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This paper presents an improved Discrete Salp Swarm Algorithm based on the

Ant Colony System (DSSACS). Firstly, we use the Ant Colony System (ACS) to

optimize the initialization of the salp colony and discretize the algorithm, then

use the crossover operator and mutation operator to simulate the foraging

behavior of the followers in the salp colony. We tested DSSACS with several

algorithms on the TSP dataset. For TSP files of different sizes, the error of

DSSACS is generally between 0.78% and 2.95%, while other algorithms are

generally higher than 2.03%, or even 6.43%. The experiments show that our

algorithm has a faster convergence speed, better positive feedbackmechanism,

and higher accuracy. We also apply the new algorithm for the Wireless

rechargeable sensor network (WRSN) problem. For the selection of the

optimal path, the path selected by DSSACS is always about 20% shorter than

the path selected by ACS. Results show that DSSACS has obvious advantages

over other algorithms in MCV’s multi-path planning and saves more time and

economic cost than other swarm intelligence algorithms in the wireless

rechargeable sensor network.
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1 Introduction

In recent years, meta-heuristic techniques have solved many problems with the rapid

development of meta-heuristic algorithms (Zhang et al., 2018). There are two main

reasons whymeta-heuristic algorithms can be competitive with practical problems such as

single-objective and multi-objective optimization problems (Cui et al., 2021a). Firstly,

people used mathematical methods to solve practical problems before the proposed meta-

heuristic optimization technology. However, practical issues are usually continuous or

discrete. Some issues may also have certain constraints (Abbassi et al., 2019). Secondly, a

new method is urgently being created because the determinism of traditional

mathematical methods often leads to inefficiencies in solving practical problems, then

the metaheuristic algorithm was invented which shows advantages of flexibility and

universality faced with many large-scale multi-modal, discontinuous, and non-
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differentiable issues in the real world, thus can avoid falling into

local optimum and can be widely used and applied to various

scientific problems (Mirjalili and Lewis, 2016).

Meta-heuristic algorithms can be divided into two categories.

One is the evolutionary algorithm such as the Genetic Algorithm

(GA) (Chatterjee et al., 1996), one of many people’s most

fundamental algorithms and is considered an evolutionary

algorithm. GA uses the newly generated population to replace

the old population to accomplish the evolution of the population.

The evolutionary algorithm also includes Memetic Algorithm

(MA) (Pablo, 1989), Multi-Objective Evolutionary Algorithm

(MOEA) (Deb et al., 2002), etc. An evolutionary algorithm is a

mature global optimization (Nedjah et al., 2021) method with

high robustness and is widely applicable, which has the

characteristics of self-organization, self-adaptation, and self-

learning. It can effectively deal with complex problems that

are difficult to be solved by traditional optimization

algorithms (such as NP-hard optimization problems (Zhang

et al., 2022)) without being limited by the characteristics of

the issues. The other is the swarm intelligence algorithm.

Scientists have studied the group behavior of organisms in

nature by using bionic technology to simulate the social

behavior of biological populations. As a result, they found

that the simulated algorithm can solve practical problems,

such as the Ant colony algorithm (Ant Colony Optimization,

ACO) (Dorigo and Di Caro, 1999), which is created by studying

the cooperative foraging behavior of ants, and Cuckoo search

(CS), a Swarm intelligence algorithm that can solve multi-

objective optimization problems (Cui et al., 2019a).

The swarm intelligence algorithm is simple to be

implemented with no centralized control constraints (Cui

et al., 2019b). And it will not be affected by individual

failures, which can influence the solution of the entire

problem. Swarm intelligence algorithms are generally used for

two purposes. One is to solve persistent problems, and the other

is to solve discrete problems. The swarm intelligence algorithms

that are used to solve continuous problems include Artificial Bee

Colony (ABC) (Karaboga and Basturk, 2008), Whale

Optimization Algorithm (WOA) (Mafarja and Mirjalili, 2017),

Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014;

Sivaramakrishnan et al., 2020), Salp Swarm Algorithm (SSA)

(Mirjalili et al., 2017), etc. These algorithms are generally used for

the optimization of specific functions. The standard swarm

intelligence algorithms for solving discrete problems include

the ant colony algorithm (ACO) and discrete particle swarm

algorithm (PSO). These algorithms are used to solve

combinatorial optimization problems such as TSP (Traveling

Salesman Problem) and vehicle routing problems (VRP).

Swarm intelligence algorithms have excellent applicability

and plasticity. The improved swarm intelligence algorithm will

perform better. For example, if quantum computing is

introduced into the monarch butterfly optimization (MBO),

the monarch butterfly can find a shorter path (Yi et al., 2020).

Scientists have discovered that many swarm intelligence

algorithms can solve persistent problems and have the

potential to solve discrete problems. Particle Swarm

Optimization (PSO) (Eberhart and Kennedy, 1995) is an

algorithm created by imitating the social behavior of geese,

and it has been proved its excellent role in the field of

continuous problems for a long time ago. Its excellent

applicability is often improved in other fields such as

medicine (Zemmal et al., 2021). TSP (Traveling Salesman

Problem) is a classic combinatorial optimization problem with

the characteristic of NP-hard and discrete (Bellman, 1962;

Bellmore and Nemhauser, 1968). In optimizing the outlier

scores,Sharon Femi and Ganesh Vaidyanathan. (2022) used

chicken swarm optimization (CSO) to increase the deviation

between the outliers and inliers according to the chicken

competition. Wang et al. (2003) designed a discrete particle

swarm optimization algorithm with a faster convergence speed

using exchange operators and exchange sequences (Shi et al.,

2007). Fei et al. (2014) improved the Artificial Fish Swarm

Algorithm (AFSA) created by Li, which was used to research

TSP problems in faster early convergence speed and quicker local

optimum found.

