
Citation: Rafiq, T.; Azab, S.M.;

Anand, S.S.; Thabane, L.;

Shanmuganathan, M.; Morrison,

K.M.; Atkinson, S.A.; Stearns, J.C.;

Teo, K.K.; Britz-McKibbin, P.; et al.

Sources of Variation in Food-Related

Metabolites during Pregnancy.

Nutrients 2022, 14, 2503. https://

doi.org/10.3390/nu14122503

Academic Editor: Emily Sonestedt

Received: 19 May 2022

Accepted: 14 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Sources of Variation in Food-Related Metabolites
during Pregnancy
Talha Rafiq 1,2 , Sandi M. Azab 3,4, Sonia S. Anand 2,3,5, Lehana Thabane 5,6,7, Meera Shanmuganathan 8,
Katherine M. Morrison 9,10, Stephanie A. Atkinson 9 , Jennifer C. Stearns 3,11 , Koon K. Teo 2,3,5,
Philip Britz-McKibbin 8 and Russell J. de Souza 2,5,*

1 Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University,
Hamilton, ON L8S 4L8, Canada; rafiqt2@mcmaster.ca

2 Population Health Research Institute, Hamilton Health Sciences, McMaster University,
Hamilton, ON L8L 2X2, Canada; anands@mcmaster.ca (S.S.A.); koon.teo@phri.ca (K.K.T.)

3 Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; azabs@mcmaster.ca (S.M.A.);
stearns@mcmaster.ca (J.C.S.)

4 Department of Pharmacognosy, Alexandria University, Alexandria 21521, Egypt
5 Department of Health Research Methods, Evidence & Impact, McMaster University,

Hamilton, ON L8S 4L8, Canada; thabanl@mcmaster.ca
6 Biostatistics Unit, Father Sean O’Sullivan Research Centre, The Research Institute, St Joseph’s Healthcare

Hamilton, Hamilton, ON L8N 4A6, Canada
7 Faculty of Health Sciences, University of Johannesburg, Johannesburg 524, South Africa
8 Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;

shanmm2@mcmaster.ca (M.S.); britz@mcmaster.ca (P.B.-M.)
9 Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;

morriso@mcmaster.ca (K.M.M.); satkins@mcmaster.ca (S.A.A.)
10 Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
11 Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
* Correspondence: desouzrj@mcmaster.ca; Tel.: +1-(905)-525-9140 (ext. 22109)

Abstract: The extent to which variation in food-related metabolites are attributable to non-dietary
factors remains unclear, which may explain inconsistent food-metabolite associations observed in
population studies. This study examined the association between non-dietary factors and the serum
concentrations of food-related biomarkers and quantified the amount of variability in metabolite
concentrations explained by non-dietary factors. Pregnant women (n = 600) from two Canadian
birth cohorts completed a validated semi-quantitative food frequency questionnaire, and serum
metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry.
Hierarchical linear modelling and principal component partial R-square (PC-PR2) were used for data
analysis. For proline betaine and DHA (mainly exogenous), citrus foods and fish/fish oil intake,
respectively, explained the highest proportion of variability relative to non-dietary factors. The
unique contribution of dietary factors was similar (15:0, 17:0, hippuric acid, TMAO) or lower (14:0,
tryptophan betaine, 3-methylhistidine, carnitine) compared to non-dietary factors (i.e., ethnicity,
maternal age, gestational age, pre-pregnancy BMI, physical activity, and smoking) for metabolites
that can either be produced endogenously, biotransformed by gut microbiota, and/or derived from
multiple food sources. The results emphasize the importance of adjusting for non-dietary factors
in future analyses to improve the accuracy and precision of the measures of food intake and their
associations with health and disease.

Keywords: metabolomics; dietary biomarkers; nutrition; non-dietary factors; confounding; omics;
variability; food exposures

1. Introduction

The accurate assessment of dietary intake remains a major challenge in human nutri-
tion research due to the complex nature of food exposure and the reliance on self-reporting,
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which often leads to biased or unreliable measures of food intake. While most studies
use self-reported dietary intake methods, such as food frequency questionnaires (FFQ),
24-h dietary recalls, and food records, they may be subject to recall, misclassification, and
measurement biases [1]. To circumvent this problem, metabolomics—the global analysis
of low molecular weight metabolites in biological samples—have been increasingly ap-
plied in large-scale epidemiological studies for the discovery and validation of food intake
biomarkers [2].

Biomarkers can provide a more objective assessment of food exposures than self-
reported dietary intake because they account for nutrient bioavailability and metabolism.
An ideal biomarker of food intake is one that can be readily measured in human biofluid
(blood or urine) at the population level, is highly specific for one food item or food group,
shows a dose- and time-dependent response, and is not extensively transformed by the
microbiota and host tissue upon consumption. However, complex interpretative challenges
exist since nutrients are derived from various food sources and can display intercorrelation
between other metabolic processes [3]. Furthermore, the human metabolome exhibits
variability due to intrinsic physiologic characteristics, such as age, sex, hormonal levels,
and the gut microbiome, as well as due to extrinsic factors, such as habitual diet and
lifestyle. Further, many putative biomarkers of food intake do not exclusively originate
from a single food or nutrient. For example, trimethylamine N-oxide (TMAO) is formed
from a TMA-containing nutrient, such as choline, which is abundant in fish, beef, and eggs,
but can also be produced from carnitine in red meat [2,4]. Moreover, many of the gut-
microbiome-dependent metabolites and other food-specific metabolites are metabolized in
the liver at different rates, depending on hepatic enzyme activity [5], which may contribute
to the greater variability observed in the range of metabolite measured in the biological
samples [6]. Consequently, it is important to identify potential non-dietary sources of
food-related biomarkers and examine the extent to which these factors explain differences
in metabolite concentration.

In most cases, food intake explains a relatively small proportion (R2 < 10%) of the
total variation in a given metabolite concentration, and other determinants are typically
unknown, unmeasured, or, if measured, the extent of the measurement error is not clear [7].
Biomarkers derived from food intake and gut microbiota are influenced by non-dietary
factors [8,9]; however, the extent to which these factors compromise the validity of the
metabolite as a food intake biomarker may depend on the specificity of the biomarker (well-
established, uncertain, or weak biomarker of the particular food), whether the biomarker is
endogenously produced, biotransformed by gut microbiota, and/or derived from more
than one food source. Understanding the sources of variation in biomarkers of food
intake that are not attributed to changes in food intake are critical to advancing the ap-
plication/field of food intake biomarkers. If the sources of the variation are not clearly
understood, then using these biomarkers as markers of food/nutrient intake may simply
exchange one source of measurement error (self-misreport) for others (changes in the
biomarker intake unrelated to changes in food intake).

