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To reveal the potential molecular mechanism of glioblastoma multiforme (GBM) and provide the candidate biomarkers for GBM
gene therapy. Microarray dataset GSE50161 was obtained from GEO database. The differentially expressed genes (DEGs) were
identified between GBM samples and control samples, followed by the module partition analysis based on WGCNA. Then, the
pathway and functional enrichment analyses of DEGs were performed. The hub genes were further investigated, followed by the
survival analysis and data validation. A total of 1913 DEGs were investigated between two groups, followed by analysis of 5 modules
using WGCNA.These DEGs were mainly enriched in functions like inflammatory response. The hub genes including upregulated
N-Myc and STAT Interactor (NMI), Capping Actin Protein-Gelsolin Like (CAPG), and Proteasome Subunit Beta 8 (PSMB8) were
revealed as potential liquid biopsy molecules for GBM diagnose. Moreover, Nucleolar and Spindle Associated Protein 1 (NUSAP1)
and G Protein-Coupled Receptor 65 (GPR65) were outstanding genes in survival analysis. Our results suggested that CPNE6,
HAPLN2, CMTM3,NMI, CAPG, and PSMB8might be used as potential molecules for liquid biopsy of GBM. NUSAP1 andGPR65
might be novel prognostic targets for GBM gene therapy. Furthermore, the upregulated NMImight play an important role in GBM
progression via inflammatory response.

1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive
cancer that represent 15% of all brain tumors [1].The survival
rate for GBM patients is less than 15 months [2]. Although
surgery is commonly used for the treatment of GBM [3],
the cancer usually recurs due to lack of effective prevention
method for this disease [4].

Understanding the mechanisms of glioblastoma at the
molecular and structural level is valuable for clinical treat-
ment [5]. Bioinformatics can be effectively used to analyze
GBM microarray data to provide theoretical reference for
further exploration of tumorigenesis mechanism and help

search for potential target genes [6]. Based on bioinformatics
study, some differentially expressed genes (DEGs) such as
Transforming Growth Factor Beta Induced (TGFBI) and
SRY-Box 4 (SOX4) were explored as the potential therapy
targets for GBM [7]. Coexpression analysis has emerged
as a powerful technique for obtaining novel insights into
complex mechanisms and multigene analysis of large-scale
data sets, especially for identifying functional modules. As
an approach of bioinformatics study, weighted gene coex-
pression network analysis (WGCNA) is commonly used
for revealing the correlation between genes in different
samples [8]. Previous WGCNA shows the epigenetic events
in GBM development and prognosis based on The Cancer
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Genome Atlas (TCGA) database [9]. Thus, WGCNA can be
used to predict genes associated with cancer development
[10]. In pervious study, Griesinger et al. indicated that
the different pediatric brain tumor types (including GBM)
exhibited distinct immunophenotypes, implying that specific
immunotherapeutic approaches may be most effective for
each tumor type [11]. However, candidate biomarkers for the
clinical gene therapy of GBM were still unclear.

In current study, GBM gene expression data deposited
by Griesinger et al. [11] was downloaded and reanalyzed
by WGCNA. The DEGs between GBM samples and control
samples were investigated, followed by the functional and
pathway enrichment analysis. Then, TCGA survival analysis
and data validation as well as literature verification were
performed to confirm the effect of biomarker for GBM. We
hoped to reveal the potential molecular mechanism of GBM
and provide the candidate biomarkers for GBM gene therapy.

2. Material and Methods

2.1. Microarray Data. The gene expression profile of
GSE50161 [11] was downloaded from Gene Expression
Omnibus (GEO) database [12]. A total of 47 tissue samples
including 34 surgical brain tissue samples (GBM group)
obtained from patients who were diagnosed with GBM
and 13 normal brain samples (control group) obtained from
pediatric epilepsy patients at the time of surgical intervention
were used for the follow-up analysis.