The research in this paper focuses on discretization

improvement and optimization of the salp swarm algorithm

(SSA). SSA is a new swarm intelligence algorithm proposed

by Mirjalili et al. (2017), based on the swarm foraging

behavior of salps in the ocean. tested their algorithm in

single-objective and multi-objective optimization problems,

and the salp swarm algorithm showed high convergence and

strong searchability. More importantly, for high-dimensional

data, SSA also outperforms (Cui et al., 2021b). In addition, it

is also suitable for the application of wings and ship propellers. At

present, SSA is applied to various cases and problems, such as

workshop scheduling problems (Liu et al., 2022), wireless sensor

network (WSN) positioning problems (Kanoosh et al., 2019),

grid distributed power optimization problems (Pantoja and

Quijano, 2011), and multi-level threshold Image segmentation

problems (Abualigah et al., 2022) et al. Our experiments show

that the unique chain structure of SSA has a positive effect on

improving the convergence speed and accuracy of the algorithm,

and SSA is easy to be transformed, and the

transformed algorithm has great advantages in solving discrete

problems.

Moreover, SSA has excellent advantages in optimizing single,

multi-modal, and composite benchmark functions. However, the

salp swarm algorithm also has shortcomings (Faris et al., 2018).

The salp swarm algorithm has low search accuracy and slow

convergence speed and quickly falls into the local optimum.

Because the initial population of the salp swarm algorithm is

randomly formed, there is a lack of correlation between the

populations and the overall lack of purpose. Therefore, the

convergence speed and stability in the early search stage are

not brilliant.
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This paper proposes an improved salp swarm discrete

algorithm based on the ant colony system (DSSACS). Firstly,

the crossover and mutation operators are introduced to make

SSA suitable for discrete problems. The pheromone matrix is

used to initialize the salp population to make the leaders more

purposeful and improve the relevance of leaders and followers.

The ant colony system is so mature that many algorithms

reference it (Deng et al., 2020; Zhang et al., 2020). Moreover,

it can promote early search efficiency. DSSACS has a faster

convergence speed and higher solution accuracy compared

with ACO. The new algorithm is suitable for discrete

problems, and its efficiency is improved significantly. We

apply the improved algorithm in TSP problems and get an

efficient result. (DSSACS is superior to other swarm

intelligence algorithms in terms of stability and convergence

speed. In TSP datasets with different numbers of cities, DSSACS

has better performance than other algorithms).

However, the effectiveness of an algorithm in solving a set of

problems does not guarantee its success in a different stage of the

issue. Consequently, we apply the improved algorithm in wireless

rechargeable sensor networks. The point of wireless rechargeable

sensor networks (Fu et al., 2016) is a new scientific research topic.

It originated from a technology proposed by Kurs et al. (2007).

The main content is magnetic resonance coupling technology to

achieve remote contactless charging, wireless charging. It is

necessary to have a wireless charging device to charge the

wireless sensor remotely (Cheon et al., 2011) in order to make

the wireless sensor network running permanently or have a

longer life cycle. Xie et al. (2012) found that if a wireless

charging vehicle (WCV) is used to assess the wireless sensor

network, after a while, the wireless rechargeable sensor network

will form a dynamic balance, which keeps the WRSN in the

running state forever. Research on this goes far beyond that.

Scientists began to study the mathematical model of WRSN in

the case of multiple charging vehicles or mobile chargers,

constrain the capacity or the rate of MCs (Dai et al., 2014;

Shu et al., 2016), plan the paths of various MCs, and obtain a

scheme with the minimummoving distance of multiple MCs (Xu

et al., 2014). Swarm intelligence algorithms also have made

extraordinary contributions in this field. The improved firefly

algorithm (IFA) is a swarm intelligence algorithm. Sun et al.

(2017), Yang et al. (2018) used IFA to deploy the wireless

charging nodes (WCNs) of the WRSN reasonably, then made

the efficiency and the Coverage of is maximized at the same time.

(Chen and Jiang, 2016) applied the particle swarm algorithm

(PSO) to the deployment of chargers in WRSN. They optimized

the swarm intelligence into the charger’s location and even the

direction of the antenna. Lyu et al. (2019) proposed a hybrid

particle swarm optimization genetic algorithm (HPSOGA), and

they used the limited energy of the charging device as a

constraint. The improved swarm intelligence algorithm was

used to ensure the periodic change of charging. Feng et al.

(2020) used newborn particle swarm optimization (NPSO) to

add nascent particles to the swarm to optimize the charging

scheduling of WRSN. Finally, they found that NPSO improved

energy utilization and reduced the mortality of nodes. It can be

seen that the swarm intelligence algorithm plays an essential role

in the study of the WRSN problem. However, few people apply

the swarm intelligence algorithm to MCV charging path

planning in WRSN. Generally speaking, good charging path

planning can primarily reduce the cost of time and money.

Therefore, this paper studied a WRSN mathematical model

with multiple traveling salesman problems (MTSP) in the case

of numerous MC/MCV and used DSSACS for optimization.

The structure of this paper is as follows: In Section 2, the basic

concepts of the TSP problem, MTSP problem, and WRSN

problem are described, the WRSN model is established, and

the problems and calculation formula we need to solve are

described. In Section 3, we describe the idea of improving the

salp swarm algorithm (SSA), propose a new algorithm——the

ant-colony-system-based salp discrete optimization algorithm,

and explain the parameter selection for our algorithm to solve

NP-hard problems. In Section 4, we conducted experiments.

Firstly, we applied DSSACS to the WRSN problem to obtain the

results and compared it with other algorithms. Then we reached

the DSSACS algorithmwith different algorithms onmultiple TSP

problems. Section V is the conclusion of our work.