Carefully designed studies examining the association between non-dietary factors and
biomarker concentrations are sparse and especially lacking in women during pregnancy.
Observational studies, specifically birth cohort studies, are useful designs to learn about
pregnancy exposures and birth outcomes [10]. Women experience a series of metabolic
modifications during pregnancy, likely affected by pre-pregnancy and intrapartum factors,
which in turn may affect maternal health and disease at the critical stages of fetal devel-
opment [11,12]. Moreover, metabolite concentrations during gestation and pre-pregnancy,
and pregnancy-related factors, such as GDM, also differ between ethnic groups (e.g., White
Europeans and South Asians) [9]. The purpose of this study was to examine the associations
of non-dietary factors, including demographics, lifestyle, and pregnancy-related factors
with serum metabolite concentrations using a panel of commonly identified biomarkers
derived from food intake and/or gut microbiota, including proline betaine, five fatty acids
(even-chain saturated fatty acids (SFA) myristic acid (14:0); odd-chain SFA pentadecanoic
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acid (15:0) and heptadecanoic acid (17:0); omega-3 polyunsaturated fatty acids (ω-3 PUFA),
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA); hippuric acid; TMAO;
3-methylhistidine; carnitine; and tryptophan betaine, in pregnant women of two ethni-
cally diverse groups, and to determine the extent to which non-dietary factors explain the
variability in the concentrations of the putative biomarkers of food intake.

2. Materials and Methods
2.1. Data Source and Participants

This study used data from two longitudinal Canadian birth cohorts of pregnant
women: the Family Atherosclerosis Monitoring In earLY life (FAMILY) study and SouTh
Asian biRth cohorT (START). The FAMILY study included White European women and the
START cohort included women of South Asian ethnic background. Design and method-
ology of these two studies have been described in detail elsewhere [13,14]. Briefly, the
FAMILY study was designed to understand the environmental, genetic, and biochemical
factors important in the development of obesity and cardiovascular disease risk factors in
childhood. A total of 857 families (901 newborns) were recruited between 2002 and 2009
in the Hamilton area, Ontario, Canada. Women were recruited between 24 and 36 weeks
of gestation. The START study enrolled 1012 South Asian (people who originate from
the Indian sub-continent: India, Pakistan, Sri Lanka, or Bangladesh) mother–child pairs
between 2011 and 2015 from the Peel Region of Ontario to investigate the influence of
diverse environmental exposures and genetics on early life adiposity, growth trajectory,
and cardiometabolic risk. The ancestral origin of both the woman, her partner, and both
offspring’s grandparents were required to be classified as South Asian.

All enrolled participants provided full informed consent, and both studies obtained
ethics approval from the McMaster Hamilton Integrated Research Ethics Board [START
(HiREB #10–640) and FAMILY (HiREB #02–060)].

Clinical and demographic data was harmonized across the two cohorts. When ques-
tions were not identical between studies (e.g., physical activity level during pregnancy),
comparable categories were constructed with the available data to satisfy the same def-
inition. Within each cohort, 300 pregnant women were randomly selected for serum
metabolomics analysis as previously described [15]. This selection was based on the con-
trasting diet quality score (DQS), where 100 mothers were randomly selected from the
3 DQS groups (>90th percentile [“high” diet quality], <10th percentile [“low” diet quality],
and between 10th and 90th percentile [“intermediate” diet quality]). A total of 600 pregnant
mothers were included in the current analysis (Supplementary Figure S1).

2.2. Maternal Serum Metabolome Analyses

A validated multiplexed separation platform based on multisegment injection–capillary
electrophoresis–mass spectrometry (MSI-CE-MS) was used for targeted and nontargeted
profiling of polar/ionic metabolites measured consistently in serum filtrate samples with
stringent quality control (QC). A standardized method protocol was used for the identifi-
cation and quantification of the maternal serum metabolome, as described in more detail
elsewhere [15]. Briefly, a total of 66 and 67 polar ionic metabolites from serum filtrate
samples satisfied selection criteria for their analysis in the FAMILY and START cohorts,
respectively, and 53 of these were measured consistently across both cohorts. Serum
metabolites were reported only if they satisfied two additional criteria: (1) metabolites that
were detected in the majority of the individual samples (≥75%) in a cohort (i.e., frequency
filter) and (2) acceptable technical precision based on the repeated analysis of QC samples
(i.e., QC filter) to reduce false discoveries and data overfitting. Metabolites with nonde-
tectable or missing values were replaced with half of the lowest detected value for the
compound in each cohort. Moreover, a QC-based batch correction algorithm was applied
for the robust correction of long-term monitoring of signal drift in MSI-CE-MS [16]. Among
metabolites measured consistently in the two cohorts, six metabolites, including proline
betaine, 3-methylhistidine, hippuric acid, TMAO, carnitine, and tryptophan betaine, were
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selected for our current analysis, as they were previously determined to be associated
with the self-report of dietary intake [2,17]. Further, they offer a combination of evidence
(good, fair, or poor) for candidate biomarkers of food intake that are produced exogenously,
endogenously, biotransformed by gut microbiota, and/or derived from more than one
food source [2,17,18]. The reference interval for these serum metabolites in different birth
cohorts from across Canada, their technical/biological variance, and interclass correlation
coefficients have been reported previously [15].

Non-esterified fatty acid (NEFAs) from serum ether extracts were analyzed in the FAM-
ILY cohort using a validated protocol based on MSI-NACE-MS, which offers a multiplexed
separation platform for rapid NEFA analysis on an Agilent 6230 TOF mass spectrometer
with a coaxial sheath liquid ESI ionization source equipped with an Agilent G7100A capil-
lary electrophoresis (CE) (Agilent Technologies Inc., Santa Clara, CA, USA) [19]. Serum
extracts were injected with alternating background electrolyte spacer plugs for a total
of seven discrete samples analyzed within 30 min for a single run. Repeat QC samples
introduced in a randomized position for each MSI-NACE-MS run were analyzed for NEFA
confirming technical precision (mean CV = 15%, n = 46). Serum non-esterified 14:0, 15:0,
17:0, DHA, and EPA were reliably quantified and reported as relative proportions as a
percentage by moles of a total quantified of 19 NEFAs (mol%) [20].