2.2. Data Preprocessing and DEG Analysis. There were totally
17049 probes in the present dataset. The knn function in
the impute package (version: 1.48.0) [13] was used to impute
missing value. Normalization was performed using Limma
Linear Models for Microarray Data (limma, version: 3.30.13)
package [14]. The median value was considered as the gene
expression value when different probes linked to the same
gene (16812 genes). The eBayes analysis [15] was used to
analyze the DEGs between GBM group and control group.
P-value <0.05 and |log-fold change (LFC)| >2 were selected
as the thresholds for DEGs screening.

2.3. WGCNA Analysis. The coexpression network analysis
was performed using WGCNA (version:1.61) [8]. First, the
soft threshold for network construction was selected.The soft
threshold makes the adjacency matrix to be the continuous
value between 0 and 1, so that the constructed network
conforms to the power-law distribution and is closer to the
real biological network state. Second, the scale-free network
was constructed using blockwiseModules function, followed
by themodule partition analysis to identify gene coexpression
modules, which could group genes with similar patterns
of expression. The modules were defined by cutting the
clustering tree into branches using a dynamic tree cutting
algorithm and assigned to different colors for visualization
[16]. Then, the module eigengene (ME) of each module
was calculated. ME represents the expression level for each
module. Then, the correlation between ME and clinical trait
in each module was calculated. Finally, the gene significance

(GS) of gene in themodule, which represented the correlation
between gene and sample, was further calculated.

2.4. Function and the Pathway Enrichment Analysis. The
DAVID 6.8 (https://david.ncifcrf.gov) [17] software was
used for the GO-biological function (GO-BP) [18] and
KEGG pathway analysis [19] of genes in each module.
P false discovery rate (FDR) <0.05 was selected as the threshold for
the identification of significant GO-BP terms and pathways.

2.5. The Hub Gene Investigation. The network topological
index is defined as the number of links incident upon a
node [20]. The key node (hub gene) was determined by
high intramodule connectivity of genes by summing the
connection strengths with other module genes. In this study,
the intramodular connectivity of genes was identified by
WGCNA [8]. According to the intramodule connectivity, the
top 20 hub genes inmodules were visualized using Cytoscape
(version 3.5.1) software [21].

2.6. Survival Analysis. To reveal the prognostic value of hub
genes on GBM patients, the survival analysis was performed.
The expression value and clinical data of GBM were down-
loaded from the TCGA [22] database. A total of 148 samples
were included.The samples in the data were divided into high
expression group (up group) and low expression group (down
group) according to the median value of each hub protein.
The survival package (version: 2.41-3) in R software was used
for the current analysis.Then, the survival rate estimation and
statistical significance were performed using Kaplan-Meier
(KM) method [23] and log-rank test [24], respectively. P <
0.05 was considered statistically significant.

2.7. Data Validation. In order to verify the expression of hub
genes in serum samples in other dataset, the microarray data
of GSE24084 [25] (platform: GPL8755 PF-Agilent-014850
Whole Human Genome Microarray 4x44K), which included
16 serum samples (9 cancer samples and 7 normal samples),
was obtained fromGEO database. Using ROCR package [26]
in R software (version: 1.0-7), the area under curve (AUC)
from the receiver operating characteristic (ROC) curve study
was performed on the expression data of each hub gene. In
the present study, AUC >0.5 represented upregulated genes,
while AUC <0.5 represented downregulated genes. Larger
|AUC-0.5| value of a gene indicated that this genes can well
distinguish GBM from the control samples [27]. Based on the
AUC values, the diagnose effect of hub genes (as liquid biopsy
molecules) in each module was further investigated.