2 Problem description

We established the mathematical model of WRSN in 2.1,

introduced the concept of MTSP in section 2.2.

2.1 Wireless rechargeable sensor network
model

WRSN model is a mathematical model based on the two-

dimensional plane. WRSN consists of a fixed transmission

station (BS), wireless rechargeable sensors, and n mobile

charging vehicles (MCVS). The base station does not move

and exchanges data with wireless sensors—the base station is

typically located in the general center of a wireless rechargeable

network. If one of the wireless sensors fails or the power level falls

below the sensor’s minimum threshold, the entire WRSN will

fail. Wireless sensors need to be periodically charged using a

mobile charger (MC) (Liang et al., 2014) to make WRSN

permanent. The most common MC is MCV. MCV starts

from BS and successfully captures multiple wireless sensor

nodes in a charging cycle. After completing the charging task,

MCV returns to BS for its charging. MCVs will not interfere with

each other during their own charge cycle. Multiple MCVS

working together on charging commissions can turn the

entire process into an MTSP problem. The WRSN charging

problem can be represented in Figure 1. The MTSP is
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meaningless if there are no constraints for multi-MCV charging

WRSN networks. Moreover, only the WRSN model with

constraints can approach the problem (Pan and Wang, 2006).

This paper studies specific power consumption rates and the total

battery capacity of the wireless sensors in WRSN. Each MCV is

assigned charging tasks as evenly as possible to calculate the

absolute minimum operating distance after completing a cycle

task to minimize the maximum battery capacity of the sensor in

the network.

Suppose all wireless sensor nodes S1、S2、S3 · · · Sn. If an
MCV is used to charge all wireless sensor nodes, then a charging

cycle is defined as BS → S1 → S2 → S3 → · · ·→ Sn → BS,

equivalent to a TSP problem of n+1 nodes. However, there is

continuous energy consumption, and the energy consumption

and minimum capacity of wireless sensors need to be calculated

in the mathematical model of WRSN. The multi-mcv charging

problem can be regarded as an extension of the single MCV

charging problem. Each MCV not only needs to complete its

charging cycle but also needs to satisfy ∑m
i
ni � n(i � 1, 2, . . . , m),

where m represents the number of MCV and ni represents the
number of sensor nodes required to charge the ith MCV.

We first deal with the case that a single MCV charges WRSN.

It can be simply seen as a TSP problem. At a given speed, the

charging cycle and the running distance of MCV have the

following relationship:

tNi � DNi

R − Ui
(1.1)

DNi � Ui*⎛⎝T0 + ∑n
j�n+1

tN−1 +∑i−1
j�0

tN,j
⎞⎠.i � 1, 2, 3,/, n − 1 (1.2)

tNi � DNn

R − Un
(1.3)

DNn � Ui*⎛⎝T0 +∑n−1
j�1

tN,j
⎞⎠.i � 1, 2, 3, . . . , n − 1 (1.4)

Where tNi(i � 0, 1, 2, · · ·, n) represents the charging time

required to charge the ith wireless sensor in the N th cycle,

and DNi(i � 0, 1, 2, · · ·, n) represents the electric charge required

to charge the ith sensor in the N th cycle. Ui(i � 0, 1, 2, · · ·, n) is
the specific power consumption rate of the ith sensor; R is the

fixed charging rate of MCV; T0 is the total time consumed by

MCV when moving in the shortest path. After the N th charging

cycle, the whole WRSN system tends to be stable, and finally, the

minimum bearing capacity of each sensor tends to a constant

value. Set the minimum battery threshold of each sensor to w. If

the threshold is lower than w, the sensor will stop working

immediately. After reaching the steady-state, the battery capacity

of each sensor is set as Wi, and the MCV will dock at the base

station for t0 time after each charging cycle. Assume that when

the charging car just reaches a wireless sensor, the remaining

battery capacity of the wireless sensor is just equal to the

minimum threshold, so there are two formulas:

Wi � w + Ui ·⎛⎝∑n
i�1
ti − ti + td⎞⎠ (1.5)

Wi � w + (R − Ui) · ti (1.6)

According to Eqs 1.5,1.6.

Wi � w + Ui(T0 + t0)(R − Ui)
R − ∑n

j�1Ui
(1.7)

It can be seen that when the whole WRSN system reaches the

steady state, the maximum battery capacity in the sensor network

can be calculated at max
1≤i≤n

Wi.The TSP problem becomes anMTSP

problem in the case of multiple MCVS. In this paper, the

DSSACS algorithm is used to optimize m charging paths so

that the distance of all charging paths and ssum � s1 + s2 + · · · +
sm is minimum, and the maximum battery capacity of theWRSN

network in this state is obtained.

2.2 Multi-travel salesman problem

Traveling Salesman Problem (TSP) is the most typed

problem in combinatorial optimization. TSP refers to making

the shortest. Total distance when the salesman starts from the

starting point to sell goods in all cities and finally back to the

starting point. This problem is an entirely undirected graph with

weight, in which a Hamilton cycle with the lowest weight is

found. Let G � (V, E), V � {1, 2, · ··, i} represent the

coordinates of a total of i cities, E represents the set of routes

between cities, and a weight djk(j, k ∈ i, j ≠ k) expresses the

distance between two cities. Obviously, a minimum Hamiltonian

loop x is required, where x ∈ i.

