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Abstract
Salmonellosis cases in the in the United States show distinct geographical trends, with the

southeast reporting among the highest rates of illness. In the state of Georgia, USA, non-out-

break associated salmonellosis is especially high in the southern low-lying coastal plain. Here

we examined the distribution of Salmonella enterica in environmental waters and associated

wildlife in two distinct watersheds, one in the Atlantic Coastal Plain (a high case rate rural

area) physiographic province and one in the Piedmont (a lower case rate rural area). Salmo-
nellawere isolated from the two regions and compared for serovar and strain diversity, as well

as distribution, between the two study areas, using both a retrospective and prospective

design. Thirty-seven unique serovars and 204 unique strain types were identified by pulsed-

field gel electrophoresis (PFGE). Salmonella serovars Braenderup, Give, Hartford, and

Muenchen were dominant in both watersheds. Two serovars, specifically S. Muenchen and

S. Rubislaw, were consistently isolated from both systems, including water and small mam-

mals. Conversely, 24 serovars tended to be site-specific (64.8%, n = 37). Compared to the

other Salmonella serovars isolated from these sites, S. Muenchen and S. Rubislaw exhibited

significant genetic diversity. Among a subset of PFGE patterns, approximately half of the

environmental strain types matched entries in the USA PulseNet database of human cases.

Ninety percent of S. Muenchen strains from the Little River basin (the high case rate area)

matched PFGE entries in PulseNet compared to 33.33% of S. Muenchen strains from the

North Oconee River region (the lower case rate area). Underlying the diversity and turnover

of Salmonella strains observed for these two watersheds is the persistence of specific Salmo-
nella serovars and strain types that may be adapted to these watersheds and landscapes.
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Introduction
Salmonella enterica are zoonotic bacteria associated with a wide range of animals, including
humans, where they are a significant cause of enteric disease and often attributed to foodborne
transmission [1]. The incidence of salmonellosis has decreased only slightly in the past 26 years
(19 cases per 100,000 in 1987 versus 15.2 cases per 100,000 in 2013) [2, 3]. While the imple-
mentation of HACCP (Hazard Analysis and Critical Control Points) for the food industry in
the U.S. has reduced contamination of meats, milk, and eggs with foodborne pathogens [4],
there has been increased recognition of Salmonella outbreaks associated with fresh produce [5–
15]. The cultivation and processing of fruits and vegetables is intimately linked to the environ-
ment, where ample opportunities exist to introduce pathogens, through direct contamination
from animals in crops and fields and the use of irrigation water that may be contaminated [5,
6, 8, 9, 16]. Although not widely linked to outbreaks, water itself is an important vehicle, espe-
cially in sporadic (non-outbreak associated) cases of gastrointestinal illnesses, including salmo-
nellosis [17–19]. Sporadic cases are increasingly associated with a high burden of illnesses and
are often not attributable to a particular source, such as food [20]. As a zoonotic agent, animals
—livestock as well as wildlife—can be important contributors to the abundance and distribu-
tion of Salmonella in the environment and possible transmission to humans [21–26]. Salmo-
nella enterica is intimately associated with the landscape, and its components (living and
non-living). Efforts to examine the environmental ecology of this agent are needed to better
understand how it may be controlled, especially in regards to non-foodborne and non-out-
break cases.

The notion that environmental parameters affect both the incidence and distribution of sal-
monellosis cases is illustrated in part by large regional differences in the rates of reported
human cases in the U.S. Variations among states in reported cases are not always explained by
differences in surveillance, demographics, patterns in food preparation, or food-distribution
networks, suggesting that environmental and ecological factors could affect its relative distribu-
tion (e.g., biogeographical patterns [27]). Georgia remains among the states (all in the south-
east) with the highest annual prevalence, at 24 cases per 100,000 [28], compared to the national
average of roughly 15 cases per 100,000 [2] in the Foodborne Diseases Active Surveillance Net-
work (FoodNet). The prevalence in the southern portion of the state, primarily in the Coastal
Plain physiographic province, is markedly higher than that in the northern part of the state’s
Piedmont province. In 2011, there were 70.1 cases per 100,000 people in Georgia Public Health
District 8–1 and 28.8 cases per 100,000 in Public Health District 10 in 2011, representing the
south (Coastal Plain) and north (Piedmont), respectively (GA Dept. of Public Health; dph.
georgia.gov). Regional patterns in the epidemiology of salmonellosis are reflected not only by
significant differences in reported infection rates, but also in the distribution of specific Salmo-
nella serovars between physiographic provinces and individual counties [28].

