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Abstract

Multivariate analytical routines have become increasingly popular in the study of cerebral function in health and in disease
states. Spatial covariance analysis of functional neuroimaging data has been used to identify and validate characteristic
topographies associated with specific brain disorders. Voxel-wise correlations can be used to assess similarities and
differences that exist between covariance topographies. While the magnitude of the resulting topographical correlations is
critical, statistical significance can be difficult to determine in the setting of large data vectors (comprised of over 100,000
voxel weights) and substantial autocorrelation effects. Here, we propose a novel method to determine the p-value of such
correlations using pseudo-random network simulations.
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Introduction

Spatial covariance analysis of scans of resting cerebral function

provides a useful way to characterize specific network abnormal-

ities in a variety of neurodegenerative disorders [1–5]. This

approach has been particularly valuable in elucidating the systems-

level changes in cerebral function that underlie hypokinetic

movement disorders such as Parkinson’s disease (PD) [1,5], as

well as atypical variant conditions such as progressive supranuclear

palsy (PSP) and multiple system atrophy (MSA) [6,7]. Moreover,

spatial covariance patterns can be used in combination to

differentiate these clinically similar conditions based upon their

characteristic metabolic topographies [8,9]. Despite consistent

evidence that the expression of these disease-related covariance

patterns is independent in individual subjects, scant information

exists concerning the actual relationship of the topographies

between any two topographies.

To assess similarities and differences between relevant func-

tional networks, we developed a computational algorithm in which

voxel weights (i.e., the regional loadings on principal component

(PC) patterns) on two spatial covariance topographies are cross-

correlated by computing the Pearson product-moment correlation

coefficient [10–12]. For example, in a recent study we analyzed

topographical relationships between the abnormal PD-related

metabolic covariance pattern (PDRP) [4,13] and the normal

movement-related activation pattern (NMRP) [12,14] that is

deployed by both PD and healthy subjects during motor

performance [15]. Intuitively, the correlation between the voxel

weights on the two topographies is at best modest (r2 = 0.074).

Nonetheless, the p-value associated with the computed correlation

coefficient exceeded the threshold for rejecting the null hypothesis

that the two topographies were not different (p,0.001). In all

likelihood, the statistical significance of the correlation between the

voxel loadings on the two covariance patterns was exaggerated by

spatial autocorrelation. The source of the autocorrelation comes

from regional intrinsic connectivity and remote functional

connectivity, which may be also elevated in the preprocessing

procedures such as spatial normalization and smoothing. To adjust

for such effects in the assessment of correlations between very large

data vectors (.100,000 voxel pairs), we simulated 1,000 pseudo-

random volume pairs containing a degree of autocorrelation

(measured by Moran’s I [16]) that was similar to those measured

for each of the actual pattern topographies [cf. 17]. This method

allowed for the non-parametric computation of an adjusted p-

value with which to assess the significance of the observed

topographic correlations. To demonstrate this approach, we used

it to evaluate topographic inter-relationships between the PDRP

and previously characterized metabolic patterns associated with

MSA and PSP, the two most common parkinsonian ‘‘look-alike’’

conditions. In addition, we also compared PDRPs derived from

five different PET centers from USA, Netherlands, China, India

and South Korea.

Methods

Imaging protocols and pattern characterization procedures are

described elsewhere [1,4,6,7,13]. A tutorial on the use of this

covariance approach has appeared recently [18].

Topographical Correlation
Similarities/differences between the PDRP [13], MSA-related

pattern (MSARP) [6,7] and PSP-related pattern (PSPRP) [6], and

PDRPs from four different countries (i.e., USA, Netherlands,

China and India) [5] were evaluated by computing the percent of
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the overall variance shared (r2) between the non-zero voxel

weights on each pair of topographies [10,11,15]. Voxels from each

pattern image were formatted into a single vector by appending

successive rows in each plane of the image. The two vectors were

then entered into the MATLAB statistical routine ‘‘corr’’ to

calculate the correlation coefficient (r).

