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Knowing metastasis is the primary cause of cancer-related deaths, incentivized research directed towards
unraveling the complex cellular processes that drive the metastasis. Advancement in technology and
specifically the advent of high-throughput sequencing provides knowledge of such processes. This
knowledge led to the development of therapeutic and clinical applications, and is now being used to pre-
dict the onset of metastasis to improve diagnostics and disease therapies. In this regard, predicting
metastasis onset has also been explored using artificial intelligence approaches that are machine learn-
ing, and more recently, deep learning-based. This review summarizes the different machine learning and
deep learning-based metastasis prediction methods developed to date. We also detail the different types
of molecular data used to build the models and the critical signatures derived from the different methods.
We further highlight the challenges associated with using machine learning and deep learning methods,
and provide suggestions to improve the predictive performance of such methods.
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1. Metastasis

It is well known that once cancer has metastasized, treatment
becomes much more challenging [1]. The reason being, primary
cancer and metastasis have different properties that make the lat-
ter highly aggressive [2], and the drugs chosen to target the pri-
mary tumors do not necessarily target the metastases (secondary
tumors). Thus, research effort has been directed towards predicting
metastasis and therapeutic approaches that prevent metastasis.

Metastasis occurs through a series of cellular events such as the
tumor cells detaching from the primary site, and then these
detached cells are captured and transported throughout the blood-
stream via blood flow to invade and colonize at a secondary site
eventually [2–5]. However, the primary tumor site consists of a
heterogeneous and genetically diverse tumor population, and not
all tumor cells are capable of metastasizing [6]. According to the
‘‘seed and soil” metastasis hypothesis, both the seed (cancer cell)
as well as the soil (secondary site) determine site selection. Only
those cells that develop all the favorable traits for the metastatic
cascade metastasize successfully [2,7]. These favorable traits
include developing resistance against anoikis (induction of apopto-
sis upon detachment) during epithelial-mesenchymal transition
(EMT) [2,8], the migratory capability of the tumor cells increasing
through the formation of invadopodia [7], the tumor cells exhibit-
ing more epithelial type behavior to be able to settle at the sec-
ondary site [9,10]. The tumor cells produce factors that modify
the tumor microenvironment at secondary sites, and the secondary
site must have the corresponding receptors to facilitate metastasis.
For example, cancer cells expressing CXCR4 metastasize to tissue
expressing the sole ligand for CXCR4, chemokine CXCL12 [11,12].
The mutual coordination determines the success of metastasis
[13,14].

Understanding these mechanisms led to several therapeutic
approaches to inhibit metastasis [2], including blocking EMT and
reversing anoikis-resistance using quinazoline-based anoikis
inducers and PPARc, TRKB, and SRC inhibitors [15]. The second
approach to inhibit metastasis blocks cell motility via cadherin,
integrins, selectin, and CD44 [16], using N-cadherin inhibitors,
integrin antagonists, selectin inhibitors, and CD44 antagonists.
The cell motility is also blocked when interfering with invadopodia
formation using growth factor inhibitor. The third approach deals
with the interference of the interaction between tumors, the seed,
and the tumor microenvironments, the soil. Inhibitors of VEGF,
FGF, PDGF, and EGFR signaling also target EMT and, thus, tumor
invasiveness [17]. In this regard, tumor models have been used
to show that inhibitors of SRC, TWIST1, and TKS5 are promising
agents to inhibit EMT [18]. Other mechanisms include interference
with inflammation, inhibition of integrin signaling, interfering
with the hypoxia process, remodeling of extracellular matrix
(ECM), and inhibition of cancer-associated fibroblasts signaling
[2]. Ideally, targeting both seed and soil should produce the
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synergistic effect needed to prevent metastasis, but a cure is still
not in sight. Also, these approaches may have been successful in
mouse models or in vitro cell cultures, but none of them were, as
yet, successfully used to treat metastases in the clinic setting.

Consequently, early detection of metastasis-prone tumors and
residual tumors metastases are also being pursued to improve clin-
ical decision-making concerning treatment plans. In this regard,
identifying the molecular features uniquely associated with a
metastasized tumor is being pursued through various technologies
[19]. Researchers have also developed several computational
methods to predict metastasis and the key features associated with
it. These in silico methods were developed using diverse features.
Some methods incorporated clinicopathological-based features
[20–22], other methods incorporated image-based features [23–
25] or text-based features [26], while the more recent methods
incorporate omics-based data as features. This review summarizes
the in silicometastasis-related prediction methods that incorporate
omics data as features. We highlight the lessons learned from
developing these methods and further discuss different challenges
in this field and how we believe deep learning (DL) can build a
metastasis prediction model with generalizability and high predic-
tion accuracy (Acc).
2. Computational modeling used to predict metastasis

Metastasis prediction, like any other prediction task, involves
multiple steps. Generally, the overall metastasis prediction work-
flow starts with 1/ defining the problem statement, i.e., the goal
of classification, 2/ omics data type selection, i.e., mRNA, micro-
RNA, DNAmethylation, etc., 3/ data preprocessing, 4/ feature selec-
tion, and 5/ model building (Fig. 1). Some studies have also
incorporated downstream analysis and annotation methods such
as pathway and gene ontology enrichment analysis in the work-
flow, after model building. This review focuses on classifiers that
can distinguish metastatic and non-metastatic samples, function-
ing as metastasis predictors.
2.1. Data types that provide features used in metastasis prediction
models

Most metastasis prediction models try to solve a binary classi-
fication problem that classifies samples as metastatic or non-
metastatic. The models’ discriminative power depends on the fea-
tures used, as features that add more to distinguishing between
samples provide higher prediction accuracy [27–30]. However,
these features that distinguish between samples are not always
apparent. Therefore, feature selection plays an integral part in
building classification models.