Salmonella is ubiquitous in fresh and marine environmental surface waters [2, 29, 30], but
contamination may come from many different routes such as effluent from wastewater treat-
ment plants, contaminated runoff from urban or agricultural areas, overburdened septic sys-
tems, or local and migratory fauna [30–34]. Contamination of environmental waters with
Salmonellamay be of a greater public health concern than previously thought due to the ability
of it to persist and, in some cases, grow outside of a host organism [29]. This characteristic
increases the probability of survival between hosts [35]. The environment, including surface
waters, can be considered as a part of the lifecycle of Salmonella, and therefore influences the
biogeographical patterns of these pathogens.

Previous studies in the Atlantic Coastal Plain (south Georgia and north Florida) indicate
that Salmonella are commonly detected in the environment, i.e., streams and ponds [36–39].
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Frequency of detection ranges from 29% to 96% of samples among these studies, with concen-
trations reaching 5,400 MPN L-1 in the southern reaches of the Upper Suwanee Watershed,
which spans southern Georgia and north Florida [36, 39]. At the uppermost reaches of the
Upper Suwanee Watershed in south Georgia, the Little River is typical of the heavily vegetated,
slow-moving stream systems in this region. We have previously shown that 79% of sites along
the Little River were positive for Salmonella [37] with levels ranging from 2.5 MPN L-1 to 36.3
MPN L-1. Salmonella densities are positively impacted by precipitation and temperature (e.g.,
summer season) when serovars associated with human cases are also more likely to be detected
[38]. Here we expanded on this work and examined the distribution and diversity of Salmo-
nella serovars and strains across geographic space, time, and between water and wildlife reser-
voirs, which may affect exposure routes and transmission to humans.

Material and Methods

Description of study sites
The sample areas were located in two distinct physiographic regions of Georgia, USA—the low
lying Coastal Plain and the higher elevation Piedmont physiographic province (Fig 1). The
regions were also distinguished by prevalence of salmonellosis. Otherwise the selected areas
were similar in watershed size, land use, population, and median incomes.

The 334 km2 Little River watershed is near Tifton, Georgia in the South Atlantic Coastal
Plain, and forms the headwaters for the larger Upper Suwannee Watershed. The Little River
watershed is typified by broad floodplains with very poorly defined stream channels and gently
sloping uplands. Approximately 45% of the watershed is woodland, 37% crops, 4% pastures,
7% idle, and 7% roads, urban, and water (as described in [37]). Swamp hardwoods occur along
the stream edges and are often accompanied by thick undergrowth forming the riparian vege-
tation boundary along stream networks. Three sampling stations were selected representing
first to fourth stream orders with varying levels of flow throughout the year. First order streams
are headwaters and are small and narrow whereas fourth order streams are fed by multiple
tributaries and are larger and broader. Stations were located in Tift County (upstream of the
City of Tifton) in GA Public Health District 8–1. Tift County is rural but is considered to be
urbanizing. The 2010 population was 40,118 (59.8 people km-2) with 6.9% of the population
under the age of 5 [40]. The per capita income was $18,928 [40]. This district has the highest
case rates for salmonellosis in the state (70.1 cases per 100,000 in 2011).