2.3. Assessment of Dietary Intake

Maternal dietary intake during pregnancy was collected at 24–28 weeks gestation.
Semi-quantitative validated food-frequency questionnaires (157 items in the FAMILY and
163-items in the START) developed and validated as part of the Study of Health and Risk
in Ethnic Groups (SHARE) Study were used [21–23]. Participants were asked to report
on the frequency (daily, weekly, monthly, yearly, or never) and amount in serving size of
each food or food group on average in the past 12 months. For our study, food items were
either used as separate items (chicken, canned fish, fried fish) or classified into main food
groups: citrus food (citrus fruit and citrus juice), red meat, eggs (boiled and fried eggs),
seafood, nuts and legumes, and fruits and vegetables. Nutrient intake was calculated using
the ESHA Food Processor Nutrient Analysis Software (ESHA Research, version 6.11, 1996,
Salem, OR, USA), derived from the 1991 Canadian Nutrient File and the US Department
of Agriculture nutrient food composition databases. Fiber intake and total energy intake
was also estimated using the FFQ [17,21]. Data were logarithm-transformed to correct for
skewness prior to including them in the regression analysis, and nutrient intakes were
adjusted for energy intake using the residual approach [24].

2.4. Non-Dietary Factors

Non-dietary factors included ethnicity (White European or South Asian), maternal age
(years), gestational age (i.e., weeks of pregnancy), parity, pre-pregnancy body mass index
(BMI, kg/m2), smoking history (current or former smoker and never smoker), physical
activity (mainly sedentary, mild activity, moderate activity, and strenuous activity), social
disadvantage index (SDI), and gestational diabetes (GDM). For SDI, derived using a pre-
viously validated index based on employment status, income, and marital status, higher
values indicate greater socioeconomic disadvantage [25]. A case of GDM was defined
based on the Born in Bradford (BiB) oral glucose tolerance test criteria, self-reported GDM,
and insulin use in pregnancy in START cohort, whereas the International Association of
the Diabetes and Pregnancy Study Groups (IADPSG) criteria (75 g OGTT with fasting
glucose ≥ 5.1 mmol/L, 1 h ≥ 10.0 mmol/L, 2 h ≥ 8.5 mmol/L) was used in the FAMILY
cohort. We selected these factors based on the known and plausible associations with the
selected metabolites and/or the fact that they are commonly adjusted in population-based
nutritional metabolomics studies.



Nutrients 2022, 14, 2503 5 of 19

2.5. Statistical Analysis

Descriptive statistics for categorical variables were summarized using frequency and
percentages, and continuous data were summarized using mean and standard deviation
(SD) or median and interquartile range (IQR). Random-effects hierarchical linear mod-
els (HLM) were fit, whereby each of the natural logarithm-transformed food-metabolite
concentration was regressed on dietary and non-dietary factors after adjusting for other
covariates, including total energy intake (kcal), total fiber intake (g/day), and period of
time between the day FFQ information was collected and blood was drawn (FFQ before
blood, FFQ after blood, and both taken on the same day) [26].

The data had a nested (clustered) structure, where individuals within the same cohort
represented a cluster because they were more similar to one another with regards to
dietary and non-dietary factors. Therefore, we used hierarchical linear modeling (HLM)
to accommodate the dependent nature of observations in clustered data. HLM allows
nesting effects to be incorporated into the model, producing more accurate estimates
and corrects for the error structure violations (non-independent errors) to provide robust
conclusions [27,28]. First, unconditional (intercept-only) HLM models were tested to
determine whether serum metabolite concentrations were nested within cohort using an
intraclass correlation (ICC) calculated based on the covariance parameter estimates. An
ICC refers to the amount of variation attributed to level-two (study-level) factor. An ICC
can be determined from an intercept-only model and any relationship with an ICC of
2% or greater suggests the presence of level 2 effects [26]. The results showed an ICC of
3.9% for proline betaine, 25.6% for 3-methylhistidine, 1.5% for carnitine, 0% for hippuric
acid, 46.0% for tryptophan betaine, and 7.0% for TMAO. A sensitivity analysis using an
ordinary least squares (OLS) multivariable linear regression was conducted for carnitine
and hippuric acid (Supplementary Table S1). Next, the association between dietary factors
as level 1 predictors (fixed), previously shown to be associated with a specific metabolite
(e.g., citrus fruit and proline betaine), was examined. Finally, in addition to the dietary
factors, all non-dietary factors were also added as level 1 predictors. These HLM procedures
produced the following three models:

Intercept-only Model (Unconditional Model)

Metaboliteij = β0j + eij
β0j = γ00 + u0j

Random Intercept (u0j) with Fixed Level 1 Factors (Dietary factors, γ10)

Metaboliteij = β0j + β1jDietaryfactor + eij
β0j = γ00 + u0j
β1j = γ10

Random Intercept (u0j) with Fixed Level 1 Factors (Dietary (γ10) and Non-dietary fac-
tors (γ20 . . . ))

Metaboliteij = β0j + β1jDietaryfactor + β2jAge . . . + eij
β0j = γ00 + u0j
β1j = γ10
β2j = γ20

The goodness-of-fit statistics, including the Akaike Information Criterion [AIC],
Bayesian Information Criterion [BIC] and the change in deviance statistics, were used
to evaluate model fit in terms of the clustering variable. Smaller values of these statistics
indicate a better model fit [29]. The AIC and BIC consider error and model parsimony
simultaneously. An OLS multivariable linear regression was conducted for NEFAs as these
data were only available in the FAMILY cohort. Regression estimates of (b) 95% confidence
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intervals (95% CI) and p-values were reported, and statistical analysis was conducted using
SAS software version 9.4.

Finally, principal component partial R-square (PC-PR2) analysis was used to quantify
the sources of systematic variability in serum metabolite concentrations [30]. The PC-
PR2 method combines features of principal component analysis (PCA) and the partial
R-square statistic in multivariable linear regression and allows for some degree of inter-
correlation between explanatory variables. The mathematical details of the PC-PR2 method
are described elsewhere [30]. A data reduction component was not necessary because the
analytic strategy was applied to a single metabolite. The partial R2 statistic was calculated
for each explanatory variable, which quantifies the amount of variability in metabolite
explained by that variable, conditional on all other covariates included in the model. The
PC-PR2 method was conducted using the R software, version 1.2.5.