Some studies used conventional parameters such as histomor-
phology, immunohistochemistry-based features and others used



Fig. 1. General metastasis prediction workflow. First: problem definition, second: omics data type selection (e.g., mRNA, microRNA, DNA methylation, etc.), third: data
preprocessing (quality measures, impute missing values, etc.), fourth: feature selection, fifth: model building by choosing machine learning (ML)/deep learning (DL)
approaches, sixth: model evaluation by fine-tuning the model until it becomes satisfactory to use in implementation, and seventh: model deployment as a software program
for clinical practice, or as a tool to be used in clinical research.
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clinical, radiological parameters as features, but omics-based fea-
tures (mRNA and microRNA expression data, and methylation
information) appear to be more popular for inclusion in building
such models. This predilection towards omics-based information
is expected, as such high-throughput approaches can deliver a
huge amount of data at tremendously reduced costs. Nevertheless,
what may come as a surprise is that, thus far, most studies only
used a single type of omics data to build the models except for a
recent study published by Bhalla and colleagues in 2019 [28] that
leveraged data from more than one omics type.

2.2. Data preprocessing and feature selection

Data processing is an essential step to improve the overall qual-
ity and performance of the model. It involves data cleaning, such as
dealing with missing values or extreme observations such as erro-
neous or outliers. It also involves data transformation such as
changing the data type (discretization), e.g., transferring categori-
cal data into numerical data, or changing the range of the data
value (normalization), e.g., quantile normalization or z-score nor-
malization. There is no ‘‘one-size-fits-all” rule for selecting the nor-
malization or transformation method. It depends on deep
understanding and data exploration [31]. The data transformation
step is usually followed by feature selection to reduce the dimen-
sionality of the data and remove the uninformative features if
there is a large number of input features in the dataset. Methods
generally used for feature selection include filter methods, wrap-
per methods, or embedded methods [32]. In filter methods, fea-
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tures are selected independently from the prediction model. For
Example, betweenness centrality (BC) has been commonly used
in the metastasis prediction task [33–36] as a filter-based method
to rank genes based on their importance in biological networks
such as protein–protein interaction (PPI) networks. Then, an incre-
ment of N top-ranked genes is fed to the classifier until no increase
in performance is acquired. Other statistical methods are also
employed to filter out features that are not differential among clas-
sification groups. For example, Metri and colleagues [35] employed
linear models for microarray data (LIMMA), a Bioconductor pack-
age to perform differential gene expression analysis, and selected
only significantly (p-value <= 0.05) differentially expressed genes
(fold change of ±2). Similarly, Wu and colleagues [37] performed
the Mann-Whitney U test with Benjamini-Hochberg (BH)
multiple-testing correction to select only differentially methylated
probes for downstream analysis. Principal component analysis
(PCA) and WEKA-FCBF were also used as filter-based feature selec-
tion methods [28]. The student’s t-test has also been utilized to
compute the mean value of each of the N features for each class
and retained only those features wherein the difference between
means is statistically significant [29].

In the wrapper methods, features are selected based on the
resulting performance of the prediction model. For example, the
underlying idea of the genetic algorithm (GA), used as a feature
selection step [37], is to generate several random possible solu-
tions, which represent different genes (features), and then combine
the best solutions in an iterative process. There are also many
wrapper methods designed for applications where the number of



Table 1
Machine learning (ML) models developed for metastasis prediction that incorporate omics data as features.

Problem Statement Study Features used ML
methods

Validation technique Accuracy measures

We analyzed the expression profiles
of HCC samples without or with
intra-hepatic metastases

Ye et al. [41] mRNA expression
(Microarray)

CCP LOOCV Acc (0.85)

Metastasis prediction in breast
cancer.

Burton et al. [40] mRNA expression
(Microarray)

RF, LR,
SVM, ANN,
Voting

Internal on the same
microarray platform
10-fold CV

Acc (Voting: �0.87)

External test set from the
same microarray
platform

Acc (Voting: 0.73)

External test set from
different microarray
platforms

Acc (RF: 0.61)

Prediction of osteosarcoma
metastasis.

He et al. [33] mRNA expression
(Microarray)

SVM Independent test sets Average
Acc (�0.98), Se (1.0), Sp (�0.97),
PPV (�0.95), NPV (1.0), AUC
(�0.98)

Predict cutaneous melanoma
metastasis.