The Oconee River Basin consists of two headwater tributaries, the North Oconee River and
the Middle Oconee River, which originate at the northern end of the basin in the Piedmont
Upland physiographic province, at an elevation of about 305 m above mean sea level. These
headwater streams are generally well entrenched, flow through narrow floodplains, and have
steep gradients ranging from 0.15 to 1.4 m km-1. These rivers flow for approximately 100 km
to a point just south of Athens, Georgia, where they join to form the Oconee River. Land use in
the upper portion of the basin is primarily rural, with poultry farming, dairy farms and grazing
for beef production as primary uses. Three sampling stations were selected along the North
Oconee River and its tributaries in Jackson County, upstream of the city of Athens, and
included first to fourth ordered streams. Jackson County recorded a population of 60,485 in
2010 (68.8 people km-2) with 6.8% of the population under the age of 5 [40]. The per capita
income was $22,830 [40]. Jackson County is located in GA Public Health District 10, which is a
lower case rate area for salmonellosis in Georgia (28.9 cases per 100,000 in 2011).
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Sample collection
Water samples were collected monthly from December 2010 to November 2011 at each of the
six stations (Fig 1), which were accessible on foot with public access. Sterile 1-L polypropylene
bottles were filled by hand at the deepest part of the stream. For a limited number of collection
events (n = 3 in each watershed), samples were obtained from well water, after flushing the
spigot for 5 min, at farms near the sampling sites (in coordination with owners). All samples
were maintained on ice, transported to the laboratory, and processed within 6 h of collection.
Wildlife near each of the six sites was also sampled. Songbirds, raccoons, and opossums were
the focus of the active surveillance. Mist nets were used as previously described [41] to capture
birds. Birds were held in individual disposable paper bags until they defecated. After 1 h, even
if the bird had not defecated, it was released to avoid capture-related mortality. Opossums and
raccoons were captured with baited live box traps (Havahart, Woodstream Corp, Lititz, PA).

Fig 1. Map of sampling areas in the Oconee River watershed (near Athens in the Piedmont physiographic province) and Little River watershed
(near Tifton in the Coastal Plain physiographic province). Base map source: U.S. Geological Survey, Department of the Interior. (http://water.usgs.gov/
lookup/getspatial?physio). Background: watershed produced using ESRI-ArcGIS (LM_LICENSE_FILE: 1700@wrrs.gly.uga.edu) based on U.S Geological
Survey, National Elevation Dataset (NED), 2012. Site location: Department of Environmental Health Science-UGA. (Produced by Presotto A, 2015).

doi:10.1371/journal.pone.0128937.g001
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Briefly, traps baited with sardines were deployed at sunset and checked at dawn. If an animal
was captured, the trap was turned so that it would stand vertically and the animal was gently
forced to the bottom and hand injected with an anesthetic. Once the animal had reached a light
plane of anesthesia, it was removed from the trap, and approximately 1 g of feces was removed
directly from the rectum by digital extraction. Fresh fecal material was immediately immersed
in 10 ml of dulcitol selenite broth and maintained at room temperature until submitted to the
Athens Diagnostic Laboratory for isolation. Samples were submitted to the laboratory within
48 h. The University of Georgia Animal Care and Use and Procedures Committee approved
protocols involving capture and handling of animals associated with this project (AUP #
A2010 08-159-Y3-A0).

Salmonella isolation
Each water sample (�100 ml) was filtered in duplicate onto 0.45 μm 47-mmmixed cellulose
ester membranes, inserted into a sterile 50-ml centrifuge tube containing 20 ml of 1% sterile
peptone broth and incubated overnight at 37°C. A 100-μl aliquot of turbid broth culture was
used to inoculate a15-ml tube 10 ml Rappaport-Vassiliadis (RV) broth, which was then incu-
bated at 37°C for ~24 h. One loopful of overnight growth from RV broth was spread onto XLD
agar plates and incubated for 24 h. Presumptive Salmonella colonies (H2S positive) were picked
and transferred to LB agar stabs. Cultures were streaked for isolation three times before final
Salmonella confirmation and serovar determination (see below). Each sample was scored as
positive or negative for Salmonella presence following confirmation steps.

For animal feces, Dulcitol Selenite (Difco; Detroit, MI) was inoculated with fecal samples
and incubated at 42 ± 0.5°C. A 10 μl loopful of overnight growth from enrichment broth was
streaked onto a XLT4/BGN bi-plate (Remel Inc.; Lenexa, KS) followed by 37°C overnight incu-
bation [42, 43].

All H2S positive colonies were further characterized biochemically to identify Salmonella.
Real time PCR was used to screen Selenite broths that were culture negative for Salmonella
[44]. PCR template was prepared from a pool of three Selenite broth cultures. DNA was iso-
lated from 1 ml of the pooled enrichment using Ultra Clean Fecal DNA Kit (MO Bio Inc.,
Carlsbad, CA). Positive pools were then tested individually by PCR and subcultured simulta-
neously onto Salmonella selective media. A delayed secondary enrichment was done for culture
negative, PCR positive Selenite enrichment broths [43]. Any suspect, biochemically atypical
Salmonella were confirmed by PCR [44]. Salmonella isolates were forwarded to the National
Veterinary Service Laboratory (Ames, IA) for serotyping.