3. Results
3.1. Association of Dietary and Non-Dietary Factors with Food-Related Metabolites

The descriptive characteristics of the participants overall and by ethnicity are shown
in Table 1. Model fit statistics from the HLM examining the dietary and non-dietary
factors associated with food-intake biomarkers are presented in Supplementary Table
S2, and the regression estimates and 95% CI are presented in Table 2. Three regression
models, including an unconditional model (Model 1), the random intercept model with
level 1 dietary factors (Model 2), and random intercept model with level 1 dietary and non-
dietary factors (Model 3), were examined (Supplementary Table S2). For each metabolite
outcome, the log likelihood, AIC, and BIC statistics decreased considerably after adding the
non-dietary covariates, indicating better model fit. Thus, the regression estimates presented
in Table 2 are based on Model 3. As expected, most of the dietary food sources were
significantly associated with their respective metabolite concentrations, except for carnitine
(p > 0.05) (Table 2). For exogenous metabolites specific to a single food source, higher
citrus food intake was positively associated with proline betaine concentration (b: 0.27;
95% CI: 0.20, 0.34), and a higher intake of nuts and legumes was positively associated with
tryptophan betaine concentration (b: 0.02; 95% CI: 0.00, 0.03). For metabolites with both
endogenous metabolic and exogenous sources and obtained from multiple food sources,
such as hippuric acid, higher intake of fruits and vegetables were associated with higher
hippuric acid concentration (b: 0.22; 95% CI: 0.08, 0.36), but no such association was found
with tea and coffee intake. Higher intake of chicken (b: 0.02; 95% CI: 0.00, 0.04) and red meat
(b: 0.03; 95% CI: 0.01, 0.06) were positively associated with 3-methyl-histidine concentration,
while seafood intake was positively associated with TMAO concentration (b: 0.08; 95%
CI: 0.04, 0.12) (Table 2).

For non-dietary factors, maternal age, gestational age, and smoking history were
associated with the serum concentration of some metabolites after adjusting for diet-related
factors (Table 2). Higher maternal age was associated with a higher concentration of proline
betaine (b: 0.04; 95% CI: 0.01, 0.07) and TMAO (b: 0.02; 95% CI: 0.00, 0.04), and higher
gestational age of pregnancy was associated with a higher concentration of 3-methyl-
histidine (b: 0.01; 95% CI: 0.00, 0.02) and lower concentration of carnitine (b: −0.01; 95%
CI: −0.02, −0.01). Participants who indicated having ever smoked cigarettes had a lower
concentration of proline betaine (b: −0.60; 95% CI: −0.95, −0.25) and a higher concentration
of carnitine (b: 0.06; 95% CI: 0.02, 0.10) compared to those who never smoked cigarettes
(Table 2). Parity, GDM, pre-pregnancy BMI, physical activity, SDI, and the timing of the
administration of the FFQ (before or after the blood draw relative to at the same time as the
blood draw) were found to not be associated with any of the six metabolite concentration
outcomes. The results for the HLM models examining the association of dietary and non-
dietary factors with food-related metabolites stratified by ethnicity (White European and
South Asians) are presented in Supplementary Tables S3 and S4, respectively. The results
between the two cohorts were generally similar to those reported for the overall sample.



Nutrients 2022, 14, 2503 7 of 19

Table 1. Descriptive statistics of participants overall and by ethnicity.

Factor Overall
n = 600

White European
n = 300

South Asian
n = 300 p-Value

Age (years), mean (SD) 31.20 (4.50) 32.35 (4.89) 30.01 (3.73) <0.0001
Gestational age (weeks), mean (SD) 28.06 (3.27) 29.50 (3.76) 26.61 (1.75) <0.0001

Pre-pregnancy BMI (kg/m2), mean (SD) 25.35 (5.63) 26.77 (6.39) 23.94 (4.33) <0.0001
Parity, n (%)

0 240 (42.33) 145 (48.33) 95 (35.58) 0.0528
1 229 (40.39) 110 (36.67) 119 (44.57)
2 76 (13.40) 34 (11.33) 42 (15.73)
≥3 22 (3.88) 11 (3.67) 11 (4.12)

Gestational diabetes (GDM), n (%) a 169 (28.94) 50 (17.54) 119 (39.80) <0.0001
Smoking history (ever smoked), n (%) 104 (17.48) 104 (35.25) 0 (0.00) <0.0001

Physical activity (moderate/vigorous), n
(%) 144 (24.04) 84 (28.00) 60 (20.07) 0.0231

Social disadvantage index, mean (SD) b 1.31 (1.37) 0.85 (1.22) 1.84 (1.35) <0.0001
Fiber intake (g/day), mean (SD) 22.52 (10.24) 20.66 (9.23) 24.38 (10.85) <0.0001
Energy Intake (kcal), mean (SD) 2165.39 (772.06) 2327.86 (766.33) 2002.92 (744.26) <0.0001

Time of FFQ and blood draw, n (%)
FFQ and blood draw on same day 354 (60.31) 88 (29.33) 266 (92.68) <0.0001

FFQ before blood draw c 221 (37.65) 206 (68.67) 15 (5.23)
FFQ after blood draw c 12 (2.04) 6 (2.00) 6 (2.09)

Food items (servings/day), median
(IQR)

Citrus food 0.57 (0.95) 0.64 (0.99) 0.43 (0.89) <0.0001
Fruits and vegetables 6.28 (5.74) 5.12 (4.26) 7.85 (6.06) <0.0001

Tea 0.43 (0.98) 0.14 (0.57) 1.0 (1.36) <0.0001
Coffee 0 (0.14) 0.02 (0.64) 0 (0.00) <0.0001

Canned fish 0 (0.03) 0.03 (0.07) 0 (0.00) <0.0001
Fried fish 0 (0.03) 0.01 (0.03) 0 (0.02) <0.0001
Seafood 0 (0.01) 0.01 (0.02) 0 (0.00) <0.0001
Chicken 0.10 (0.29) 0.14 (0.21) 0 (0.14) <0.0001

Eggs 0.21 (0.40) 0.20 (0.32) 0.29 (0.57) 0.9927
Red meat 0.20 (0.44) 0.41 (0.35) 0.01 (0.15) <0.0001

Nuts and legumes 0.71 (0.92) 0.62 (0.83) 0.85 (0.97) <0.0001
Full-fat dairy - 1.05 (1.11) - -
Fish/fish oil - 0.08 (0.15) - -

Metabolite concentration, median (IQR)
Proline betaine 1.81 (3.82) 2.33 (5.52) 1.40 (2.47) <0.0001
Hippuric acid 10.01 (9.87) 9.68 (9.03) 10.07 (10.36) 0.8848

TMAO 2.53 (1.95) 2.68 (1.96) 2.24 (1.99) <0.0001
3-methylhistidine 7.17 (4.12) 8.64 (4.90) 6.14 (2.24) <0.0001

Carnitine 15.61 (3.82) 15.35 (3.69) 15.89 (3.98) 0.0117
Tryptophan betaine 1.27 (0.37) 1.19 (0.14) 1.47 (0.37) <0.0001

Fatty acids, median (IQR) d

Myristic acid (14:0) - 2.19 (0.74) - -
Pentadecanoic acid (15:0) - 0.24 (0.08) - -
Heptadecanoic acid (17:0) - 0.69 (0.23) - -

Eicosapentaenoic acid (EPA or 20:5n-3) - 0.51 (0.26) - -
Docosahexaenoic acid (DHA or 22:6n-3) - 0.67 (0.29) - -

FFQ = Food frequency questionnaire; TMAO = trimethylamine N-oxide Wilcoxon’s rank sum test was used to
compare continuous variables, and chi-square was used to compare categorical variables by cohort. a GDM was
defined based on the Born in Bradford oral glucose tolerance test criteria, self-reported GDM, and insulin use
in pregnancy in the START cohort, whereas the International Association of the Diabetes and Pregnancy Study
Groups criteria (75 g OGTT with fasting glucose ≥ 5.1 mmol/L, 1 h ≥ 10.0 mmol/L, 2 h ≥ 8.5 mmol/L) was used
in the FAMILY cohort. b The maximum social disadvantage index was five and the lowest possible score was zero,
reflecting the least social disadvantage. c FFQ was implemented within a one-year time period of the blood draw.
d Fatty acids data were only available in the FAMILY cohort.
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Table 2. Results from random effects hierarchical modelling examining the association of dietary and
non-dietary factors with food-based metabolites.