Wei et al. [34] mRNA expression
(Microarray and RNAseq)

SVM Independent test sets Average
Acc (�0.97), Se (1.0), Sp (�0.94),
PPV (�0.97), NPV (1.0), AUC
(�0.97)

Prediction of metastatic melanoma. Metri et al. [35] mRNA expression
(Microarray and RNAseq)

Adaboost
and RF

CV Acc (�0.87)

Predict breast cancer metastasis. Tuo et al. [36] mRNA expression
(Microarray and RNAseq)

SVM Independent test sets Average
Acc (�0.94)

Predict lymph node metastasis in
endometrial cancer

Ahsen et al. [38] microRNA expression
(Microarray)

weighted
SVM

Independent test set Acc (0.85)

Prediction of brain metastasis in lung
adenocarcinoma

Zhao et al. [39] microRNA expression
(Microarray)

RF Independent test set Acc (0.91)

Predict lymph node metastasis in
stomach cancer

Wu et al.[37] DNA methylation
(Microarray)

RF MCCV Average
AUC (�0.78)

Classify metastatic and primary
tumors of skin cutaneous
melanoma

Bhalla et al.[28] mRNA expression
(RNAseq)

DT, KNN,
RF, LR, RC,
SVM

Independent test set SVM:
Se (0.89), Sp (0.90), Acc (0.89),
MCC (0.73),
AUC (0.95).

microRNA expression
(RNAseq)

SVM:
Se (0. 90), Sp (0.79), Acc (0.88),
MCC (0.66), AUC (0.89).

DNA methylation
(Microarray)

LR:
Se (0.78), Sp (0.71), Acc (0.77),
MCC (0.44), AUC (0.85).

Ensemble of three (mRNA,
microRNA, DNA
methylation)

SVM:
Se (0.86), Sp (0.95),
Acc (0.88), MCC (0.71), AUC
(0.93)

Cross-cancer metastasis signature in
the microRNA-mRNA.

Lee et al.[29] mRNA expression
(RNAseq)

LASSO, RF,
SVM

MCCV RF:
AUC (0.74)

microRNA expression
(RNAseq)

RF:
AUC (0.64)

Shortcuts in the fourth column are: Compound covariate predictor (CCP), random forest (RF), logistic regression (LR), support vector machine (SVM), artificial neural network
(ANN), decision tree (DT), K-nearest neighbor (KNN), ridge classifier (RC), and linear model trained with L1-norm regularization (LASSO). Shortcut in the fifth column are:
Leave-one-out cross-validation (LOOCV), cross-validation (CV), Matthews correlation coefficient (MCC), and Monte Carlo cross-validation (MCCV).

S. Albaradei, M. Thafar, A. Alsaedi et al. Computational and Structural Biotechnology Journal 19 (2021) 5008–5018
samples is smaller than the number of measured features per sam-
ple, such as recursive feature elimination (RFE), support vector
machines with L1-norm regularization (SVM-L1), and lone star
[28,38].

In the embedded methods, the feature selection process is inte-
grated as part of the learning algorithm and occurs during the pre-
diction process (not as a preprocessing step). The qualities of both
the filter and wrapper methods are combined in the embedded
methods. For example, random forest (RF) capitalizes on its own
variable selection process by simultaneously performing feature
selection and prediction. The RF has been used by [39] to select
the most discriminative microRNAs features and predict metasta-
sis for lung adenocarcinoma.

2.3. In silico models developed for metastasis prediction

Most of the metastasis prediction models developed so far
employ a binary classification approach, where the two classes
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included in the study are usually metastatic and non-
metastatic samples. To solve this classification problem, these
models were developed using different ML methods and various
input features. Here, we summarize the studies that used omics-
based features (Table 1) for such metastasis-related binary clas-
sification problems and also focused on a class of ML known as
DL, that we anticipate will improve predictive performance.
These studies were collated based on a Google scholar search
with the query, (metasta*[Title/Abstract] AND (machine learning
OR deep learning), restricted to 2000–2019 and we retrieved
just over 250 articles, of which only 14 articles were relevant
to our focus. Specifically, we focused on works that use omics
data, we exclude works on images, clinicopathologic, radiomics,
or any other data types. Since our focus is only on the work
that predict whether the cancer is in its primary (non-
metastatic) or metastatic state, we also exclude works that pre-
dict the origin of metastatic cancer or to predict the clinical
metastasis time.
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2.3.1. ML models that incorporate omics data as features
The first and most popular omics data type used in metastasis

prediction models is mRNA expression data [33–36,40]. However,
in the last three years, we have seen DNA methylation [37] and
microRNA expression [38,39] data used as features in these metas-
tasis prediction models.

A few research groups [38,39,41] carried out experiments to
obtain the omics data. However, for most studies, the omics data
were obtained from Gene Expression Omnibus (GEO) or The Cancer
Genome Atlas (TCGA). When dealing with such datasets, the gen-
eral workflow is to process the data through standard bioinformat-
ics pipelines for data filtering, pre-processing, and normalization.
Then, differential gene expression is determined using robust sta-
tistical methods; this allows for identifying critical genes associ-
ated with differentiating the metastatic and non-metastatic
samples. The most differentially expressed genes can then be used
by the models to differentiate the metastatic samples from the
non-metastatic ones.

Since specific microRNAs as well as alterations in DNA methyla-
tion levels are recognized hallmarks of human cancers [42–44]
both microRNA and DNA methylation profiles were also recently
examined in the context of metastasis prediction. Now, similar to
mRNAs, microRNAs, and DNA methylation are emerging as power-
ful predictors of metastatic cancer.