3. Results

3.1. DEGs between GBM Group and Control Group. With
PFDR < 0.05 and |LFC| > 2, a total of 1913 DEGs including
776 upregulated DEGs and 1137 downregulated DEGs were
identified between GBM group and control group. The heat
map and volcano plot are shown in Figures 1(a) and 1(b),
respectively. The results of heat map showed that these DEGs
could be used to well distinguish the GBM from the control
samples.

https://david.ncifcrf.gov
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Figure 1: The heat map, volcano plot, and weighted gene coexpression network analysis (WGCNA) of differentially expressed genes (DEGs)
between glioblastoma multiforme group and control group. (a) The heat map for DEGs. (b) The volcano plot for DEGs. Grey dots represent
genes which are not differentially expressed, red dots represent the upregulated genes, and the blue dots represent the downregulated genes.
(c)Determination of the soft threshold in theWGCNAalgorithm.The approximate scale-free fit index can be attained at the soft-thresholding
power of 18. (d) Clustering dendrograms showing 5modules that contain a group of highly connected genes. Each designated color represents
a certain gene module.
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Figure 2:Themodule expression pattern.The heatmap represents the expression of genes where each row represents a gene and each column
represents a sample. The red color in heat map represents upregulated genes while the green color represents the downregulated gene. The
bar charts represents the eigengene profiles of four WGCNAmodules; the color of the bar chart represented the color of related module.

3.2.WGCNAAnalysis. TheWGCNAanalysis was performed
on 1913 DEGs. The soft threshold for network construction
was selected as 18 (Figure 1(c)) [28]. Meanwhile, the fitting
degree of scale-free topological model was 0.85. Thus, this
network conformed to the power-law distribution and was
closer to the real biological network state.

A total of 5 modules (Figure 1(d)) including turquoise
(867 DEGs), grey (643 DEGs), blue (238 DEGs), brown (137
DEGs), and yellow (28DEGs) were obtained in current study.
The DEGs in grey were not included in any module, so the
subsequent analysis was no long performed on grey. ME
was in accordance with the expression pattern of DEGs in
each module.The turquoise module and yellow module were
downregulated, while blue module and brown module were
upregulated. Furthermore, the turquoise module (correlation

index: -0.9, P =7.0E-18) and yellowmodule (correlation index:
-0.69, P =9.0E-8) were negatively correlated with the disease.
Meanwhile, blue module (correlation index: 0.86, P =1.0E-
14) and brown module (correlation index: -0.78, P =1.0E-
10) were positively correlated with the disease (Figure 2).
The GS value for blue module, turquoise module, brown
module, and yellow module were 0.75, 0.73, 0.64, and 0.59,
respectively, which indicated a close relationship with the
disease (Figure 3).

3.3. Functional and Pathway Enrichment for DEGs. The top 3
of GO-BP and KEGG terms enriched by DEGs were showed
in Table 1. The result showed that DEGs in turquoise module
were mainly involved in the functions like chemical synap-
tic transmission (GO:0007268, P =6.65E-29) and pathways
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Table 1: The results for GO-BP function and KEGG pathway enrichment analysis (top 3 in each module are listed).

Module GO-BP terms PFDR KEGG terms 𝑃FDR

Turquoise GO:0007268∼chemical synaptic
transmission 6.65E-29 hsa04723: Retrograde

endocannabinoid signaling 2.49E-14

GO:0007269∼neurotransmitter
secretion 7.27E-15 hsa04727: GABAergic synapse 1.76E-10

GO:0014047∼glutamate secretion 7.47E-12 hsa05032: Morphine addiction 9.20E-10
Blue GO:0051301∼cell division 9.80E-40 hsa04110: Cell cycle 8.98E-15

GO:0007067∼mitotic nuclear
division 8.74E-27 hsa03030: DNA replication 7.01E-05

GO:0007062∼sister chromatid
cohesion 5.35E-22 hsa04114: Oocyte meiosis 1.74E-03

Brown GO:0006954∼inflammatory
response 2.05E-04 hsa05133: Pertussis 5.25E-02

GO:0030198∼extracellular
matrix organization 3.03E-03 hsa04064: NF-kappa B signaling

pathway 1.21E-01

GO:0051607∼defense response to
virus 4.84E-02 hsa04610: Complement and

coagulation cascades 3.76E-01

Yellow GO:0007417∼central nervous
system development 1.30E+01 hsa00340: Histidine metabolism 4.21E-01