Molecular typing of Salmonella isolates by pulsed-field gel
electrophoresis
Pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness [45–47]
among Salmonella isolates obtained during this study, archived isolates from environmental
and animal sources, and human isolates represented in the PulseNet USA national database,
which included reports from states in the southeast US (GA, FL, SC, and AL). A master data-
base of Salmonella PFGE patterns was generated in BioNumerics (Applied Maths; Austin, TX).
Comparisons were made between PFGE patterns using Dice coefficient [48] and unweighted
pair group method of arithmetic averages (UPGMA) clustering. Clusters were identified based
on a 75% similarity cut-off.
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Results

Serovar distribution in Salmonella isolated from the Little River and
Oconee River Basins
In total, 1,029 isolates from the two watersheds (water and animals) and archived environmen-
tal and animal samples were processed for serovar and PFGE pattern. These included 355 iso-
lates from water and animals collected in the Little River (Upper Suwannee) and Oconee River
watersheds (2005–2011) and an additional 674 archived isolates from animal sources (various
species) obtained from the Salmonella Reference Collection (SARA 1–72) [49] and past studies
[21, 37, 48, 50–53]. Thirty-seven unique serovars were identified from salmonellae isolated
from water and animals in the Little River and Oconee River watersheds. These included 15
serovars that were ranked among the top 20 for human cases in the US and in Georgia [31].
Eighteen serovars were recovered only from water (represented by 53 isolates) and included six
of the top 20 ranked serovars in human cases (U.S. and Georgia). Only two serovars, Braen-
derup and Paratyphi B var L (+) tartate +, were found in both watersheds and none of the
PFGE types were shared between the two regions (Table 1). Only five serovars were recovered
solely from animals (cattle, hogs, opossum, raccoons or song birds) and none included serovars
commonly associated with human cases. Two serovars were found in animals from both water-
sheds (Dublin and Muenster) (Table 1). Most isolates (82%; 291/355) were associated with ser-
ovars found in both water and animals, including 4 isolates from shallow wells in the Little
River watershed. In all, 14 serovars were recovered from both sources and nine of these were
among the top 20 for human cases (US and Georgia) (Table 1). Unlike water-only and animal-
only serovars, most of the serovars from both sources were also found in both watersheds (11
were shared).

Regardless of source, Salmonella enterica Rubislaw, Give, Hartford, Braenderup, and
Muenchen were the serovars most frequently isolated from either region, accounting for 53%
and 62% of total isolates from the Little River and Oconee River watersheds, respectively. Sal-
monellaMuenchen and Rubislaw were the most frequently encountered serovars in both river
basins. With the exception of S. Braenderup, most other Salmonella serovars encountered in
both watersheds were transient, being isolated only once for a given year.

Strain distribution in Salmonella isolated from the Little River and
Oconee River Basins
Salmonella PFGE patterns for environmental and archived isolates were compared to each
other to evaluate trends in strain persistence and relatedness from the two sample sites. In addi-
tion to patterns in serovar distribution (Table 1), there was also considerable strain diversity in
Salmonella isolated from the two study sites. Among 37 Salmonella serovars isolated from
either region, there were 204 unique PFGE patterns for the water and animal isolates analyzed.
Frequently PFGE patterns clustered together by serovar (�75% similarity) (Fig 2); however,
there were several Salmonella serovars where PFGE patterns with<75% similarity generated
two or more clusters (S. Bareilly- 2 clusters; S. Gaminara- 6 clusters; S. Give- 4 clusters; S.
Meleagridis- 2 clusters). Two Salmonella serovars, S. Muenchen and S. Rubislaw, exhibited the
greatest diversity in PFGE patterns, necessitating separate cluster analyses (Figs 3 and 4). Sal-
monellaMuenchen PFGE patterns fell into one of 16 clusters; clusters I & II represented 41%
and 16% of PFGE profiles, respectively. Salmonella Rubislaw demonstrated even greater diver-
sity in PFGE profiles, with patterns falling into one of twenty-three clusters. No single S. Rubis-
law PFGE cluster accounted for more than 15% of the total patterns. While there was a high
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level of diversity in PFGE profiles for both serovars, more patterns matched human clinical
cases entered in PulseNet for S. Muenchen (44%; n = 25) than for S. Rubislaw (18%; n = 22).