All the models use validation techniques to estimate the gener-
alization accuracy of a model on unseen data. The validation tech-
niques are either part of the CV (including MCCV and LOOCV)
category or are independent (external) test sets. Both methods
use a test set (i.e., data to validate the model’s performance). On
the one hand, CV is a technique that involves partitioning the orig-
inal dataset into a training set used to train the model and a test set
used to validate the analysis. It uses multiple train-test splits, and
the estimation of accuracy is averaged over all splits to get the total
effectiveness of the model. On the other hand, using an indepen-
dent test set means testing a model on totally different data than
it was trained on, to provide an unbiased learning performance
estimate. Many works [29,35,37,41] use CV as a validation method.
It allows the model to train on multiple train-test splits, thus indi-
cating how well the model will perform on unseen data. However,
reporting the model’s performance on a completely independent
test set is recommended to provide an unambiguous statistical
validation [28,33,34,36,38–40]. In fact, some scientific journals
provided new guidelines demanding external cohort validation
[45–47]. Also, ML/DL models with higher generalizability are suit-
able for clinical setting use [45].

Additionally, because omics data typically present a high-
dimensional imbalanced characteristic, performance metrics are
fundamental in evaluating the quality of the learning methods
and learned models. The literature defines many different evalua-
tion metric categories. These are the threshold metrics that quan-
tify the classification prediction error (e.g., Acc, PPV, NPV, Sp, Sn,
MCC, and F-score), the ranking methods, and metrics that evaluate
the classifiers based on how effective they are at separating classes
(e.g., AUC). In a nutshell, classification accuracy is almost univer-
sally inappropriate for imbalanced classification. The reason is, a
high accuracy (or low error) is achievable by a no-skill model that
only predicts the majority class. For imbalanced classification, the
F-score is a popular metric. Also, we can combine Sensitivity and
Specificity into a single score that balances both concerns, called
the geometric mean or G-Mean. For more detail, see [48].

2.3.2. ML models that incorporate mRNA data as features
Ye and colleagues [41], in 2003, were the first to use omics data,

specifically mRNA expression data, for metastasis prediction using
compound covariate predictor (CCP). They demonstrated that the
metastasis predictor could distinguish metastasis-free primary
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hepatocellular carcinoma (HCC) from primary HCC that has associ-
ated metastatic lesions, but it could not distinguish between the
primary HCC and its associated metastatic lesions because the gene
expression signatures were too similar. Their results suggest that
one of the lead genes in this signature, osteopontin, is a diagnostic
marker and a potential therapeutic target for metastatic HCC. They
proposed a robust signature model that correctly classified 85% of
the validation sample set.

Since then, ML methods have been developed for metastasis
prediction using specific protein(s), histomorphological, and clini-
copathological data, but they did not include omics data [49,50].
Thus, these methods were biased in terms of the methods not
being developed using complete expression profiles. Nonetheless,
these studies point out characteristics to improve prediction per-
formance, including 1/ increasing the data that can be used as fea-
tures to distinguish between samples, 2/ establishing ‘‘rules’’ that
define how the classifier must use the features, and 3/ considering
various ML methods as they impact the prediction accuracy.

Thus, in 2012, Burton and colleagues [40] compared the perfor-
mance of eight classification methods to predict metastasis in
breast cancer using microarray gene expression data. Classifiers
built include RF, logistic regression (LR), support vector machine
(SVM) with different kernels, artificial neural network (ANN), and
a voting-based classifier. The voting-based classifier combines
the results of the seven classifiers into one voting decision. The
voting-based model has the advantage of reducing the variance
between the different classification models and significantly
increased the model performance when validating the models on
the test dataset from the same platform. However, the RF model,
a voting-like model, proved to be the most robust model when val-
idating a test dataset from the different platforms as shown in
Table 1.

Since then, most classification models developed for metastasis
prediction by many groups were SVM-based. These works
employed microarray-based gene expression data from GEO or
TCGA to predict metastasis of different cancers such as osteosar-
coma [33], cutaneous melanoma [34], and breast cancer [36]. They
employed the SVM-based classifier to classify the samples as meta-
static or non-metastatic and trained and validated the model’s per-
formance on independent datasets. They processed the gene
expression data using the standard procedure of missing value
treatment, background correction, and normalization. They first
used statistical methods to identify the differentially expressed
genes (DEGs). Next, they constructed PPI networks using some of
the available databases such as the Human Protein Reference Data-
base (HPRD), the Database of Interacting Proteins (DIP) or the Bio-
logical General Repository for Interaction Datasets (BioGRID). They
used the networks to calculate BC, which they used to rank genes
because high BC indicates the gene is an essential intermediary in
the regulatory network. The top-ranking genes were included in
the SVM classifier as features. They reported the overall average
Acc of these models on test datasets (shown in Table 1).