Dmin � ∑k−1
j�1

dxjxj+1 + dxkx1 (1.8)

To meet all kinds of specific requirements, put forward the

multi-travel salesman problem (MTSP). MTSP is a particular

case of TSP, is the extension and extension of TSP. The MTSP

FIGURE 1
The Schematic diagram of WRSN.
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problem can be expressed as follows: m salesmen are going to n

cities to sell their products. They start from the same starting

point and return to the same starting point at the end of a travel

cycle. The goal is to find the minimum sum of the distances

traveled by all the salesmen. It can be expressed as follows:

Min∑m
i�1
Dmin,i (1.9)

First of all, it is the combination of multiple TSP problems

and requires a variety of constraints, otherwise, the results

obtained are not practical. Secondly, MTSP problems have

high complexity, so we use the DSSACS algorithm to solve

them. Experiments show that DSSACS have significant

advantages in MTSP optimization.

3 Algorithm improvement

In this sections, We established the principle of the salp

swarm algorithm in 3.1, introduced Ant Colony System in

Section 3.2, and introduced the improved algorithm DSSACS

in Section 3.3.

3.1 The principle of the salp swarm
algorithm

The Salp Swarm Algorithm is a brand algorithm proposed by

Mirjalili et al. (2017). The Algorithm simulates the social behavior

of salps during foraging. Mirjalili divided salps into two groups,

leaders and followers. As we all know, different from other

biological groups, the salps group forms a chain when foraging

for food, the salps are connected end to end, and the salps in the

first half of the chain, we call them leaders, they are responsible for

finding food sources and guiding the salps in the back. The

remaining salps are defined as followers. The followers follow

closely, and each follower follows the previous follower or leader,

so a chain structure is simulated. The Salp Swarm Algorithm

searches in an n-dimensional search space, and each salp stores the

search results in an n-dimensional vector, denoted as X.

Xi �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1
1 x1

2 . . . x1
d

x2
1 x2

2 . . . x2
d

..

. ..
.

. . .
xn
1 xn

2 . . . xn
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The position update formula for the leader is as follows:

x1
j �

⎧⎨⎩ Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0
Fj + c1((ubj − lbj)c2 + lbj) c3 ≤ 0

(2.1)

Eq. 2.1 represents the position update formula of the salps

leader in the j th dimension. In the formula, x1
j represents the

position of the salps in the frontmost place. A leader needs to

track the food source Fj (the location coordinates of the food

source), ubj represents the upper bound under this dimension,

and lbj represents the lower bound. These two parameters specify

the search range of the salp group. c1 and c2 are two random

numbers in the range [0, 1] that constrain the leader’s actions to

prevent getting stuck in local solutions. c1 is a critical parameter.

Its formula is as follows:

c1 � 2e
−(4t

T)2
(2.2)

In the formula, t represents the current number of iterations,

T represents the total number of iterations, and e is a constant. It

can be seen that c1 controls the search process of the leader,

focusing on exploration in the early stage of the search and more

on local development in the later stage of the search.

The follower’s position update formula utilizes Newton’s

kinematics formula, which is as follows:

xi
j �

1
2
(xi

j + xi−1
j ) (2.3)

In the formula, i> 1, i represents the movement mode of the

salps in the back, that is, moving towards the front salps. In the

actual optimization of continuous problems, the location of the

food source is unknown, so we use the current optimal solution

to replace the food source, which solves the issue of the food

source and improves the search range of SSA. The whole process

of the SSA algorithm is described in algorithm.

Algorithm 1. 1: initialize population and define ubj and lbj

The SSA has many advantages in solving continuous

problems. The SSA is a swarm intelligence algorithm that

constantly develops and uses space and first has a high space

utilization rate. It can effectively avoid falling into an optimal

local solution, partly due to the delicate design of the coefficient

c1. However, the search accuracy of SSA is not high, the

population initialization is too random, and the initial

correlation between populations is lacking, resulting in low

efficiency. Moreover, using SSA to solve discrete problems is
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what we are eager to achieve. Can we use SSA to solve continuous

problems? It is the leading research content of this paper.

3.2 Discrete Salp Swarm Algorithm based
on the Ant Colony System

In the TSP problem, the ant colony system has a mature system.

The ants are randomly assigned to the city initially, and the ants

choose the next city according to the pheromone probability on the

road. The more the ants’ walkthrough, the more pheromone

accumulates. If there are more ants, the probability that the

following ants will choose this path is higher than others. Under

this positive feedbackmechanism, the shortest route will be traversed

by more and more ants (Yang et al., 2008). After studying the path

planning of the ant colony system, it is found that ACS has some

inspiration for the population initialization of SSA. The specific

process of the ant colony algorithm is described below.

There are n cities, and a distance matrixD is given, whereDij

represents the distance from the i th city to the j th city, as the

weight in G � (V, E). When ant k chooses city i, it will all travel

to city j. There is a probability selection formula:

pk
ij �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[τ ij]α · [ηij]β∑

s∈allowedk
[τ is]α · [ηis]β

0 , otherwise

, j ∈ allowedk (2.4)

Where τij represents the pheromone concentration between

cities i and j, and correspondingly, α is used as an index to

describe the importance of pheromone concentration to the ant

colony. Similarly, ηij represents the visibility between cities i and

j. Its value is 1/Dij, β is used as an index to describe the

importance of the distance between cities to the ant colony,

and finally, allowedk represents the city that has not been

traversed in the gather.

Obviously, an ant traveled all the cities and formed a critical

path after n times probability selections. More importantly, ants

will leave pheromone on the path, and pheromone also has

volatilization. Then there are the following formulas:

τ ij(t + 1) � ρ · τ ij(t) + Δτ ij (2.5)

Δτ ij � ∑l
k�1

Δτkij (2.6)

Δτkij �
⎧⎪⎪⎨⎪⎪⎩

Q

Lk
, if antk traveled on edge(i, j)
0, otherwise

(2.7)

It can be seen from the formula that the concentration of

pheromone left by the ants on the path is proportional to Q and

inversely proportional to Lk, where Lk is the actual distance

traveled by the ants after one traversal. The pheromone of ants

volatilizes according to the volatilization coefficient ρ.