Table 1. Salmonella serovars isolated from the Little River and Oconee River watersheds (2005–2011).

Source Serovar Little River Oconee River Both watersheds

# of isolates # PFGE types # of isolates # PFGE types # isolates with shared PFGE typea

Water 16:z:10 1 1 0 0 0

Only 30:-:lw 1 1 0 0 0

47:z4z23:- 3 1 0 0 0

Braenderup 13 3 2 2 0

Enteritidis 2 2 0 0 0

Heidelberg 0 0 1 1 0

Infantis 0 0 1 1 0

Kentucky 4 0 0 0 0

Kiambu 0 0 1 1 0

Liverpool 2 2 0 0 0

Livingstone 0 0 1 1 0

Oranienburg 0 0 3 2 0

Ouakam 0 0 1 1 0

Paratyphi Bb 3 1 5 2 0

Senftenberg 0 0 3 2 0

Tamberma 1 1 0 0 0

Thompson 0 0 4 1 0

Typhimurium 0 0 1 1 0

Animal III 44:z4, z32:- 1 1 0 0 0

Only O-:lz4, z23:- 1 1 0 0 0

Arizona 1 1 0 0 0

Dublin 3 1 1 1 4

Muenster 3 1 1 1 4

Water + IV 40: z4: 32 1 1 3 1 0

Animal Anatum 6 4 1 1 0

Bareilly 12 5 7 3 0

Gaminara 8 7 2 1 0

Give 27 7 15 13 15

Hartford 16 8 21 2 0

Inverness 2 2 0 0 0

Mbandaka 9 2 3 2 0

Meleagridis 15 4 0 0 0

Montevideo 5 3 4 3 0

Muenchen 11 10 36 25 5

Newport 2 1 6 5 0

Rubislawc 41 36 29 14 4

Saintpaul 9 4 0 0 0

Serovars noted in bold are those ranked among the top 20 in human cases for the US (2009–2011); serovars in italics are those ranked in the top 20 in

human cases in Georgia (31).
a Isolates shared one PFGE type (per serovar)
b Paratyphi B var L (+) tartate +
c Included one isolate collected from shallow well water in the Little River watershed

doi:10.1371/journal.pone.0128937.t001
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While there were several Salmonella serovars common to both watersheds, only 5 of 204
PFGE types observed were shared among isolates from the two regions (Table 1). Most Salmo-
nella PFGE types (82%) were rare, only appearing once. There were 11 unique PFGE types that
were identified in isolates from both water and animals within the same watershed sampling
area (Table 2). For eight of these, water and animal isolates were collected within the same

Fig 2. Dendrogram of representative Salmonella PFGE patterns for 37 Salmonella serovars
(excluding S. enterica serovars Muenchen and Rubislaw) collected from Oconee and Little River
watersheds and archived isolates with similar PFGE profiles. Salmonella PFGE patterns generated in
this study were compared to a BioNumerics database of PFGE entries of Salmonella isolates from various
animal species and to the CDC PulseNet data base of isolates from human cases. Vertical line indicates 75%
similarity.

doi:10.1371/journal.pone.0128937.g002
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season or year and included Salmonella serovars S. Anatum, S. Bareilly, S. Give, S. Hartford, S.
Mbandaka, S. Montevideo, and S. Newport. Most PFGE types were specific to water or to
animals.

Despite turnover of Salmonella strains, there were several Salmonella strains isolated at least
twice from either watershed, representing 19 serovars and 34 PFGE types. Most of the PFGE
types were encountered sporadically, often isolated once in a given year. Just over half (18/34)
were encountered multiple years; 14 that were originally isolated in 2005 were still present in

Fig 3. Dendrograms of representative Salmonella PFGE patterns for Salmonella serovars Muenchen
collected fromOconee and Little River watersheds and archived isolates with similar PFGE profiles.
Vertical line indicates 75% similarity.

doi:10.1371/journal.pone.0128937.g003
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2010 and 2011 (4 PFGE types in the Little River and 10 in the Oconee River) (Table 3). Only
two PFGE types were consistently present between 2005 and 2011; S. Braenderup type Br1
and S. Saintpaul type Sp5 were isolated in the Little River in 4 and 3 separate years,
respectively.