Several top-ranking genes in the metastatic osteosarcoma sam-
ples [33] were associated with apoptosis regulation, cell prolifera-
tion, actin cytoskeleton processes, and cancer pathways such as the
TGF-b signaling pathway. Several cancer-related pathways were
also significantly over-represented by the top-ranking genes in
the cutaneous melanoma study [34], including focal adhesion, reg-
ulation of actin cytoskeleton, apoptosis, and cell proliferation. The
study results from [36] suggested that CDK2, CDKN1A, E2F1, and
MYC are potential feature genes in metastatic breast cancer. They
overcame the limitation of data-driven algorithms, which do not
consider any biological information of the component genes as
input, by implementing a condition-specific biological network
approach to select genes that distinguish metastatic melanoma
from primary melanoma.
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During the same timeframe when the SVM-based approaches
were developed, Metri and colleagues [35] also developed a
method to differentiate metastatic melanoma from primary mela-
noma but instead used Adaboost around RF. Their dataset con-
sisted of a training set and two independent test sets. The study
results suggest six genes (KRT16, KIT, ALDH1A1, SPRR3, HSP90AB1,
and TMEM45B) that function in metastatic melanoma processes,
such as phospholipid metabolic process, protein-lipid complex
assembly, regulation of inflammatory response, negative regula-
tion of protein kinase activity, and regulation of the innate immune
response. AlthoughMetri and colleagues [35] considered more bio-
logical information in their feature selection step and showed
promising results using Adaboost around RF, SVM showed superior
results when applied to various feature selection methods. This
shows that SVM is less sensitive to input parameter choices and
reflects the ability of SVM-based approaches to distinguish
between classes in complex datasets.

In the Supplementary Material we further provide the sample
sizes used in all the studies, as well as the total number of features
used in each study and the number of features used by each ML
model to distinguish between samples. For these ML models that
use mRNA data as features (ranging from 62,977 to 13,733 fea-
tures), the number of features used in the model is �1.66% to
0.04% of the total number of features used to develop the models.

2.3.3. ML models that incorporate microRNA and DNA methylation
multi-omics data as features

Similar to mRNAs expression profile, more and more expression
profiles for microRNA and DNA methylation are also becoming
available [51,52]. Thus, a few studies have also used microRNA
and DNA methylation data for metastasis prediction in the last five
years (Table1). Microarray-based microRNA expression profiles
were used to identify crucial metastasis-related microRNAs to pre-
dict metastatic lymph node risk in endometrial cancer [38] and
identify brain metastasis-related microRNAs in lung adenocarci-
noma patients [39].

Ahsen and colleagues [38] designed a unique feature selection
algorithm called lone star (specifically developed to identify a
small number of discriminative features when the number of fea-
tures is more than the number of samples) [38]. The application
of the lone star algorithm resulted in a set of 18 discriminative
microRNAs. Using these 18 microRNAs as input to a weighted
SVM classifier achieved high Acc for independent test datasets
(Acc 0.85; see Table 1). Functional annotation of these microRNAs
revealed about 23 cancer-associated genes targeted by these
microRNAs.

Zhao and colleagues [39] used the standard statistical feature
selection algorithms in the feature selection step. They identified
eight significantly differentially expressed microRNAs between
BM+ (patients with brain metastasis) and BM- (patients with
non-brain metastasis) groups. An RF supervised classification algo-
rithm was then employed for building a predictive model that pin-
pointed three relevant microRNAs (miR-210, miR-214, and miR-
15a) as powerful predictors of brain metastasis. This classifier
achieved an overall Acc of 0.91. Functional annotation revealed
that these three microRNAs target about 2914 protein-coding
genes. Gene ontology and pathway enrichment study of these
protein-coding genes revealed that these microRNAs target genes
mostly associated with metabolic and mitotic cell cycle processes,
and are mainly involved in cancer metastasis-related signaling
pathways.

To use methylation-based molecular markers to predict lymph
node metastasis in stomach cancer, Wu and colleagues [37] pro-
posed an RF classifier using methylation data from TCGA. They per-
formed three preprocessing steps. First, they carried out
differential methylation analysis to extract significantly differenti-
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ating probes between metastatic and non-metastatic samples.
Next, the feature selection technique, minimum redundancy max-
imum relevance (mRMR), was applied to remove redundant fea-
tures. In the final step, they implemented a genetic algorithm-
based method to extract the most relevant probes. A total of 12
methylation probes were finally used as features and fed to an
RF model to classify lymph node metastasis in stomach cancer.
These probes are known to be associated with lymph node
metastasis-related genes such as HOXD1, NMT1, and SEMA3E.
The data was randomly split 100 times for training and testing to
build the model. The model achieved an average area under the
curve (AUC) of �0.78.

Thus far, we have described several studies that use only a sin-
gle type of omics data but, a few recent studies also showed the use
of more than one omics (multi-omics) data as input features.
Bhalla and colleagues [28] used multi-omics data (i.e., mRNA
expression, microRNA expression, and methylation data from
TCGA) with ML to classify metastatic and primary skin cutaneous
melanoma tumors. They compared performance using different
feature selection techniques and different ML methods (decision
tree (DT), K-nearest neighbor (KNN), RF, LR, ridge classifier (RC),
SVM) for individual omics data and multi-omics data. The best per-
forming model using mRNA data was SVM, with 17 features
selected using SVM-L1. The best performing model using microRNA
data was SVM, with 32 features selected using WEKA-FCBF. The
best performing model using DNA methylation data was LR, with
38 features selected using WEKA-FCBF. They also developed an
ensemble learning model wherein mRNA, microRNA, and DNA
methylation were the input features for an SVM. Although the
ensemble model achieved an Acc comparable with using mRNA
data only, it notably achieved the highest specificity (Sp of 0.95)
among all models (see Table 1). This study identified CASP7,
S100A7, C7, KRT14, MMP3, LOC642587, hsa-mir-203b, and hsa-
mir-205 as the genes and microRNAs that are potential critical
genomic features contributing to the oncogenesis of melanoma.
They further suggested CDK14, ESM1, NFATC3, ZNF827, C7orf4, and
ZSWIM7 as novel putative markers for SKCM metastasis.