Determining the Window Size of Local Moran’s I for
Estimating Autocorrelation
To estimate the spatial autocorrelation within each of the

disease-related metabolic patterns, we computed a global Moran’s

I for the whole brain [16,19]. First, local Moran’s I is computed at

each voxel within a moving window thereby representing spatial

autocorrelation within the pre-defined area centering at each

voxel, then it was averaged across the whole brain (i.e., global

Moran’s I) [19]. No consensus exists regarding the optimal

window size for local Moran’s I in neuroimaging studies. We,

therefore, empirically determined the window size on this

parameter that best predicted the observed topographical corre-

lation in spatially autocorrelated volume-pairs. This was accom-

plished in a separate simulation study in which 300 pseudo-

random volume pairs were selected. Each volume was comprised

of 116 regions defined by the automated anatomical labeling

(AAL) algorithm [20]. Within a given volume, each region was

assigned pseudo-random numbers (Gaussian distribution with

mean of zero and standard deviation of one). Gaussian noise

(mean of zero and standard deviation of 0.05) was added to each

volume and smoothed with a box filter of increasing kernel size

(36363 to 23623623 voxels). The local Moran’s I was estimated

for each voxel within each 2D slice then averaged over the brain

mask identified with AAL. The global Moran’s I for 3,600 volumes

( = 600 pseudorandom volumes 6 6 different box filters) was

estimated with different window sizes (W) [of local Moran’s I]

(363, 969, 15615, 21621, 27627, 33633, 45645, 51651,

57657 voxels) (Figure 1). The 1,800 volume-pairs were then

vector-transformed and tested for topographical correlation

described above. Multiple regression analysis was employed to

determine the W for which the average local Moran’s I of the

simulated pairs was most closely related to the increase in

topographic correlation induced by the box filter. The Akaike

Information Criteria (AIC) was utilized to identify the best model

fit. The selected W-value was used to compute local Moran’s I in

the subsequent simulation studies (Table 1).

Figure 1. Schematic diagram of the simulation study. The stimulation was conducted to determine the Window size of Moran’s I that best
reflected the inflated topological correlation of the two simulated networks. (A) 300 pseudo-random volume-pairs were generated, then box filters
were applied to each volume with six different kernel sizes (36363, 76767, 11611611, 15615615, 19619619, 23623623). Then, the global
Moran’s I of 1800 volume-pairs (300 original volume-pairs66 different box filters) was estimated with varying window (W) size (363, 969, 15615,
21621, 27627, 33633, 45645, 51651, 57657). The volume-pairs were then vector-transformed and tested for voxel-by-voxel Pearson’s correlation
(topographical correlation). Multiple regression was utilized to test if the global Moran’s I significantly predicted the box-filtering-induced elevation of
topographical correlation. The window size of the Moran’s I (W) that gave the best prediction of the topographical correlation from the global
Moran’s I was identified using AIC. (B–D) The inflated topographical correlation was observed regardless of the W of Moran’s I while the best
prediction resulted when the W of Moran’s I was 51 (lowest AIC).
doi:10.1371/journal.pone.0088119.g001
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Estimating p-value for Topographical Correlation of the
Known Spatial Covariance Patterns
For each comparison between two patterns (e.g., PDRP vs.

MSARP; PDRP vs. PSPRP; PDRP (USA) vs PDRP (China)),

1,000 pseudo-random volume-pairs were simulated in the same

manner with AAL-based phantom brain described above. The

pseudo-random volumes were smoothed with a box filter. The

kernel size of the box filter was increased from 36363 to

23623623 until the spatial autocorrelation for each volume

achieved a value for average local Moran’s I that was similar to

that determined for the given spatial covariance pattern. In each

iteration, the correlation of the generated volume pairs were

evaluated; this simulation procedure was repeated 1,000 times. We

then calculated the rank of the r2 value that corresponded to the

magnitude of the correlation (r2) that was directly observed

between the two voxel weight vectors. For example, in the

correlation between the PDRP and PSPRP voxel weights, 459

volume-pairs exhibited correlations of magnitude greater than the

observed r2 value of 0.011 (i.e., topographical correlation r2

between PDRP and PSPRP), which corresponded to p= 0.459,

which was not statistically significant. Because of the multiple

pairwise comparisons that were performed across topographies

(i.e., PDRP, PSPRP and MSARP, and four different PDRPs), we

applied the Bonferroni correction to the resulting p-values.