Fig 4. Dendrograms of representative Salmonella PFGE patterns for Salmonella serovars Rubislaw
collected fromOconee and Little River Basins and archived isolates with similar PFGE profiles.
Vertical line indicates 75% similarity.

doi:10.1371/journal.pone.0128937.g004
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Distribution of Salmonella strains associated with human illness in the
Little River and Oconee River watersheds
The incidence of salmonellosis in Georgia is skewed within the state, with the highest incidence
occurring in the southern region. To address whether the distribution of specific serovars or
strains in the environment might be associated with these trends in human cases, select Salmo-
nella PFGE types identified between Little River and Oconee River isolates were compared to
CDC PulseNet database for matching PFGE patterns among human isolates. Due to the high
number of PFGE patterns identified, only a subset were compared, representing 1) the most
common Salmonella serovars in human cases, 2) a Salmonella strain that was persistent in
either watershed, or 3) present in both water and wildlife from that locale (n = 113). Approxi-
mately, half of the Salmonella isolated from water and wildlife sources had matching PFGE pat-
terns with PulseNet database of human isolates (Table 4). Human cases from the state of
Georgia were reported for 7 and 4 of the Salmonella PFGE types from Little River and Oconee
River watersheds, respectively (represented by serovars: S. Anatum, S. Braenderup, S. Hartford,
S. Montevideo, S. Muenchen, S. Newport, S. Paratyphi B, and S. SaintPaul). There was no sig-
nificant difference in preponderance of Salmonella strains that had matching PFGE patterns
with human isolates in PulseNet between the two river basins (Table 4); however, there was a
difference in the distribution of S. Muenchen strains associated with human cases. Ninety per-
cent of S. Muenchen strains (n = 10) from the Little River had matching PFGE profiles with

Table 2. Salmonella strains (PFGE types) present in both animals and water of the Little River or North Oconee River watersheds (Georgia, USA).

Serovar Watershed # of Strains Sources Season/Year Collected

Anatum Little River 1* Water Winter 2011

Opossum Spring 2011

Barielly Little River 1* Water Spring 2005, Summer 2007, Fall 2011

Raccoon Summer 2011

Oconee River 1 Opossum Fall 2010, Summer 2011

Water Summer 2011

Give Little River 1 Opossum Fall 2010, Winter, Spring, Summer, Fall 2011

Water Fall 2011

Hartford Oconee River 1* Raccoon Winter and Spring 2011

Water Summer and Fall 2011

Mbandaka Little River 1 Songbird Spring 2011

Opossum Summer 2011

Water Fall 2011

Montevideo Little River 1* Water Winter and Fall 2011

Raccoon Winter 2011

Muenchen Oconee River 1* Water Spring 2005

Opossum Summer 2011

Newport Little River 1* Raccoon Winter 2011

Water Summer 2011

Rubislaw Oconee River 2 Water Spring 2005

Opossum Winter, Summer, Fall 2011

* indicates PFGE pattern matching isolate in CDC PulseNet database. [Winter (Jan, Feb, Mar), Spring (Apr, May, Jun), Summer (Jul, Aug, Sep), and Fall

(Oct, Nov, Dec).]

doi:10.1371/journal.pone.0128937.t002
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Table 3. Salmonella serovars and PFGE types isolatedmultiple times in the Little River or Oconee River watersheds (both water and animal
sources) between 2005 and 2011.

Serovar PFGE type PulseNet ID Watershed Source Date of Collection

47:z4z23:- Tb1 Not determined Little River Water Feb, Mar, Dec 2007

Anatum An2 JAGX01.0001 Little River Water Mar 2011

Opossum Apr 2011

An7 JAGX01.0007 Little River Water Jun, Aug 2007

Bareilly Ba1 JIXX01.0710 Oconee River Water Sep, Oct 2011

Ba2* No matches Oconee River Water Aug 2011

Opossum Dec 2010, Sep 2011

Ba4* JAPX01.0156 Little River Water May, Sep 2005, Oct 2011

Raccoon Aug 2011

Ba5 JAPX01.0157 Little River Water Feb, Jun 2011

Ba6 No matches Little River Water Aug, Sep 2005

Braenderup Br1* JBPX01.0002 Little River Water May, Jul, Aug 2005; Jan 2006; Jun, Jul, Aug, Sep 2007; Feb 2011