In another study, Lee and colleagues [29] performed a cross-
cancer integrated analysis using mRNA and microRNA expression
data and developed classifiers to differentiate metastatic samples
and primary tumor samples across 11 cancer types. Top 64, 128,
and 256 features were selected using the student’s t-test. Three
models were then trained (a linear model trained with L1-norm
regularization (LASSO), RF, and SVM) and evaluated across 100
Monte Carlo cross-validation (MCCV). Using only the mRNA
expression data, the RF model with 256 features achieved the high-
est AUC when predicting metastasis (AUC 0.74). Similarly, using
only the microRNA expression, the RF model with 256 features
achieved the highest AUC when predicting metastasis (AUC 0.64).
Then, they integrated the mRNA and microRNA data to model
how well the metastasis-associated microRNA can predict the
metastasis-associated mRNA. Several microRNAs previously linked
to cancer metastasis or progression were identified as critical
genomic features, including miR-301b, miR-423, and miR-1296.
However, they did not develop or provide an ensemble model
using both the mRNA and microRNA expression data as features
to show how this alternative approach may impact the AUC.

In summary, the choice of the ML method varied from study to
study. More comparable studies are needed, i.e., studies that use
more than one classifier and provide multiple accuracy measures,
but for now, it seems SVM is the better performing classifier, fol-
lowed by RF. The current omics-based methods implementing a
system biology’s approach for predicting metastasis is a critical
approach since microRNA and DNA methylation levels affect gene
expression, and therefore should be considered when developing a
model. However, such analysis requires a considerable amount of
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data, and feature selection becomes a complicated process that
hampers model generalizability.
3. Exploring DL-based metastasis prediction models

Improving the models in terms of predictive performance and
model generalizability requires a different approach. DL could be
this approach as it directly captures the nonlinear and complex
relationships of high dimensional or noisy biological data [53–
56], i.e., DL incorporates an automatic feature selection process.
Moreover, the DL approaches applied to different cancer-related
prediction tasks performed better or on par with other ML
approaches that require a feature selection step [57]. Nonetheless,
DL approaches developed to improve the metastasis prediction
task are still few up-to-date.
3.1. DL architecture, training, and models

DL is a class of ML that consists of an input layer, multiple hid-
den (processing) layers, and an output layer. DL is a
representation-learning method that progressively learns multiple
input data [58]. DL is composed of nonlinear modules that trans-
form the previous level’s representation into a higher and more
abstract representation level. With multiple nonlinear layers, the
DL model can learn complex functions that map the input to the
desired output. One compelling advantage of DL methods is that
the levels of representation (features) are learned from the raw
data using a general-purpose learning procedure and are not sub-
jected to the handcrafted feature engineering limitations.

Training a DL network is an optimization problem [58]. The
objective is to minimize the difference between the predicted out-
put values and the real or actual values by minimizing the error
defined by an appropriate loss function. Briefly, an input is forward
propagated until it reaches the output layer, then the error is deter-
mined by comparing the predicted and actual output values using
the loss function. The DL network is trained by calculating the gra-
dient of the loss function and then using a backpropagation algo-
rithm to propagate the error backward, from the output layer to
the input layer. This allows the gradients for the weights to be
computed and then adjusted using gradient methods, such as
Fig. 2. Commonly used DL architectures. A) A multilayer perceptron (MLP) structure tha
structure of the deep belief network (DBN) network (stack of restricted Boltzmann machi
structure of recurrent neural networks (RNN) and the structure after unfolding by time
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stochastic gradient descent (SGD) or other variants such as the
Adam algorithm. The weights being updated after each iteration
allows the desired learning to be achieved.

There are three commonly used DL models: deep neural net-
work (DNN), convolution neural networks (CNN), and recurrent
neural networks (RNN). The DNN represents a fully connected neu-
ral network such as multilayer perceptron (MLP), autoencoder
(AE), and deep belief network (DBN). The architecture of MLP
(Fig. 2A) consists of input, multiple hidden layers, and output lay-
ers. Using the backpropagation technique, MLP continuously
adjusts the weights between two neurons to correctly establish a
network between the output and input layers [59].

The architecture of AE (Fig. 2B) is composed of an encoder layer,
bottleneck (code), and decoder layers [60]. Encoder layers capture
the essential features from the input and produce the coding layer.
On the other hand, the decoder layers use the coding layer to
reconstruct the input data. The most discriminative features auto-
matically learned from the raw data are in the coding layer.
Another variant of AE called denoising autoencoder (DAE) corrupts
the input by adding some noise to force the hidden layers to learn
more generalized, meaningful, and essential features and prevent
them from merely learning the identity function.

DBN (Fig. 2C) is a generative model consisting of stacks of
restricted Boltzmann machines (RBM). An RBM is composed of a
visible layer and a hidden layer with undirected connections
between them. RBM is also a generative model that establishes
the correct relationship between the visible and hidden layers to
efficiently extract the essential features from the original data
[61]. Thus, DBN is an unsupervised approach that learns to proba-
bilistically reconstruct the inputs, while the hidden layer acts as
feature detectors [62].

