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Neuronal cell death and loss of synapses are hallmarks of the pathology of Alzheimer disease
(AD). The incidence of AD increases with age, and both regional and global brain atrophies
have been identified as pathological correlates. Thus, AD can, in many respects, be regarded as a
paradigmatic neurodegenerative disorder. However, disrupted function of the presenilin genes,
the most common cause of early-onset familial AD (FAD), can also affect brain development,
including early processes of neuronal migration and morphogenesis.1

Evidence for reduced brain volume has been observed in middle-aged patients with FAD2 and
even in infants carrying the apolipoprotein E (APOE) e4 allele,3 the main common variant
associated with late-onset AD (LOAD). Earlier neuropathologic work had identified neurofi-
brillary changes characteristic of AD in young adults, leading to the speculation that the brain
changes associated with AD may precede the clinical syndrome by up to 50 years.4 Converging
evidence thus suggests that AD develops through a protracted process of neuropathologic
changes that warrants a lifespan perspective.

The identification of additional common risk factors for LOAD and the development of
polygenic risk scores summarizing their cumulative effects has further boosted research into
the biological mechanisms of AD genetic risk. In this issue of Neurology® Genetics, Walhovd
et al.5 investigated the association between AD polygenic risk (including but not confined to
the APOE e4 variant) and hippocampal volume in 1,181 cognitively healthy people (some of
whom contributed multiple scans over a time period of several years) with a wide age range
(4–95 years). They confirmed the reduction in hippocampal volume found earlier in a
sample of young adults6 and, importantly, demonstrated that it was fairly consistent across
age groups. The absence of strong interaction effects with age would suggest that AD
polygenic risk mainly leads to an earlier onset of brain ageing (and loss of cognitive reserve)
rather than an accelerated ageing process, although more longitudinal data would be needed
to confirm this interpretation. What is also interesting about these findings is that, as the
authors rightly point out, they are at odds with an antagonistic pleiotropy account of ageing,
which posits that genetic variants that are detrimental in later life have a positive effect on
fitness earlier in life to remain in the gene pool of a species. At least regarding the brain
phenotype of hippocampal volume, there was no evidence of a beneficial effect of AD-related
genes earlier in life.

What, then, are the clinical implications of the identification of brain correlates of genetic AD
risk across the lifespan? One of the key approaches in the development and evaluation of new
treatments is based on the early identification of prospective patients before the onset of
clinically manifest symptoms. The biomarkers developed so far have limited clinical utility for
AD prediction7 and thus new multimodal approaches, incorporating both genetic risk scores
and parameters of neural structure and function, should be welcome. The lifespan focus of the
study by Walhovd et al. is particularly useful in this respect. Modifiable risk factors for AD
build up over years,8 and recent epidemiologic studies have highlighted the importance of
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dementia prevention in early life, for example, through the
enhancement of cognitive reserve.7 Although we are still far
away from any use of hippocampal volume as a clinical proxy
for cognitive reserve, the study by Walhovd et al. makes a
compelling case for further longitudinal research into links
between AD risk and brain structure.
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