Although many algorithms can perform approximate solutions

in solving NP-Hard problems, there are generally problems of low

search efficiency and easy to fall into local optimal solutions

(Mohan and Remya, 2014; Saenphon et al., 2019). This paper

improved the salp swarm group algorithm for the first time and

applied it to the resolution of discrete problems. Therefore, in the

next section, we propose a novel SSA to solve the MTSP problem.

First, initialize the population of s salps, and use the leaders of

the salps to imitate the ants for path selection. If the MTSP has m

traveling salesman and n cities, then it is similar to that each ant

starts from the starting point, passes through a qualified number of

cities, and then returns to the starting point as the path of the first

traveling salesman, and then starts the next time in turn. Travel until

m trips are completed. Currently, each of the salps stores m

segments of paths, and each path’s start and endpoints are the

same. Here we use a new adaptive coefficient to define the ant

colony’s pheromone heuristic factor, use the roulette wheel to choose

the next city the ants go to, and finally leave the pheromone

volatilization coefficient according to the length of the journey

(Lloyd and Amos, 2017). Pheromones. The reason for using the

ant colony system to initialize the salp group is to strengthen the

correlation between the salp groups so that the salp group has a vital

purpose in the early stage of the algorithm, which can not only

improve the search efficiency of the algorithm but also avoid falling

into a locally optimal solution. The second step is to calculate the

fitness value of all salps, which is expressed as the total length of the

total m-segment travel in the MTSP problem, and sort the salp

population according to the calculated fitness value so that a chain

structure is formed.We know that in The Salp SwarmAlgorithm, the

follower will have a process of moving forward to a follower in each

iteration, so in our DSSACS algorithm, after sorting, the salp

population is behind s/2. Each only moves toward the salps in

front of them. Here, the movement is not a concrete quantified

displacement in a continuous problem but a discrete abstract motion

towards the preceding salps. Here, it is necessary to encode the path

stored by the salps first, cross the two encoded salps, and decode and

calculate the fitness value to determine the trade-off for this move. In

this way, the salps in the region with low fitness value can be

optimized, and the overall convergence speed of the algorithm can

be improved. Finally, we added a mutation operator suitable for

MTSP to the algorithm, which improved the algorithm’s search range

and development depth. Below we will explain several concepts, and

parameter information will also be given in the following table.

The salp colony uses equations 2.4 to (2.7) to perform probability

selection and pheromone matrix update, similar to the ant colony

system. The more important thing is that the pheromone heuristic

factor α is no longer a constant. We define it as follows:

α � ε · et
T (2.8)

DSSACS focuses more on exploring the search space in the

early iteration stage and not sticking to local optimization; in the

later stage of the algorithm, the salps colony pays more attention

to local development and mining the optimal solution.
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When calculating the transition probability in 3.3.2, it is

assumed that the probability of ant k choosing other cities in

city i is p(xj)(j ≠ i, j ∈ allowedk), and the number of

untraveled cities is n. The probability of choosing j th

cities is calculated like this:

Pj �
p(xj)∑n
x�0p(xj) (2.9)

PPj � ∑i
j�0
Pj i � 1, 2, 3, . . . , n (2.10)

The roulette will rotate n times, and a random number ψ∈ (0,
1) is generated each time. When ψ satisfies the following formula,

city j will be selected.

PPj−1 ≤ψ <PPj (2.11)

Where the number of cities is n � 9, and the number of traveling

salesmen ism � 3 in the case. Assuming that the salp k completed

an MTSP traversal, it can be encoded as:

Xk �
⎧⎪⎨⎪⎩ (0 1 4 7 0)

(0 2 5 8 0)
(0 3 6 9 0)

(2.12)

0 represents the starting point, and the rest of the cities should

satisfy ∑m
i ni(i � 1, 2, . . . , m).

If the coordinates of two cities areDi � (xi, yi), Dj � (xj, yj),
the distance between them is calculated by the formula:

Dij �
�������������������(xi − xj)2 + (yi − yj)22

√
(2.13)

The calculatedDij(i, j � 1, 2, 3, · · · , n ‖ i ≠ j) will be stored
in the matrix D. For a sequence x of length n, their overall

distance:

Distance � ∑n−1
i

Dxi,xi+1 (2.14)

The fitness of the path stored by a salp is calculated by Eqs

1.8, 1.9. The smaller the fitness value, the better the effect.

First, the operator will re-encode the path information stored

by the followers. For this salp as represented by Eq. 2.12, its path

will be re-integrated as:

Xp
k � ( 1 4 7 2 5 8 3 6 9 ) (2.15)

After sorting, the salps in the second half will be crossed with

the previously coded salps, assuming that the two salps are A and

B, as follows:

A � (1 4 7 2 5 8 3 6 9)
B � (1 5 9 3 6 7 4 2 8)

At this time, two random numbers r1, r2(r1 < r2) are used to

represent the crossed area. If the fitness of salps A is lower, then

used A as a destination, and its randomly selected area does not

change before and after the crossover. For example, the final

generated city sequence frame is:

after � (p p p ‖ 2 5 8 3 ‖ p p)

According to the rules of cross-transformation, B, the

origination , its sequence numbers that not in

destination[r1, r2] are inserted into after, and the updated

after is:

after � (1 9 6 ‖ 2 5 8 3 ‖ 7 4 )

Every crossover will generate several new sequences, and

each sequence will be decoded as (2.12), and use the fitness

calculation method of 3.3.5 to compare the fitness. If the effect of

the salps after moving is better than before, then this movement

will be preserved.