Proline
Betaine

Hippuric
Acid

3-Methyl
Histidine Carnitine Tryptophan

Betaine TMAO

Factor b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI)

Age (years) 0.04 *
(0.01, 0.07)

0.01
(0.00, 0.03)

0.00
(−0.01, 0.01)

0.00
(0.00, 0.00)

0.00
(0.00, 0.03)

0.02 *
(0.00, 0.04)

Gestational age (weeks) 0.02
(−0.03, 0.06)

0.01
(−0.01, 0.03)

0.01 *
(0.00, 0.02)

−0.01 ***
(−0.02,
−0.01)

0.00
(0.00, 0.00)

0.01
(−0.01, 0.03)

Parity −0.10
(−0.25, 0.06)

0.03
(−0.05, 0.11)

−0.01
(−0.05, 0.03)

0.01
(−0.01, 0.02)

−0.01
(−0.02, 0.01)

0.01
(−0.07, 0.09)

Gestational diabetes (GDM) 0.05
(−0.24, 0.35)

0.06
(−0.10, 0.21)

0.02
(−0.05, 0.10)

0.02
(−0.02, 0.05)

0.02
(−0.01, 0.05)

0.03
(−0.13, 0.19)

Pre-pregnancy BMI (kg/m2) −0.02
(−0.05, 0.00)

−0.01
(−0.02, 0.00)

−0.01
(−0.01, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

−0.01
(−0.02, 0.01)

Smoking history
(ever vs. never smoked)

−0.60 ***
(−0.95,
−0.25)

−0.12
(−0.30, 0.06)

0.04
(−0.06, 0.13)

0.06 **
(0.02, 0.10)

0.00
(−0.03, 0.03)

−0.01
(−0.20, 0.17)

Physical activity (low vs.
high)

−0.13
(−0.42, 0.17)

0.02
(−0.14, 0.18)

−0.03
(−0.10, 0.05)

−0.01
(−0.04, 0.02)

0.00
(−0.03, 0.03)

−0.04
(−0.21, 0.12)

Social disadvantage index −0.05
(−0.15, 0.06)

−0.02
(−0.08, 0.03)

0.00
(−0.03, 0.02)

0.00
(−0.01, 0.01)

0.00
(−0.01, 0.01)

−0.01
(−0.06, 0.05)

Fiber intake (g/day) 0.01
(−0.01, 0.02)

0.01
(−0.01, 0.02)

0.00
(−0.01, 0.00)

0.00
(0.00, 0.00)

2.68 × 10−3

**
(0.00, 0.00)

0.00
(−0.01, 0.01)

Energy intake (kcal) 0.00
(0.00, 0.00)

−1.6 × 10−4

**
(−0.00,
−0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

−3 × 10−5 *
(0.00, 0.00)

0.00
(0.00, 0.00)

FFQ before blood draw vs.
FFQ at the same time as

blood draw
0.02

(−0.30, 0.35)
0.11

(−0.05, 0.27)
−0.05

(−0.13, 0.04)
0.00

(−0.03, 0.04)
−0.01

(−0.04, 0.02)
0.09

(−0.08, 0.26)

FFQ after blood draw vs.
FFQ at the same time as

blood draw
0.50

(−0.34, 1.34)
0.08

(−0.37, 0.54)
0.04

(−0.18, 0.26)
0.06

(−0.04, 0.16)
−0.04

(−0.12, 0.04)
−0.11

(−0.56, 0.35)

Citrus food
(servings/day)

0.27 ***
(0.20, 0.34)

Fruits and vegetables
(servings/day)

0.22 **
(0.08, 0.36)

Tea
(servings/day)

0.01
(−0.01, 0.04)

Coffee
(servings/day)

0.02
(0.00, 0.04)

Chicken
(servings/day)

0.02 *
(0.00, 0.04)

Red meat
(servings/day)

0.03 *
(0.01, 0.06)

0.00
(0.00, 0.01)

0.00
(−0.04, 0.04)

Eggs
(servings/day)

0.01
(−0.01, 0.02)

0.00
(−0.03, 0.04)

Nuts and legumes
(servings/day)

0.02
(−0.02, 0.06)

0.02 *
(0.00, 0.03)

Canned fish
(servings/day)

0.01
(−0.03, 0.04)

Fried fish
(servings/day)

0.01
(−0.03, 0.05)

Seafood
(servings/day)

0.08 ***
(0.04, 0.12)

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. FFQ = Food frequency questionnaire; TMAO = trimethylamine N-oxide.

The results from the OLS regression models examining the association of dietary and
non-dietary factors with NEFAs are presented in Table 3. Higher intake of full-fat dairy was
positively associated with odd-chain SFAs 15:0 (b: 0.06; 95% CI: 0.03, 0.10) and 17:0 (b: 0.04;
95% CI: 0.01, 0.07), and higher fish/fish oil daily servings were positively associated with
DHA (b: 0.11; 95% CI: 0.07, 0.14) and EPA + DHA (b: 0.08; 95% CI: 0.04, 0.12). For non-
dietary factors, higher gestational age of pregnancy was associated with lower odd-chain
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SFAs 15:0 (b: −0.02; 95% CI: −0.03, −0.01) and 17:0 (b: −0.01; 95% CI: −0.02, −0.01), higher
pre-pregnancy BMI was associated with both lower percentage concentrations (mol%) of
even-chain and odd-chain SFAs 14:0, 15:0, and 17:0 (b: −0.01; 95% CI: −0.02, −0.00) and
lower DHA (b: −0.01; 95% CI: −0.02, −0.00), and higher physical activity was associated
with lower 17:0 (b: −0.10; 95% CI: −0.17, −0.02). The results examining the association of
dietary fish intake andω−3 PUFA are presented in Supplementary Table S5.

