecular force field.49 Low-energy
conformers within 5 kcal/mol of the lowest-energy conformer
were then optimized in Gaussian 0950 at the M06-2X51/6-
31+G*52 level with a polarizable continuum model53 of
methanol. Conformers were categorized into clusters based on
their distance matrix deviations (DMD),55 ignoring hydrogen
and carbon atoms indistinguishable to rotation (for example,
carbon atoms in the phenyl groups and hydrogen atoms in the
methyl groups). Each cluster consisted of all conformers with
DMD values within a threshold of 0.0015 Å, and these are
considered as effectively the same species. Fifty-seven distinct
clusters of conformers, verified by VisualMolecular Dynamics,56

were identified and their electronic excitation energies and
rotational strengths were calculated with time-dependent
density functional theory54 at the M06-2X/def2-TZVPP52

level. The final ECD spectra were generated from the
Boltzmann-weighted average of the 57 distinct conformer’s
ECD spectra using a sigma of 1/3099.6 nm−1 and were verified
against the experimental spectrum of spiro-biflavonoid
enantiomers (1a and 1b).

4.8. Single-Crystal X-ray Structure Determination of
Spiroquinquenerin (1). Crystals of spiroquinquenerin were
obtained from methanol. A block-like specimen of approximate
dimensions 0.05, 0.075, and 0.10 mm was mounted on a
MiTeGen MicroMount. X-ray data were collected at 298 K
using a Bruker D8 VENTURE four circle κ-geometry
diffractometer equipped with an Incoatec IμS 3.0 microfocus
sealed tube (Cu Kα radiation; λ = 1.54178 Å) with a multilayer
mirror monochromator and a Photon III M14 area detector. A
total of 2940 frames were collected and integrated with the
Bruker SAINT software package by using a narrow-frame
algorithm. The integration of the data using a triclinic unit cell
yielded a total of 30,273 reflections to a maximum θ angle of
70.10° (0.82 Å resolution), of which 5117 were independent
(average redundancy 5.92, completeness = 98.8%; Rint = 3.06%;
Rsig = 2.01%). Data were corrected for absorption effects using
the multiscan method (SADABS);Tmin = 0.6928;Tmax = 0.7533.
The final unit cell constants are based upon the refinement of the
XYZ-centroids of 9925 reflections above 20 σ(I) with 6.113 < 2θ
< 140.1°. Crystal data for spiroquinquenerin: C31H26O8·
CH3OH; M = 558.56; triclinic space group P1̅; a = 9.5298(2)
Å; b = 9.9515(2)(2) Å; c = 14.9005(3) Å; α = 94.6530(10)°; β =
102.4380(10)°; γ = 97.7540(10)°; V = 1358.42(5) Å3; Z = 2 (Z′
= 1); ρ = 1.366 g/cm3; μ = 0.829 mm−1; T = 298 K. The
structure was solved using SHELXT, part of the Bruker software
package APEX4; non-H atoms were refined anisotropically; H
atoms were refined at idealized positions, riding on the
neighboring atoms with relative isotropic displacement
parameters. The final full-matrix least-squares refinement on
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F2 with 389 variables converged at R1 = 5.45% for the observed
data and wR2 = 14.52% for all data; the goodness of fit (S) was
1.075. The final Fourier difference synthesis was featureless; the
largest peak was 0.614 e/Å3 (at a chemically implausible
position) and the largest hole was −0.346 e/Å3.
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