In this paper, the mutation operator is added at the end of the

algorithm, improving the search space and preventing falling into

the local optimum. First, choose a salp, such as the k th salp in

(2.12). For paths with m branches, each branch will use the

mutation operation. When starting, randomly generate two

numbers a, b(a< b), when there are

Distancea,a+1 +Distanceb,b+1 � Distancea,b +Distancea+1,b+1
(2.16)

Then flip x[a + 1, b + 1] in the single journey sequence x. The
reason for this operation is to remove some intersections in the final

image and improve the local exploration ability of the algorithm.

Algorithm 2. initialize population and define ubj and lbj
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4 The experiment

The experiment environment is as follows: The operating

system is Windows 11, CPU is AMD Ryzen 7 4700U and

Inter I7-10700, memory is 16 GB. In order to test our

algorithm DSSACS, we compared multiple data sets and

algorithms from the TSPLIB database (HTTP://www.iwr.

Uni-heidelberg.de/groups/comopt/software/TSPLIB95),

and the results show that our algorithm has better

performance.

We compared DSSACS with other algorithms, including

genetic algorithm (GA), Ant colony algorithm (ACO), Min-

Max Ant System (MMAS) (Yelmewad et al., 2019), GA-PSO-

ACO (Deng et al., 2012), Tabu Search algorithm,ACO-ABC

algorithm (Gündüz et al., 2015), Fast Opposite Gradient

Search with Ant Colony Optimization (FOGS-ACO)

algorithm (Saenphon et al., 2014), Discrete Spider Monkey

Optimization (DSMO) (Akhand et al., 2020). For all TSP

problems, Euclidean distance is used to quantify the effect of

the algorithm. We considered the following TSP issues:

Dantzig42, Att48, Eil51, Berlin52, St70, Eil76, Rat99, Rd100,

etc. Part of the experimental data came from the report of

Thirachit Saenphon et al. (2014), and part of the data came

from the results of our operation. In terms of the gap between the

final solution and the optimal value and algorithm convergence

performance over time, DSSACS has obvious advantages and fast

convergence speed. In addition to the performance standards of

the calibration algorithm proposed in (4.4) and (4.5), a function

designed based on the chi-square calibration idea -- Average

deviation Rate (AVR) is also proposed in this section. Calculating

the formula for AVR � |Saverage−Smin

Smin
| × 100%, AVR is smaller. The

algorithm has a greater probability reaches its optimal solution.

For the TSP problem, our given parameters are given in Table 1.

Firstly, our algorithm finds the optimal path for handling

TSP problems, including Att48, Eil51, Berlin52, St70, Eil76, and

Rd100. In Figure 2, we describe the optimal path graph searched

by SDACS with enough iterations, and the serial number of cities

is given in the Figure. DSSACS can find the optimal path in most

TSP problems by our algorithm. Our algorithm can obtain the

approximate optimal path, indicating that it has strong

applicability and computing power in different TSP problems.

In Figures 3–8, we draw the operation diagram of DSSACS

together with ACO, GA, and MMAS. These figures depict the

change of Saverage as the maximum number of iterations of Steps

increases. All data are averaged for ten times. We apply these

algorithms to the TSP problems of Dantzig42, Eil51, Berlin52,

Att48, St70, and Eil76.

The average variation curves of optimal solutions obtained by

the four algorithms in the process of iteration can be seen. The

decline of DSSACS is more obvious than ACO, GA, and MMAS,

and the convergence rate is faster. In the early stage, the average

value of DSSACS is lower than the other three functions, and

with the increase in step size, the average value of DSSACS is also

lower than ACO, GA, and MMAS. Compared with the other

three algorithms, DSSACS has a faster convergence speed and

higher solution quality, and a more excellent positive feedback

mechanism. Compared with other ant colony algorithms, in the

change of the maximum number of iterations, the optimal

solution can always be 5%–6% lower than them, and

compared with the genetic algorithm, this value can reach

15%–20%. DSSACS had a much higher search accuracy than

other swarm intelligence algorithms. In our subsequent

experiments, the algorithms corresponding to each TSP

problem, such as DSSACS, GA, GA-PSO-ACO, etc., were

averaged for 30 experiments to ensure the reliability of

experimental data and their maximum iterations were set as

500 times each time. Table 2 summarizes the performance of

each algorithm on the TSP problem. The optimal result

represents the optimal distance obtained from TSPLIB, the

best result represents the optimal value that an algorithm can

obtain in 30 experiments, and the Average represents the average

results over 30 times. Standard deviation means

standard deviation of results, and AVR means average

deviation rate.

TABLE 1 The parameters of the problem.

Parameter Explanation Value

α The importance of the pheromone trail Eq. 3.8

β The importance of the heuristic information 3 for solving a MTSP (3 for solving a TSP)

rho The pheromone evaporation rate 0.8 for solving a MTSP (0.8 for a solving TSP)

s The number of salps the number of cities for MTSP (TSP)

ε The adaptive factor of α 0.5 for solving a MTSP (0.6 for solving a TSP)

fitness The fitness of a salp Eq. 3.14

Tsteps The total steps of iteration 150 for solving a MTSP (300 for solving a TSP)

τ The initial amount of pheromone in each road N/A

D The matrix of distance N/A

m The number of MCVS 4
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The optimal solution of the DSSACS algorithm is superior

to other algorithms is shown in Table2. The four indexes of

DSSACS in Best result, Average, Standard deviation, and AVR

show a great advantage. DSSACS can generally achieve the

official optimal solution. For the TSP data sets, its average

error is between 0.78% and 2.95% compared to the official

optimal solution, while for other algorithms, the error is

generally 2.03%–6.43%. DSSACS and GA-PSO-ACO

achieved the same lowest optimal value in the case of

EIL51. However, DSSACS is more stable than GA-PSO-

FIGURE 2
Some of the best routes generated by our algorithm (A) Att48, (B) Berlin52,(C) Eil51,(D) Eil76,(E) Rd100, (F) St70.
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ACO in the whole 30 calculation process, and it was easier

to obtain the optimal solution. In EIL76, although DSSACS is

more unstable than other algorithms, only DSSACS found the

lowest optimal solution and the lowest average value in the

same number of iterations, indicating that our algorithm

can generally obtain the optimal solution.In general,

DSSACS have faster convergence speed and higher solution

quality.