Table 3. Results from ordinary least squares regression examining the association of dietary and
non-dietary factors with serum non-esterified fatty acid (NEFA) in the FAMILY cohort.

Even-Chain SFA Odd-Chain SFA ω-3 PUFA
14:0 15:0 17:0 EPA DHA EPA + DHA

Variable b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI)

Age (years) 4.24 × 10−3

(−0.00, 0.01)

−3.54 ×
10−4

(−0.01, 0.01)
−0.01

(−0.01, 0.00)
−0.01

(−0.03, 0.00)
−4.77 ×

10−3

(−0.01, 0.00)
−0.01

(−0.02, 0.00)

Gestational age
(weeks)

−0.01
(−0.02, 0.00)

−0.02 ***
(−0.03,
−0.01)

−0.01 **
(−0.02,
−0.00)

−0.01
(−0.03, 0.01)

−0.01
(−0.02, 0.00)

−0.01
(−0.02, 0.00)

Parity −0.01
(−0.04, 0.03)

2.105 ×
10−4

(−0.03, 0.03)
2.21 × 10−3

(−0.03, 0.03)

−2.07 ×
10−5

(−0.06, 0.06)
−0.03

(−0.08, 0.01)
−0.02

(−0.07, 0.03)
Gestational diabetes

(GDM)
0.02

(−0.07, 0.10)
−0.01

(−0.09, 0.07)
−0.06

(−0.14, 0.03)
−0.06

(−0.22, 0.10)
−0.07

(−0.18, 0.04)
−0.07

(−0.19, 0.05)
Pre-pregnancy BMI

(kg/m2)
−0.01 *

(−0.01, −0.00)
−0.01 **
(−0.01,
−0.00)

−0.01 *
(−0.01,
−0.00)

−2.86 ×
10−3

(−0.01, 0.01)

−0.01 *
(−0.02,
−0.00)

−0.01
(−0.01, 0.00)

Smoking history
(ever vs. never

smoked)
−0.02

(−0.08, 0.05)
−0.04

(−0.10, 0.03)
−0.05

(−0.12, 0.01)
−0.01

(−0.13, 0.10)
−0.05

(−0.14, 0.03)
−0.04

(−0.12, 0.05)

Physical activity
(low vs. high)

−0.01
(−0.09, 0.08)

−0.01
(−0.09, 0.06)

−0.10 **
(−0.17,
−0.02)

−0.03
(−0.18, 0.11)

−0.03
(−0.12, 0.06)

−0.03
(−0.13, 0.08)

Social disadvantage
index

−0.02
(−0.04, 0.01)

−1.79 ×
10−3

(−0.03, 0.03)
0.02

(−0.01, 0.05)
0.04

(−0.03, 0.10)
0.04

(−0.00, 0.08)
0.04

(−0.01, 0.08)

Fiber intake
(g/day)

−1.12 × 10−3

(−0.01, 0.01)
2.84 × 10−3

(−0.00, 0.01)
1.45 × 10−3

(−0.00, 0.01)
4.51 × 10−3

(−0.00, 0.01)
2.01 × 10−3

(−0.00, 0.01)
3.48 × 10−3

(−0.00, 0.01)

Energy intake (kcal) −1.05 × 10−5

(−0.00, −0.00)

−4.76 ×
10−5

(−0.00, 0.00)

−2.42 ×
10−5

(−0.00, 0.00)

−8.23 ×
10−5

(−0.00, 0.00)

−4.77 ×
10−5

(−0.00, 0.00)

−6.21 ×
10−5

(−0.00, 0.00)
FFQ before blood

draw vs. FFQ at the
same time as blood

draw

−0.03
(−0.10, 0.04)

0.06
(−0.01, 0.13)

0.01
(−0.06, 0.08)

−3.01 ×
10−3

(−0.14, 0.14)
0.05

(−0.04, 0.15)
0.02

(−0.07, 0.12)

FFQ after blood draw
vs. FFQ at the same
time as blood draw

−0.05
(−0.26, 0.16)

0.02
(−0.09, 0.13)

0.04
(−0.10, 0.19)

0.06
(−0.26, 0.38)

0.24 *
(0.02, 0.46)

0.16
(−0.07, 0.40)

Full-fat dairy
(servings/day)

0.02
(−0.02, 0.06)

0.06 ***
(0.03, 0.10)

0.04 **
(0.01, 0.07)

Fish/Fish oil
(servings/day)

0.05
(−0.00, 0.11)

0.11 ***
(0.07, 0.14)

0.08 ***
(0.04, 0.12)

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.2. Results from PC-PR2 Analysis

PC-PR2 analysis was utilized to quantify the sources of systematic variability in
serum metabolite concentrations, and the results for the overall sample are displayed in
Figures 1 and 2, and results stratified by cohort are displayed in Supplementary Figures
S2–S7. For largely exogenous metabolites, such as proline betaine, hippuric acid, and
tryptophan betaine, dietary food intake explained a greater proportion of variability in the
metabolite than non-dietary factors. Citrus fruit intake explained the largest proportion
of variation in proline betaine concentration with a R2

partial value of 10.8%, followed by
smoking history (2.5%), maternal age (1.2%), and ethnicity/cohort (1.2%) (Figure 1A).
Similarly, for hippuric acid, fruits and vegetables intake displayed the largest R2

partial value
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of 2.0%, followed closely by energy intake (1.4%) (Figure 1B). For tryptophan betaine, intake
of nuts and legumes, fiber intake, and overall energy intake explained between 1.2% and
1.9% of the variability. Meanwhile, ethnicity has quite a substantial impact on tryptophan
betaine levels as the R2

partial value of cohort was 10.2% (Figure 1C). When the model was
stratified by cohort, nuts and legumes explained the most variability (3.6%) in the FAMILY
cohort (primarily White European women), while fiber intake (4.2%), energy intake (2.2%),
and GDM (1.5%) explained most of the variability in tryptophan betaine in the START
cohort (exclusively South Asian women) (Supplementary Figure S4).

For endogenous (less food-specific) metabolites, the dietary factors explained the most
variability for two of the metabolites (3-methyl-histidine and TMAO), while non-dietary
factors, such as gestational age (R2

partial value: 5.7%) and smoking history (R2
partial value:

1.9%), appeared to play a more prominent role in explaining the variability in carnitine
(Figure 1D). This latter finding is also consistent with the results obtained from HLM
showing no dietary factor was associated with carnitine concentration. Seafood intake
explained the greatest proportion of variability in TMAO, with a R2

partial value of around
3.0%, followed by maternal age (R2

partial value: 1.2%) (Figure 1E). For 3-methyl-histidine,
red meat intake had the highest R2

partial value of 1.2% (Figure 1F). There was evidence
of differences by ethnicity/cohort, where red meat explained 5.8% of the variability in
3-methyl-histidine in the START cohort but a negligible amount in the FAMILY cohort. Each
of the remaining explanatory variables explained a negligible amount of total variation in
the metabolite concentrations. Although there were some differences in findings between
the two cohorts, overall, the results obtained from PC-PR2 are congruent with those
obtained from the HLM analysis.