GO:0006915∼apoptotic process 3.94E+01 hsa00410: beta-Alanine
metabolism 3.06E+01

GO:0055085∼transmembrane
transport 4.13E+01 hsa00330: Arginine and proline

metabolism 4.45E+01

Notes: GO, gene-ontology; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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Figure 3: Relationships of module eignegenes and the samples. (a) The module-trait relationships. Module names are displayed on the left.
The number in the first row of the square was the correlation coefficients to the glioblastoma multiforme (GBM) group shown at the top of
each row with the p values printed below the correlations in parentheses. The rows are colored based on the correlation of the module to the
GBM group: red for positive correlation and blue for negative correlation. (b) The average gene significance (GS) of all genes (i.e., module
significance, MS) of each module. Modules with greater MS values were considered to have more connection with the disease.

such as retrograde endocannabinoid signaling (hsa04723, P
=1.76E-10, genes). The DEGs in the blue module were mainly
associated with functions like cell division (GO:0051301,
P =9.80E-40) and pathways like cell cycle (hsa04110, P
=8.98E-15). Meanwhile, the DEGs in brown module were

mainly involved in functions like inflammatory response
(GO:0006954, P =2.05E-04) and pathways like Pertussis
(hsa05133, P =5.25E-02). The enrichment result in yellow
module was not significant because the number of genes in
assembled in this module was less.
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Figure 4: The visualization of modules with hub genes. The different colors represented the different modules. The thicker line represents
higher connection strengths.

3.4. Hub Genes in Modules. According to the network topo-
logical index, a total of 80 hub genes were investigated from
4modules. The detailed information was showed in Figure 4.

3.5. Survival Analysis and Data Validation. To validate our
initial finding of hub genes, we examined an independent
TCGA dataset. Based on the expression and clinical data of
148 GBM samples fromTCGA database, the survival analysis
was performed on totally 80 hub genes. The KM curve for
gene with the minimal P value in each module was showed in
Figure 5. Three genes including FXYD Domain Containing
Ion Transport Regulator 1 (FXYD1, P =1.92E-02), Nucleolar
and Spindle Associated Protein 1 (NUSAP1, P =4.44E-02),
and G Protein-Coupled Receptor 65 (GPR65, P =2.01E-02)
were outstanding in the current survival analysis (Figure 5),
which had significant association with prognosis.

Moreover, to explore the expression pattern of hub genes
in serum samples from GBM patients, the validation data
GSE24084was downloaded from theGEOdatabase, followed
by ROC curve analysis using ROCR software. The result

showed that Copine 6 (CPNE6), Hyaluronan and Proteo-
glycan Link Protein 2 (HAPLN2), Ribonucleotide Reductase
Regulatory Subunit M2 (RRM2), and CKLF Like MARVEL
Transmembrane Domain Containing 3 (CMTM3) were four
outstanding genes with the largest |AUC-0.5| in each mod-
ule, respectively (Figure 6). Furthermore, the other genes
including N-Myc and STAT Interactor (NMI), Capping Actin
Protein-Gelsolin Like (CAPG), Proteasome Subunit Beta 8
(PSMB8), CKLF Like MARVEL Transmembrane Domain
Containing 3 (CMTM3), Sodium Voltage-Gated Channel
Beta Subunit 2 (SCN2B), Copine 6 (CPNE6), andHyaluronan
and Proteoglycan Link Protein 2 (HAPLN2) were genes with
|AUC-0.5| > 0.4.

4. Discussion

GBM is a kind of brain tumor in adults [29]. Targeted gene
therapy is a strategy for GBM [30]. However, the effective
candidate biomarkers for the gene therapy of GBM was still
unclear. A gene expression data of GBM was analyzed by
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Figure 5: Survival curve for testing hub genes in the modules in TCGA data. FXYD1, NUSAP1, GPR65, and GPR65 were genes with the
minimal P value in in yellow module, blue module, and brown module and turquoise module, respectively.