FIGURE 3
Att48.

FIGURE 4
Berlin52.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Yi et al. 10.3389/fbioe.2022.923798

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.923798


FIGURE 5
Dantzig42.

FIGURE 6
Eil51.
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FIGURE 7
Eil76.

FIGURE 8
St70.
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We used the 2020 Shenzhen Cup Mathematical Modeling

Competition1, as shown in Table 3. Point 0 is the base station

in this system, where multiple wireless sensors collect data

from the environment and send it to the data center of the base

station. When the sensor’s power is lower than a certain

threshold, the sensor cannot complete the regular sending

and receiving tasks, and the WRSN network breaks down. The

mobile charger needs to charge the sensor periodically to keep

it from falling below the threshold for the WRSN to work

correctly. The mobile charger starts from the data center and

passes through each sensor at a fixed rate, charging the sensor

at a fixed rate until it returns to the base station after charging

all the sensors. Each sensor has a specific rate of energy

consumption. The energy consumption of a mobile charger

mainly has two aspects: one is the standard energy

consumption caused by the charging sensor node; The

other is the energy consumption of moving the charger on

its way to charge the sensor. In order to reduce the energy

consumption of mobile chargers on the road, it is necessary to

plan the charging route of mobile chargers reasonably.

First, the longitude and latitude of each sensor and base

station have been informed in the link. First, we assume that

the longitude and precision of sensor A are lngA、latA,

B is similar toA. We set the radius of the Earth as

R � 6371Km, π � 3.141592653589793. According to the

calculation formula of radian and sphere distance:

dAB � 2R · sin−1
������������������������������������
sin(φA − φB

2
)2

+ cosφA cosφB sin(μA − μB
2

)2
√

(3.1)
φA(B) � latA(B) · π

180
(3.2)

μA(B) � lngA(B) · π

180
(3.3)

First, we give a few measures and their definitions.

TABLE 2 The comparison results of algorithms. (If the result of DSSACS is better than other algorithms, it will be marked in bold).

Test DSSACS GA ACO GA-PSO-
ACO
(Yelmewad
et al.,
2019)

Tabu
search

PSO FOGS-
ACO
(Gündüz
et al.,
2015)

DSMO
(Saenphon
et al.,
2014)

ATT48 (33,523.7) Best result 33,523.7 34,587 34,498 33,786 34,292 — 33,561.0 —

Average 33,783.54 35,370 34,717 34,322 37,437 — 34,205.0 —

Standard
deviation

219.27 1,041.3 273.78 299.22 1,157.88 — 282.09 —

AVR 0.78 2.30 0.63 1.59 9.17 — 1.92 —

EIL51 (426) Best result 426 448.19 437.01 426 445.52 450.52 431.74 428.86
Average 432.33 478.55 446.60 438.21 498.13 467.85 — —

Standard
deviation

2.94 19.85 4.68 5.00 17.59 20.19 — —

AVR 1.48 6.77 2.19 2.87 11.81 3.85 — —

BERLIN 52 (7,542) Best result 7,544.37 8,289.58 7,647.56 7,544.37 7,973.60 8,157.39 7,544.37 7,544.37
Average 7,631.52 8,400.17 7,696.30 7,591.88 8,315.91 8,288.44 — —

Standard
deviation

142.58 128.75 74.70 53.13 174.99 136.60 — —

AVR 1.16 1.33 0.64 0.63 4.3 1.61 — —

ST70 (677.11) Best result 677.11 712.81 697.56 679.60 703.42 718.98 684.5 677.11
Average 689.94 745.12 708.92 700.22 758.18 768.08 — —

Standard
deviation

6.85 32.71 6.86 12.24 39.90 37.36 — —

AVR 1.89 4.53 1.63 3.03 7.78 6.83 — —

EIL76 (538) Best result 544.86 566.18 565.66 556.39 574.89 571.36 — —

Average 553.88 567.27 566.30 557.67 578.20 572.77 — —

Standard
deviation

6.04 25.72 7.84 6.53 31.36 32.47 — —

AVR 1.66 0.37 0.11 0.23 0.58 0.24 — —

RD100 (7,910) Best result 7,911.3 8,138 8,258 — 8,171 8,295 — —

Average 7,992.16 8,418.56 8,453.18 — 8,442.67 8,604.86 — —

Standard
deviation

82.25 217.63 109.01 — 254.02 234.83 — —

AVR 1.02 3.45 2.36 — 3.32 3.74 — —

1 http://www.m2ct.org/viewpage.jsp?editId=12&uri=
0D00233&gobackUrl=modulalist.jsp&pageType=smxly&menuType=
flowUp1, 2020.
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1) steps refer to the iterations of the algorithm. The higher the

number of iterations of steps, the higher the algorithm’s

accuracy.

2) Saverage uses an algorithm to compute the exact MTSP n

times and find their average. The calculation formula

of Saverage is:

Saverage � ∑n
i

besti
n

(3.4)

3) Stotal refers to the sumof the paths chosen by all salps populations

after each iteration. Suppose that there are n iterations in total and

s salps in a population, then there is the formula:

Stotal � ∑s
i

antit�t0 (3.5)

t0 represents the current iteration number, and antit�t0 represents
the total path length selected by ant i at t0 iteration. In general,

the value of Stotal should be smaller when the positive feedback

mechanism of the algorithm is more robust. We set the MCV

data as follows:

1) The moving speed of the MCV is v � 5m/s

2) The charging rate of the MCV is R = 400 mA/h

3) The lowest battery capacity of the sensor w = 7.3 mA

4) The number of MCVS, m = 4

First, the optimal solution is 13.697 km under the maximum

number of 300 iterations shown in Figure 9. The DSSACS has a

high convergence speed compared with ACO, while DSSACS can

be completed in the early iteration. Moreover, the ACO is not as

good as DSSACS in some image details. It is longer than

SSDACD in overall path length, leading to increased wireless

sensor battery capacity and high cost.