For NEFAs, pre-pregnancy BMI (R2
partial value: 1.8%) explained the most variability

in even-chain SFA 14:0 (Figure 2A). Gestational age explained the most variability in odd-
chain SFAs 15:0 (R2

partial value: 6.9%) and 17:0 (R2
partial value: 3.6%), followed by full-fat

dairy intake (R2
partial value: 5.9%) and pre-pregnancy BMI (R2

partial value: 2.4%) for 15:0,
and physical activity (R2

partial value: 3.0%) and full-fat dairy intake (R2
partial value: 2.6%)

for 17:0 (Figure 2B,C). Fish/fish oil intake explained the greatest proportion of variability
in DHA (R2

partial value: 11.2%), followed by pre-pregnancy BMI (R2
partial value: 2.5%)

(Figure 2E).
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Figure 1. Weighted Rpartial
2 for each factor showing the percentage of explained variability

in: (A) Proline betaine, (B) Hippuric acid, (C) Tryptophan betaine, (D) Carnitine, (E) trimethylamine
N-oxide (TMAO), and (F) 3-methylhistidine. Statistical significance was based on hierarchical linear
models. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Intraclass correlation suggested a cluster effect by
ethnicity (level 2 factor) for proline betaine (ICC = 3.9%), tryptophan betaine (ICC = 46.0%), TMAO
(ICC = 7.0%), and 3-methylhistidine (ICC = 25.6%) and did not suggest a cluster effect by ethnicity
for hippuric acid (ICC = 0.0%) and carnitine (ICC = 1.5%).
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Figure 2. Weighted Rpartial
2 for each factor showing the percentage of explained variability in:

(A) Myristic acid (14:0), (B) Pentadecanoic acid (15:0), (C) Heptadecanoic acid (17:0), (D) Eicosapen-
taenoic acid (EPA, 20:5n-3), (E) Docosahexaenoic acid (DHA; 22:6n-3), and (F) EPA + DHA in FAMILY
cohort. Statistical significance was based on ordinary least squares regression. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.

4. Discussion

Using data from two birth cohorts representing two ethnically diverse groups, the
results showed that for exogenous biomarkers such as proline betaine and (largely) DHA,
dietary factors explained higher proportion of variability whereas the contribution of
nondietary factors was relatively little. On the contrary, for metabolites that can either be
produced endogenously, biotransformed by gut microbiota, and/or derived from more
than one food source, the unique contribution of dietary factors was similar (15:0, 17:0,
hippuric acid, and TMAO) or lower (14:0, tryptophan betaine, 3-methylhistidine, and
carnitine) compared to non-dietary factors (ethnicity, maternal age, gestational age, pre-
pregnancy BMI, physical activity, and smoking history). Further, there was an ethnicity
effect for all metabolites, except carnitine and hippuric acid.
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For the non-dietary factors, higher maternal age was positively associated and ever
having smoked was inversely associated with proline betaine concentrations after ad-
justing for citrus foods. Evidence indicates that older women are more likely to make
healthier choices including increasing their consumption of fruits and vegetables from
pre-pregnancy to pregnancy compared to younger women [31,32]. Many studies have also
shown that smokers have lower concentrations of antioxidants and elevated concentration
of 8-isoprostane [33,34], which may be due to low consumption of antioxidants [35], re-
duced vitamin C absorption, or decreased turnover of vitamin C by free radicals produced
from smoking [36]. Proline betaine (stachydrine), a marker of citrus foods, which are rich
in vitamin C (potent water-soluble antioxidant), has been shown to inhibit cell prolifera-
tion and production of reactive oxygen species in in vitro and in vivo studies [37,38]. As
expected, higher citrus food intake was associated with proline betaine concentration and
explained the largest proportion of variation in proline betaine concentration relative to
non-dietary factors. In kinetics studies, proline betaine is excreted rapidly and nearly
completely in urine within 24 h [39], and therefore it is considered to be minimally metabo-
lized in humans. Furthermore, proline betaine was previously validated in a large-scale
observational study, where it was highly sensitive (86.3%) and specific (90.6%) for citrus
fruit consumption [39], and thus considered a robust biomarker for citrus food intake.

Even-chain SFA (14:0) can be derived from both exogenous sources (via dietary intake)
and endogenous synthesis (via de novo lipogenesis) [40,41], whereas odd-chain SFAs
(15:0 and 17:0) mainly reflect dietary intake of full-fat dairy [42], though the possible
contribution of endogenous sources cannot be ruled out [43,44]. As expected, both 15:0
and 17:0 were associated with full-fat dairy intake and 14:0 was not. Full-fat dairy intake
did not, however, explain the largest variance in 15:0 or 17:0 levels. Rather, non-dietary
factors, including higher gestational age and pre-pregnancy BMI, were associated with
lower odd chain SFA (15:0 and 17:0) and low physical activity level was associated with
lower 17:0. In a previous longitudinal analysis, odd-chain SFA (sum of 15:0 and 17:0)
progressively declined during pregnancy [45]. Although the exact mechanism for the
gestational alterations in these SFAs remain unclear, it is possible that pregnancy associated
physiologic changes and increase in adipose deposition throughout pregnancy may be
important factors contributing to the observed differences [46]. In several population-based
studies, higher circulating odd-chain SFAs (15:0 and 17:0) were inversely associated with
obesity and cardiometabolic diseases [47,48]. ω-3 PUFAs (DHA more than EPA) have been
considered robust biomarkers of habitual fish/fish oil intake [2]. This association was
demonstrated for DHA in the current study where fish/fish oil intake explained the largest
proportion of variation in DHA relative to non-dietary factors. Fish/fish oil daily servings
explains about twice the amount of variation in ω-3 PUFAs compared with dietary fish
intake, indicating that it is important to account for EPA and DHA sources from both diet
and supplements.

For other metabolites, non-dietary factors were associated with metabolite concen-
trations, however, their overall contribution was minimal, except for carnitine which was
mostly explained by gestational age. Carnitine mainly reflects the consumption of amino
acids and fatty acid-containing foods and, as a result, is considered a generic marker for
foods of animal origin but may also be synthesized from the essential amino acids lysine
and methionine [4,49]. A decline in carnitine across trimesters during pregnancy was previ-
ously reported [9,50]. A significant rise in acylcarnitine in pregnant women as pregnancy
progresses may reflect enhanced fatty acid oxidation in later periods of gestation [50]. This
distribution may suggest a greater uptake of carnitine in the fatty acid β-oxidation process,
leading to a lower free carnitine substrate and resulting in a lower total body carnitine pool
in pregnant women [51,52].