Post-hoc Analysis for Evaluating Regional Differences
After quantifying overall topographical similarity between two

patterns, one can directly examine the regional differences

between the two patterns by simple arithmetic subtraction. The

statistical significance of the regional difference is evaluated by

permutation test, if 1) source images are available and 2) the

patterns are derived in the same manner. Subjects were swapped

randomly between two data samples, and the covariance patterns

were re-derived in each swapped data set. Difference maps

between the swapped pattern-estimates can generate voxel-wise

null distributions on which the difference in the point estimates

can be judged for statistical significance. In other words, the real

difference of region weights can be ranked in permuted

differences, then the non-parametric p-value may be estimated,

e.g., if the region weight difference is ranked at top 20th out of

1,000 permutation, the p-value is estimated as p= 0.04 (two-

tailed). Here, we compared the historical PDRP from USA [13]

and the PDRP derived from a new cohort of 18 PD patients and

16 controls from South Korea. The patients in the USA were off

anti-parkinsonian medication for .12 hours when they were

scanned with FDG-PET while Korean patients were on their

regular medication. In order to test if the topographical difference

between the two PDRPs stemmed from medication status, the

resulting difference-map was again tested for topographical

correlation with T-map estimated by comparing 15 independent

PD patients who were investigated during levodopa infusion

compared to off-state (paired t-contrast) [21].

We used SPM5 software (http://www.fil.ion.ucl.ac.uk/spm/

software/spm5/) for preprocessing and the statistical tool box in

Matlab 7.7.0 for the simulations and statistical tests.

Results

Autocorrelation Inflates Topographic Inter-relationships
between Covariance Patterns
As predicted, voxel-level correlations between the two simulated

volumes varied with global Moran’s I (Table 1; Figure 1). Thus,

the presence of autocorrelation within each network volume

artificially increased the degree of correlation that was observed

across the two network volumes. Increases in the absolute

topographical correlation (|r|) were most closely related to

average local Moran’s I for W=51651 (Table 1). This window

was therefore selected for use in the simulation studies.

Topographical Correlation between Known Disease-
related Networks
The voxel-level topographical correlation between PDRP and

either parkinsonian syndrome-related patterns were not significant

(p.0.05) (Table 2). Although it did not survive the correction for

multiple comparisons, a moderate-level of topographical similarity

was observed between PSPRP and MSARP. On the contrary,

Table 1. The result of multiple regression: |r| =MI*b1+Z*B.

Window size of local Moran’s I (W)

363 969 15615 21621 27627 33633 39639 45645 51651 57657

b1 0.764 0.125 0.245 0.318 0.395 0.474 0.543 0.608 0.679 0.757

se 1.421 0.342 0.205 0.158 0.136 0.125 0.122 0.125 0.135 0.151

t 0.538 0.365 1.199 2.014 2.907 3.778 4.443 4.851 5.044 5.028

p 0.591 0.716 0.231 0.044 0.004 1.64E-04 9.54E-06 1.36E-06 5.13E-07 5.55E-07

AIC 25661.9 25661.4 25659.8 25659.7 25662.2 25666.2 25670.2 25672.9 25673.8* 25673.1

*The lowest AIC value.
r: topographical correlation (Pearson’s correlation of the voxel weights of the two simulated patterns; MI: global Moran’s I; b1: coefficient of multiple regression of
avgMI; Z: random effects dummy variables for 300 volume-pairs; B: coefficient for random effects; se: standard error of b1; AIC: Akaike Information Criteria for the whole
model fit.
doi:10.1371/journal.pone.0088119.t001

Table 2. Voxel-wise topographical correlation (r) of the PD,
MSA and PSP-related brain networks.

PDRP PSPRP MSARP

PDRP . 0.1031 (p = 0.459) 20.2806 (p = 0.075)

PSPRP 0.1031 (p = 0.459) . 0.3549 (p = 0.021)

MSARP 20.2806 (p = 0.075) 0.3549 (p = 0.021) .

*p,0.05 after Bonferroni correction for multiple comparisons (3 comparisons:
p,0.0167).
The p-value is empirically calculated based on the rank of r2-value in 1,000
simulations.
doi:10.1371/journal.pone.0088119.t002
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PDRPs from the four different countries were significantly

correlated with each other (p,0.001) (Table 3).

Regional Differences between PDRPs with Different
Medication Status
The topographical correlation between PDRPs derived from

USA and South Korea was significant (r = 0.6999, p,0.001) but it

was slightly lower than other between-PDRP correlations

(r.0.7299; Table 3). The variances-not-accounted-for (i.e., 51%)

may be explained by different scanner type, ethnicity, inter-

individual differences and medication status. Here, we had an

independent set of 15 PD patients who underwent FDG scans on

and off levodopa [6]. Standard SPM analysis with paired-design

[22] produced a t-map (Figure 2A) which then again compared for

topographical similarity with the independently generated differ-

ence map (i.e., regional difference between PDRPs from USA vs.

South Korea, Figure 2B). The result was significant according to

the proposed p-value adjustment (r = 0.4228, p,0.001). This

result proposes that the regional difference-map (Figure 2B)

reflected in part the differences in medication status between the

two PDRPs.