CNN (Fig. 2D), in general, consists of multiple convolutions
(CONV) and pooling (POOL) followed by fully connected (FC) layers
[63]. The filters used in the CONV layers create feature maps that
indicate the detected features’ locations and strength in the input.
Those filters are automatically learned from the training dataset to
distinguish between the output classes accurately. Local conjunc-
tions of features from the previous layer are also detected during
the CONV layers. The CONV layer is usually followed by a POOL
layer that merges semantically similar features into one, thereby
reducing the dimensionality of representations and creating invari-
t contains multi hidden layers. B) A typical autoencoder (AE) structure. C) The basic
nes (RBM)). D) A simple convolution neural networks (CNN) model structure. (E) The
.



Table 2
Studies that have included deep learning (DL) in several forms in their metastasis prediction workflows.

Problem Statement Study Features used DL approach Accuracy ML approach Accuracy

Identify whether there are lymph node metastases in
colorectal cancer patients

Karabulut & Ibrikci [66] mRNA expression DDBN 0.91 SVM 0.83
RF 0.88
KNN 0.79

Predict the occurrence of metastatic events in breast
cancer patients

Chereda et al. [67] mRNA expression GraphCNN 0.76 RF 0.88
KNN 0.79

Predict if the cancer is in its metastatic state in colorectal
cancer patients

Albaradei et al. [68] DNA methylation CNN 0.96 – –

Abbreviations: Discriminative deep belief network (DDBN), graph convolution neural networks (graph CNN) architecture and convolution neural networks (CNN)
architectures.
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ance to distortions in the input data. The FC layers are the last lay-
ers in CNN that perform the final output. Recently, CNN has been
generalized to work on arbitrarily structured graphs as many rele-
vant real-world datasets come in the form of graphs or networks.
Graph CNN is a promising extension of CNN in non-Euclidean
domains such as graphs [64].

The architecture of RNN (Fig. 2E) allows it to recognize patterns
in sequential data. RNN has loops that allow information to be car-
ried across nodes while reading a sequential input. The critical ele-
ment is the hidden state ‘‘memory”, which captures information
calculated in the previous steps [65].

3.2. DL-based metastasis prediction models

Recently, Karabulut et al. [66], Chereda et al. [67], and Albaradei
et al. [68] proposed DL models to predict the metastasis using
omics data (see Table 2, Fig. 3).

In 2017, Karabulut and colleagues [66] proposed a discrimina-
tive deep belief network (DDBN) to demonstrate the DL approach’s
ability to produce a powerful decision support model using gene
expression data. This study included gene expression profiles of
patient samples with recurrent and non-recurrent laryngeal can-
Fig. 3. The deep learning architectures used to predict metastasis. A) Discriminative de
Graph convolution neural networks (graph CNN) architecture used by (Chereda et al., 201
2019 [68]).
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cer, bladder urothelial cells with and without cancer, as well as col-
orectal cancer with and without lymph node metastasis from the
BioGPS portal [69]. In light of this review, we will only focus on
the colorectal cancer dataset. The proposed DDBN is a DBN with
a discriminative fine-tuning step at the end layer to provide a
supervised approach. The fine-tuning procedure implemented
using a backpropagation algorithm. They implemented two pre-
processing steps 1/ selecting important features using information
gain technique, and 2/ oversampling the minority class using syn-
thetic minority over-sampling technique (SMOTE). With 10-folds
CV, the averaged Acc for predicting the metastasis of the colorectal
cancer samples show that the DL method DDBN outperform sev-
eral ML methods such as SVM, RF, and KNN (Table 2).

Subsequently, Chereda and colleagues [67] developed a DL
model that applied the graph CNN technique by exploiting the
PPI graph as prior knowledge for predicting breast cancer’s metas-
tasis. The study included gene expression data from 10 GEO
microarray datasets. They preprocessed each dataset using the
robust multi-array average (RMA) probe summary algorithm[70],
and then, combined the datasets based on the HG-UI33A array
probes and applied quantile normalization. HPRD was used to con-
struct the PPI network, and gene expression values were mapped
ep belief network (DDBN) architecture used by (Karabulut & Ibrikci, 2017 [66]). B)
9 [67]). C) Convolution neural networks (CNN) architecture used by (Albaradei et al.,
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to the vertices in the network, where edges reflect interactions,
regulation, and signal flow. The resulting network had 207 con-
nected components from which only the most significant compo-
nents with 6888 vertices were used in the graph CNN. The graph
CNN consists of two CONV layers with 32 filters, one POOL layer,
and two FC layers. To show the strength of this proposed DL model,
they compared its performance with several ML models. Using 10-
fold CV, the Acc suggested the DL model outperform several ML
models such as lasso LR, and RF (Table 2). Also, to show the
strength of the graph CNN model, among other DL models, they
further compared it with MLP, which showed less Acc (Acc of
0.74 (±1.84)).

In 2019 Albaradei and colleagues [68] also proposed a DL model
called Deep2Met to predict metastatic colorectal cancer but used
DNA methylation data. The study included 90 metastatic and 211
non-metastatic colorectal cancer DNA methylation profiles from
TCGA. As a preprocessing step, probes with null values were elim-
inated, and the remaining beta values were represented as a 2D
matrix. The proposed Deep2Met model consists of six parallel
CONV layers with horizontal and vertical filters, followed by the
ReLU layer, then a FC layer followed by a softmax layer to classify
cases into metastatic or non-metastatic categories. Deep2Met
model achieved AUC and an average F-scores of 0.97 and 0.95,
respectively.