For all metabolites, except for proline betaine and two NEFAs (15:0 and DHA),
the unique contribution of food sources was similar to or lower than non-dietary fac-
tors. This may reflect endogenous production, microbial synthesis, or the multiple food
sources of some of these metabolites. Interindividual variability in hippuric acid [53,54],



Nutrients 2022, 14, 2503 14 of 19

TMAO [55,56], and tryptophan betaine [57,58] may partly be due to differences in intestinal
microbiota. However, the potential variation in these metabolites attributable to the gut
microbiome could not be accounted for in our study. Further, variation in an endogenous
metabolite concentration such as carnitine may reflect the general intake of foods of animal
origin and/or physiological changes that take place during pregnancy, and is influenced
by factors such as age and health status, and thus may not be a suitable biomarker of red
meat at the population level [4,49].

Metabolite concentration may also vary widely across cultures and ethnic groups as
the type of food, method of consumption, and food preparation techniques may vary [59].
In our multi-level analysis, there was an ethnicity effect for all metabolites, except carnitine
and hippuric acid. Proline betaine concentration was shown to vary to some extent by
cohort, likely attributable to differences in citrus food intake in the two cohorts (Table 1).
Additionally, some of this variability may be attributed to differences in lifestyle factors
between members of the two cohorts, such as smoking status. Regardless, citrus fruit
consumption still explained the largest amount of variance in proline betaine in both
cohorts, suggesting that non-dietary factors do not contribute substantially to proline
betaine variation (Supplementary Figure S2). However, mixed results were shown by
cohort for metabolites that are synthesized or modified by gut bacteria. Tryptophan betaine
concentration was shown to vary considerably between the two cohorts, with higher
tryptophan betaine associated with higher nuts and legumes intake in the FAMILY cohort,
and with higher fiber intake and lower kilocalories in the START cohort. A possible
explanation for this discrepancy may be that nuts and legumes is a heterogeneous food
group so the type of nuts and preparation/cooking methods for legumes may play an
important role [60]. Further, it is also likely that the association of nuts or legumes intake
with tryptophan betaine may be confounded by fiber intake in the START cohort, as fiber
intake is higher in this cohort, and tryptophan betaine has been identified in fiber-rich
plant-based foods and linked to gut microbiota in fiber-enriched diets [57].

Hippuric acid was one of the metabolites that did not vary by ethnic cohort but was
only associated with greater fruit and vegetable intake in the FAMILY cohort despite greater
intake in the START cohort. An explanation for this may be related to the metabolism
of different dietary polyphenols [61]. Evidence suggests that differences in excretion of
hippuric acid may reflect altered gut microbial metabolism [62]. Generally, the amount
of variability in food consumption may also affect the robustness of the association. For
example, the IQR for certain foods, such as chicken and red meat, were higher in FAMILY
compared to START, whereas variability for other foods, such as fruits and vegetables, tea,
eggs, and nuts and legumes, were higher in START compared to FAMILY. This may explain
inconsistencies in the results for at least some serum metabolites, such as the association
between red meat and TMAO in the START cohort.

In other comparisons, TMAO varied slightly by cohort, but this may be explained by
a relatively lower consumption of meats, including red meat, canned and fried fish, and
seafood, in the START cohort compared to the FAMILY cohort. Despite this, higher seafood
intake was positively associated with TMAO concentration in both cohorts. Differences
in TMAO production and excretion may partly be related to metabolic precursors, such
as choline, betaine, and carnitine. TMAO concentration increases postprandially (within
15 min) after the consumption of fish [63], but it takes more time after consumption of
meat [64], suggesting that free TMAO in seafood may be readily absorbed after fish con-
sumption without much involvement of gut microbiota. Finally, although the association
of 3-methylhistidine with chicken and red meat was significant in the overall sample,
these associations were attenuated when analysis was stratified by cohort. This is likely
because the intra-cohort variability was small or because intakes of these foods were highly
correlated (as was the case in the START cohort).

Finally, biomarkers with ‘good’ evidence are considered as direct surrogates for food
intake [65]. However, there are several factors, in addition to food exposure, that can
influence variation in food-related metabolites concentration and thus require appropri-
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ate consideration during the statistical analyses of the data [66]. In line with previous
research [7], in most cases, our study found that dietary factors explained less than 10%
of the total variation in metabolite concentration. While some aspects of the source of the
errors are explained by measurement error (self-report), others can be related to non-dietary
factors. Therefore, future studies should account for non-dietary factors and differences by
ethnicity to control for some of the inter-individual variation in food-related metabolites.

Our study has several strengths, including a large sample size that allowed for stratifi-
cation by ethnicity, use of fasting serum samples, and comparing a diverse set of metabolites
reflecting commonly consumed foods which have been previously reported in free-living
population studies [2]. We adopted a novel methodological approach to address an unan-
swered question regarding the non-dietary sources of metabolite variation in the field
of nutritional metabolomics and biomarkers of food intake. Our study also has some
limitations. We included only pregnant women from white European and South Asian
backgrounds, and thus the generalizability of our findings is limited to these populations.
Dietary assessment was based on a self-reported FFQ and may be prone to some measure-
ment error; however, FFQs are commonly used in nutritional epidemiology. The period of
dietary assessment of 12 months may not be indicative of recent intake of foods or intake of
foods only during pregnancy, but since our aim was to identify sources of variability in
metabolites of foods that reflect habitual dietary intake, a 12-month intake was more appro-
priate. Samples were collected at one point in pregnancy and data on changes in dietary
intake during pregnancy were not collected and, therefore, not available for the analysis.

5. Conclusions

Overall, the results emphasize that serum metabolites that reflect specific foods are also
influenced by non-dietary factors (ethnicity, maternal age, gestational age, pre-pregnancy
BMI, physical activity, and smoking history) but to differing degrees. The results of this
study provide insight into the external factors that impact serum metabolite concentrations
and provide guidance on appropriate modeling when metabolomics is used in nutritional
epidemiological studies to identify diet-disease associations. Identifying robust and gener-
alized food related biomarkers in diverse populations remains a challenge, but appropriate
adjustment for non-dietary factors is necessary for an unbiased assessment of metabolite
concentration. Future work will explore the role of maternal nutrition and food exposures
on health outcomes later in life, such as childhood obesity and metabolic syndrome.
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cohort; Figure S6B: Weighted Rpartial
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