WGCNA in this study. The results showed that a total of
1913 DEGs were investigated between GBM samples and
control samples, followed by 5 modules explored. These
DEGs were mainly enriched in functions like inflammatory
response and pathways including cell cycle. The hub genes
including CPNE6, HAPLN2, CMTM3, NMI, CAPG, and
PSMB8 were revealed as potential liquid biopsy molecules
for GBM diagnose. Moreover, FXYD1, NUSAP1, and GPR65
were three outstanding genes in survival analysis.

Evidence demonstrated that CPNE6 terminated their
expression in glioblastomas [31]. Sim and colleagues found
that HAPLN2, also known as BRAL1, was virtually absent
in malignant gliomas [32]. A previous study had reported
that CMTM3 promoted cell invasion of glioblastoma and
was significantly correlated with shorter overall survival
[33]. NMI, is a protein that play critical roles in tumor
growth, progression, and metastasis [34]. Previous study
indicates that NMI polymorphisms are closely related to the



8 BioMed Research International

CPNE6

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.0476

HAPLN2

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.0794

RRM2

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.143

CMTM3

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 1

Figure 6:The receiver operating characteristic (ROC) curve of hub genes in GSE24084 dataset. CPNE6, HAPLN2, RRM2, and CMTM3were
four genes with the largest |AUC-0.5|.

genetic susceptibility of glioma in Chinese Han population
[35]. CAPG is a ubiquitous gelsolin-family actin-modulating
protein involved in the control of cell migration via immune
and inflammatory pathways [36]. Yun et al. showed that the
downregulation of CAPG significantly inhibited GBM cell
proliferation by blocking the cell cycle in G1/S transition [37].
PSMB8, a protein contributes to the complete assembly of
20S proteasome complex, regulates glioma cell migration,
proliferation, and apoptosis [38]. Previous study shows that
autoinflammatory disorder caused by PSMB8mutation leads
to the proteasome assembly defection [39]. In the present
study, the |AUC-0.5| value for hub genes like CPNE6 (down-
regulated), HAPLN2 (downregulated), CMTM3 (upregu-
lated), NMI (upregulated), CAPG (upregulated), and PSMB8

(upregulated) was all larger than 0.4. Based on the study of
Long et al. [27], we suggested that hub genes like CPNE6,
HAPLN2, CMTM3, NMI, CAPG, and PSMB8 might be used
as potentialmolecules for liquid biopsy ofGBM. Furthermore
the inflammatory pathway has previously been linked to
chemotherapy resistance in glioma tumors [40]. Actually,
the suppression role in inflammation response was closely
related with gliomas development and progression [41]. In
this study, the function analysis in this study showed that
inflammatory response was one of the most outstanding
functions enriched by DEGs including upregulated NMI.
Thus, we speculated that the upregulated NMI might play
an important role in GBM progression via inflammatory
response.
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Identification of hub genes or regulatory factors is the first
step for GBM gene therapy [42]. Previous study shows that
NUSAP1 expression is correlated not only with glioma grade
but also with prognosis of glioma patients [43]. Knockdown
of NUSAP1 expressing suppress glioma cells growth and
promote glioma cell apoptosis [44]. Despite NUSAP1, GPR65
proved to promote tumor growth in cancer [45]. Ail et al.
indicated that GPR65 may take part in a mechanism that is
for photoreceptors survival in the degenerating retina [46].
However, whether GPR65 contribute to the process of glioma
or BGM is still unclear. In the present study, NUSAP1 and
GPR65 were not only DEGs between GBM samples and
control samples, but also two most outstanding hub genes
in survival analysis. Thus, we speculated that NUSAP1 and
GPR65 might be novel prognostic targets for GBM gene
therapy. However, there were some limitations in this study
such as small sample size and lack of verification test; thus, a
large sample size with a wide verification analysis is needed
in the further investigation.

5. Conclusions

In conclusion, CPNE6,HAPLN2, CMTM3,NMI, CAPG, and
PSMB8might be used as potentialmolecules for liquid biopsy
of GBM. NUSAP1 and GPR65 might be novel prognostic
targets for GBM gene therapy. Furthermore, the upregulated
NMI might play an important role in GBM progression via
inflammatory response.
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