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ABSTRACT Nuclear genome sequences incompletely characterize the genomic content
and thus the genetic diversity of fungal species. Here, we present the complete mitochon-
drial genome sequences of nine Aspergillus flavus strains, providing useful information for
inter- and intraspecific analyses.

The genus Aspergillus contains over 300 fungal species of varied industrial, agricultural, and
medical relevance (1). Aspergillus flavus is a potent producer of aflatoxin B, a carcinogenic

mycotoxin and a plant and opportunistic human pathogen (2). Despite the widespread avail-
ability of A. flavus genomic sequences, few assembled and annotated mitochondrial genome
(mitogenome) sequences are available (3–5). Mitochondrial genes are linked to processes
including metabolism, cell differentiation, and drug resistance (6, 7). The assembly and anno-
tation of nine A. flavus strain mitogenome sequences from publicly available sequencing
data provides valuable insight into the full genetic profile, evolution, and population genet-
ics of A. flavus.

Genomic DNA was previously isolated and sequenced using an Illumina HiSeq 2500
paired-end 2 � 250-bp platform as described by Drott et al. (8). Paired-end reads from
whole-genome sequencing of A. flavus were downloaded from NCBI’s Sequence Read
Archive (8), extracted, and split into forward and reverse FASTQ files using SRA Toolkit v2.9.6-1
(9). The reads were trimmed using Trimmomatic v.0.39 (10). Mitogenome sequences were
assembled using the specialized genome assembler GetOrganelle v1.7.4.1 (11), with SPAdes
v.3.12.0 (12) as the internal assembler. We used the GetOrganelle fungal database (-F fun-
gus_mt) to identify, filter, and assemble target-associated reads with default parameters unless
otherwise noted. The complete mitogenome sequence for Aspergillus fumigatus SGAir0713
(GenBank accession number CM016889.1) was used as a reference for the seed database (-s)
for each assembly.

A single contig was generated from the GetOrganelle assembly for each strain.
Circularization was accomplished via the identification of overlapping nucleotide sequences
within the contig FASTA file and the subsequent manual trimming of redundant nucleotides
within a text editor. The percentage of mitochondrial reads used for assembly ranged from
1.2 to 2.8% of the total trimmed reads. Read mapping to correct errors was carried out using
Bowtie2 v2.3.4.1 (13) and SAMtools v1.6 (14). Bowtie2 was used to align the raw paired-end
reads from A. flavus strains against the corresponding circularized mitogenome, and
SAMtools was used to identify variants. The read mapping was also visualized and the var-
iants identified using the Integrative Genomics Viewer (IGV) v2.9.4 (15). The mitogenomes
had high coverage (830 to 1,300�) when the raw reads were mapped back to the circular-
ized assemblies (Table 1). GeSeq v2.03 (16), a rapid organellar genome annotator, was used
to annotate the mitogenomes, with A. flavus (GenBank accession number NC_026920.1),
Aspergillus oryzae (NC_008282.1), A. oryzae 3.042 (NC_018100.1), Aspergillus parasiticus
(NC_041445.1), and A. fumigatus (NC_017016.1) serving as the references. The gene names
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were manually revised, and genes with low coverage and sequence similarity (,50%) were
discarded. The annotation was finalized following inspection using Geneious Prime v2021.1
(17) to ensure appropriate reading frames and start/stop codons, and the genome sequen-
ces were rotated using Geneious to orient the genome start upstream of cox1.

All mitogenomes were circular DNA molecules ranging from 29,198 to 29,323 bp with
GC contents of 26.1 to 26.2% (Table 1). All mitogenomes contained 16 protein-coding genes,
including 14 highly conserved fungal mitochondrial core genes: cytochrome oxidase subu-
nits 1, 2, and 3; NADH dehydrogenase subunits 1, 2, 3, 4, 4L, 5, and 6; ATP synthase subunits
6, 8, and 9; and cytochrome b (3). All mitogenomes also contained ribosomal protein s5 and
an intron-encoded LAGLIDADG endonuclease. Two mitochondrial rRNA genes encoding
small and large ribosomal subunits and 27 tRNAs were identified in each mitogenome, as
expected based on previously assembled Aspergillusmitogenome sequences (3–5).

Data availability. The Aspergillus flavus mitogenome sequences from this study are
available in GenBank under accession numbers MZ714575.1 (FL-B-1-1-1), MZ714576.1
(PA-C-1-1-1), MZ714577.1 (NC-E-3-2), MZ714578.1 (TX-A-2-1-1), MZ714579.1 (TX-A-13-1-1),
MZ714580.1 (TX-A-20-1-1), MZ714581.1 (TX-A-1-1-1), MZ714582.1 (TX-B-1-1-1), and
MZ714583.1 (TX-B-2-1-1). The SRA accession numbers for the whole-genome sequencing
data used for mitogenome assembly are as follows: SRR12001149 (FL-B-1-1-1), SRR12001150
(PA-C-1-1-1), SRR12001141 (NC-E-3-2), SRR12001147 (TX-A-2-1-1), SRR12001145 (TX-A-13-1-1),
SRR12001144 (TX-A-20-1-1), SRR12001148 (TX-A-1-1-1), SRR12001143 (TX-B-1-1-1), and
SRR12001142 (TX-B-2-1-1).
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