These initial studies demonstrate that DL metastasis prediction
models usually outperform traditional ML models. However, none
of the current studies have attempted to use DL with high dimen-
sional multi-omics data as yet, the outcome of which would be
interesting to know.
4. Conclusion: limitations and future directions

In this review, we summarized work that applied ML with
omics data as features to predict metastasis. Most of the studies
used gene expression omics data, but the few studies that use
microRNA and DNA methylation data showed high prediction
accuracy. These results suggest these data types have features
essential to the metastasis process and, consequently, the predic-
tion task. However, there is a lack of consistency in the discovered
biomarkers, such as in the three ML-based breast cancer studies
[36,40], which may be a consequence of the differences in profiling
technologies, data processing steps, as well as genetic variation
associated with specific patient populations. Thus, extracting the
relevant features is a critical but difficult task that needs repro-

ducibility [71,72]. Fortunately, modern DL cracks the code for
training stability, generalization, and scale on big data. Conse-
quently, DL is expected to better deal with high dimensional
multi-omics data, and it can extract features directly from the
raw data [73–75]. Thus, recent studies have explored using DL
methods to overcome or limit ML-related challenges.

Initial studies demonstrate DL metastasis prediction models
usually outperform traditional ML models. They used different DL
architectures to build the metastasis prediction models, such as
simple DBN and CNNs. However, none have tested the use of AE
[60]. AE is a powerful DL technique that learns how to compress
and encode data efficiently then learns how to reconstruct the data
back from the reduced encoded representation. AE reduces data
dimensions by ignoring the noise as well as extracting useful and
essential biological features. AE has been successfully used to ana-
lyze high-dimensional gene expression data [76,77], and to inte-
grate heterogeneous data [78,79]. Also, it produced promising
results when identifying multi-omics features linked to the differ-
ential survival of HCC patients [80]. Besides AE, exploring other DL
methods such as DNN and RNN [59] may also yield promising
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results. Furthermore, understanding the various models’ advan-
tages should facilitate combining them to build more powerful
models [74].

Even with the advantage of DL-based metastasis predictions, it
faces several challenges. For example, DL needs more data than tra-
ditional ML models to avoid overfitting and propose a more generic
prediction model. However, using some new techniques such as
zero-shot learning [81] and few-shot learning [82] limits this
obstacle to some extent. Other options include using data augmen-
tation techniques to increase data volume/size [83] and generative
adversarial networks (GANs) [84] that generate artificial data
based on the original dataset [85]. Also, in terms of the imbalance
in available omics data, methods such as resampling and cost-
sensitive learning [86] can be used. Nonetheless, more extensive
and more diverse training sets are generally necessary to obtain
models that can generalize well to a broader range.

Another critical challenge is the complexity of metastasis
events itself, as several interrelated biological events drive metas-
tasis, and many factors are involved. That is, omics features such as
mRNA expression, microRNA expression, and DNA methylation
influence each other; they are not independent variables. Thus,
when these features are considered independent features when
building classifiers, crucial interdependence information that
should increase prediction accuracy might be lost. Therefore, it is
challenging but essential to encode the interactome behavior while
building the model. Another challenge is working with instances
where the number of features is extensively larger than the avail-
able number of samples for model training and validation.
Nonetheless, DL can handle a large number of features; thus, we
believe that the application of DL-based approaches in combina-
tion with multi-omics data is the future direction in this field.
Lastly, since there are few datasets available in the public domain,
especially metastasis-related ones, more experiments need to be
conducted across different cancer types to create a pan-cancer
metastasis database, which can support metastasis prediction
research.

To make the DL model practically useful, one has to show the
resulting overall model’s biology-related meaning. A simple way
to interpret a CNN model is to visualize the filters as they might
give a sense of what local features the DL has detected. Another
way to determine feature importance in a DL model is to perturb
inputs and observe its impact on the DL output. For example, given
the gene expression profile of a sample, some genes can be system-
atically varied while the rest of the genes remain fixed, then the
changes in the output of DL can be monitored. Several
perturbation-based methods have been proposed to make DL mod-
els more interpretable, such as saliency maps [87]. Despite the
simplicity of these methods, they are computationally expensive,
as, for each perturbed input, a separate forward propagation
through the DL is required to compute the output. Thus, a
backpropagation-based method has been proposed to interpret
DL models efficiently. In such a method, a backward propagation
from the output layer is performed using gradients to calculate
the feature’s importance in the input layer [88]. Although DL mod-
els are still far from being clinically applicable, they are promising
artificial intelligence tools that could support precision treatments
in clinics.

The safe and timely translation of AI research into clinically val-
idated and appropriately regulated systems can benefit everyone
[89]. But rigorous research and tackling challenges and biases
inherent in ML/DL models are required before we can realize the
substantial impact of these models’ unique contributions to clinical
decision-making. Also, we need uniformity in guidelines [89] for
required randomized control trials evaluating the performance of
new ML/DL models in real-life settings. Nevertheless, working



S. Albaradei, M. Thafar, A. Alsaedi et al. Computational and Structural Biotechnology Journal 19 (2021) 5008–5018
through these challenges, we will overcome existing barriers, and
ML/DL models may eventually meet their expectations to integrate
into clinical decision-making and transform the data-driven evolu-
tion of precision medicine.
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