In Figure 10, the change of Saverage of ACOandDSSACSwith the

increase of iteration steps is plotted. It can be seen that at the

beginning of the iteration, DSSACS and ACO have a significant

difference. Comparedwith ACO,DSSACS has a shorter average path

length and a faster convergence speed. In the subsequent iterations,

DSSACS showed more significant advantages than ACO. After

110 generations, the images of DSSACS almost become a straight

line, and the optimal solution can be reached almost every time, while

ACO is still in the overall decline stage. Overall, the convergence

speed of DSSACS is better than that of ACO in all iterations.

In Figure 11, we plotted the change of Smin with the

increase of Times. We set a fixed number of iterations

steps = 100, and conducted 50 experiments on both

algorithms. The Figure shows that in the case of fewer

iterations, DSSACS has almost reached the optimal value,

and the DSSACS algorithm is very stable within

100 iterations. Compared with DSSACS, the ACO

algorithm is more unstable in the early stage and fails to

reach the optimal solution. For example, most ACO’s are

above 13900m, while DSSACS have never reached this value.

Finally, we compared the change of Stotal as. The iteration steps

increased, as shown in Figure 12. At the beginning of the iteration, the

slope of DSSACS is significantly greater than ACO, indicating that

the former has a faster convergence rate. Moreover, from the

beginning of the iteration, the path selected by salps arithmetic in

DSSACS was better than that chosen by ants in ACO, indicating that

the positive feedbackmechanismofDSSACSwasmore robust, which

enabled the algorithm tomaintain a better path selection in thewhole

iteration process.

According to Eqs 2.1.–.2.7, the maximum battery capacity

obtained by using DSSACS max
1≤i≤n

Wi � 9.13mA is the minimum

capacity in all circuits. Using DSSACS can not only achieve the

minimum path cost but also improve the charging efficiency. At this

point, the four paths ofMCV are shown in fellow, and the lengths of

the four distances are 3.35, 3.49, 4.01, and 2.85 km respectively. The

corresponding optimal charging paths are as follows:

: BS → S1 → S9 → S7 → S6 → S14 → S11 → S8 → S2 → BS

: BS → S10 → S12 → S15 → S27 → S16 → S13 → S5 → BS

: BS → S3 → S28 → S24 → S23 → S22 → S21 → S4 → BS

: BS → S20 → S18 → S25 → S26 → S29 → S19 → S17 → BS

5 Summary and outlook

This paper proposes a discrete optimization strategy for Salps

based on the ant colony system. Our optimized DSSACS

algorithm is applied to solve the application of the TSP

problem and MTSP problem. We added the advantage of

population initialization from the ant colony system to the

TABLE 3 Sensor coordinate dataset in WRSN.

No. Longitude Latitude No. Longitude Latitude

0 120.7015202 36.37423 15 120.6960585 36.38247931

1 120.6987175 36.37457569 16 120.7005141 36.38276987

2 120.6997954 36.37591239 17 120.6998673 36.37079794

3 120.70691 36.37579616 18 120.6928965 36.37079794

4 120.7056165 36.37248342 19 120.6964897 36.36824059

5 120.7031731 36.37753964 20 120.6969209 36.37143727

6 120.6928965 36.37800457 21 120.7052571 36.36899618

7 120.6943337 36.37521499 22 120.7088504 36.37021674

8 120.6973521 36.37876006 23 120.7087066 36.36731063

9 120.6962022 36.37643544 24 120.7130185 36.36829872

10 120.7011609 36.37905063 25 120.6896626 36.36661314

11 120.6939026 36.37643544 26 120.6937588 36.36242812

12 120.6983582 36.38056159 27 120.6993643 36.38741865

13 120.7025263 36.38120084 28 120.7129466 36.37201847

14 120.6914592 36.38201441 29 120.7002266 36.38741865
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FIGURE 10
The comparison of the convergence process of Saverage among DSSACS and ACO.

FIGURE 9
Paths of DSSACS (A) and ACO (B).

FIGURE 11
The comparison of Smin 50 times between DSSACS and ACO.
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leader of the salp colony system to solve the problem of the

disorder and confusion in the initialization of the salp swarm

algorithm. Thus, significantly improving the correlation and

purpose between the population and optimizing the follower

strategy of the salp colony to improve the convergence speed of

the algorithm.We first apply DSSACS to the MCV path planning

problem of WRSN networks. The charging problem of WRSN

networks can be regarded as an MTSP problem. DSSACS can

improve the algorithm’s calculation speed, save time and

economic cost of the WRSN network by planning the path.

DSSACS surpasses the ACO algorithm in terms of stability,

convergence speed, and accuracy in terms of overall

performance. Then we compare DSSACS with other

metaheuristic algorithms on the TSP problem. The optimal

and average solutions obtained by DSSACS are superior to other

algorithms, and the SSACS algorithm is almost the best in

convergence speed, robustness, and positive feedback mechanism.

Our experiments show that DSSACS is feasible and effective in

solving NP-hard problems. Although the algorithm proposed in this

paper has a significant improvement compared to the original

algorithm, it is only used in the field of wireless charging in this

paper. It is believed that through the potential of DSSACS, it can

break through the barriers in other fields and play a role in other

fields in the future.
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