Discussion

As predicted, increasing the autocorrelation within each

simulated brain network inflated the voxel-wise topographical

correlation between the two independently generated brain

networks (Figure 1, Table 2). Thus, p-values computed for each

topographical correlation need to account for such potential false

positive correlations. Indeed, significant correlations were not

evident between PDRP and either of the two atypical topogra-

phies. This underscores the substantial pathological differences

that exist between idiopathic PD and both MSA and PSP [6,7,9].

Interestingly, a marginal similarity was seen for the PSPRP and

MSARP topographies (r = 0.35, p = 0.02), perhaps reflecting an

overlap in frontal lobe volume loss in the two syndromes [6,7,9].

As predicted, the topographical correlation among the four

PDRPs from different countries remained to be significant

(p,0.001; Table 3).

The proposed methodology may be applicable to a wide range

of network analyses. For example, in the exploding literatures on

rest-state default mode networks (DMN), researchers have been

naming their brain networks as DMN based on their subjective

visual inspection [cf. 23]. The proposed method supplies

researchers ability to employ null hypothesis testing in determining

Table 3. Voxel-wise topographical correlation (r) of the PDRPs from 4 different countries.

PDRP (USA) PDRP (Netherlands) PDRP (China) PDRP (India)

PDRP (USA) . 0.7299* (p,0.001) 0.8529* (p,0.001) 0.8558* (p,0.001)

PDRP (Netherlands) 0.7299* (p,0.001) . 0.7307 (p,0.001) 0.7482* (p,0.001)

PDRP (China) 0.8529* (p,0.001) 0.7307* (p,0.001) . 0.8265* (p,0.001)

PDRP (India) 0.8558* (p,0.001) 0.7482* (p,0.001) 0.8265* (p,0.001) .

*p,0.05 after Bonferroni correction for multiple comparisons (6 comparisons: p,0.00833).
The p-value is empirically calculated based on the rank of r2-value in 1,000 simulations.
doi:10.1371/journal.pone.0088119.t003

Figure 2. Regional differences of two covariance patterns. (A) Standard SPM analysis with paired t-test design for ON vs. OFF medication with
15 PD patients. (B) The PDRP derived from USA (off-medication) was subtracted from the PDRP derived from South Korea (on-medication). The
resulting difference map is z-scored. Only the voxels that were reliable in permutation test were shown (p,0.05, 1,000 permutation). The topography
of within-subject differences in medication status (A) was significantly correlated with between-group network differences (B) (r = 0.4228, p,0.001).
Likewise, key regions of hypometabolism (e.g., M1, cingulate, cerebellum, putamen) and hypermetabolism (e.g., precuneus) were similarly shown.
doi:10.1371/journal.pone.0088119.g002
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the similarities of given network patterns compared to the baseline

patterns previously described elsewhere [e.g., 24].

In addition, we also examined a method that directly comparing

the regional differences between the two patterns. We showed that

the simple subtraction of PDRPs derived in different medication

status (Figure 2B) was significantly correlated with within-subject

differences in medication status (Figure 2A). However, the regional

differences between two patterns can only be evaluated if source

images are available and if the two patterns are derived in the

same manner. This post-hoc analysis is not suitable for locating the

regions that are similar between the two patterns, e.g., negative

findings may stem from either the similarity of the two patterns or

instability of the region estimates.

Limitation
The autocorrelation (i.e., Moran’s I) was estimated within each

slice of volumes, then averaged across the whole brain for

computational simplicity and efficiency. This procedure may,

however, neglect autocorrelation effects in the dorsal-ventral axis.

Thus, some false positive correlations remain possible, even with

this method. That is, using the current approach, simulated

pseudo-random brain networks may exhibit less autocorrelation

than actual covariance topographies, resulting in greater ‘‘signif-

icance’’ (i.e., lower p-values) for correlations of specific volume-

pairs. This inflation of correlational significance may be offset to

some degree by implementing a multiple comparisons correction

for the different volume pairs analyzed (see Table 2).

For computational speed we chose to simulate only 1,000

volume-pairs for each topographical correlation study. Even so,

the calculations took 1–4 weeks to perform, depending on the

degree of autocorrelation estimated for the various patterns

(Intel(R) Core(TM) i7-2600 CPU 3.40 GHz, 8.00 GB RAM, 64-

bit Windows 7 Professional). Clearly, further research to optimize

the computational process is warranted.
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