Dublin Db1* JDXX01.0023 Little River Songbird Dec 2010, 2011

Gaminara Ga4* No matches Little River Water Aug 2005, Feb 2007

Give Gv4* No matches Little River Opossum Dec 2010; Feb, May Aug, Oct, Nov 2011

Gv11* No matches Oconee River Water Apr 2005, Feb 2011

Hartford Hf1* JHAX01.0038 Oconee River Water Apr 2005, Feb 2011

Hf2 JHAX01.0010 Oconee River Water Jun, Nov 2011

Raccoon Feb, Apr, Jul 2011

Hf9 JHAX01.0089 Little River Water Jun, Aug, Nov 2005

Mbandaka Mb3 No Matches Little River Water Oct 2011

Songbird Apr 2011

Opossum Aug 2011

Meleagridis Mg3 No matches Little River Water Jan, Feb, Mar, Oct 2011

Mg4 No matches Little River Water Feb, Sep 2007

Muenchen Mc4* JJ6X01.0692 Oconee River Water Apr 2005

Opossum Jul 2011

Mc24* No matches Oconee River Water Apr 2005, Jun 2011

Mc28 JJ6X01.0107 Little River Water Aug, Nov 2005

Montevideo Mv3 JIXX01.0081 Little River Water Mar, Oct 2011

Raccoon Feb 2011

Newport Np5* JJPX01.0025 Oconee River Water Apr 2005, Mar 2011

Np8 JJPX01.0032 Little River Water Sep 2011

Raccoon Feb 2011

Paratyphi B Pb3* JKXX01.0059 Little River Water Nov 2005, Jun 2007

Oconee River Water Apr 2005, Jan 2011

Rubislaw Rb20* JLPX01.0108 Little River Water Jul, Dec 2005; Jan 2011

Rb27* JLPX01.0061 Oconee River Water Apr 2005, May 2011

Rb34* No matches Oconee River Water Apr 2005

Opossum Feb, Aug, Nov 2011

Rb36* No matches Oconee River Water Apr 2005

Opossum Feb, Mar 2011

Saintpaul Sp5* JN6X01.0028 Little River Water Jul 2005; Sep, Nov 2007; Feb 2011

Senftenberg Sf2* Not determined Oconee River Water Dec 2010, Oct 2011

Thompson Th1 Not determined Oconee River Water Apr 2005; Sep, Oct 2011

*isolated in multiple years

doi:10.1371/journal.pone.0128937.t003
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PulseNet entries, while only one third of S. Muenchen PFGE patterns for Oconee River isolates
(n = 24) had matches with PulseNet database.

Discussion
The overall Salmonella serovar composition noted in this study and in prior work was similar
between these two rural watersheds [36, 37, 53]. Salmonella serovars generally associated with
food animals were rare in both watersheds (e.g., S. Newport, S. Enteritidis, S. Typimurium)
[54–56], whereas elsewhere in the United States and Canada, such Salmonella serovars have
been frequently isolated from watersheds [57, 58]. The serovar composition found in the pres-
ent study also differed from the findings in agricultural ponds within the coastal plain of Geor-
gia, where serovars associated with food production were common and displayed a relatively
low diversity of serovar type [39]. In the natural and flowing river systems that were the focus
of this study, serovar diversity was high and only two serovars common in food were observed,
and were found only rarely (S. Newport and S. Saintpaul) [59, 60]. Here, S. Muenchen and S.
Rubislaw were the most commonly detected isolates in this study, with 47 and 70 isolates,
respectively. These serovars have also been found in other natural waters [53, 61], including
other areas of the Atlantic Coastal Plain [36, 53, 61]. These serovars are also often associated
with human cases in southern Georgia, where they ranked 4th and 11th in reported cases
between 2000 and 2006 (Georgia Dept. of Health; District 8–1). Interestingly, common poultry
Salmonella serovars such as S. Enteritidis and S. Heidelberg [62] were very rarely isolated even
though north Georgia has the greatest concentration of poultry production in the state [63]
and application of poultry manures to fertilize pasture land is a common practice in many
areas of the state [38, 64].

Fourteen of the 37 serovars identified in this study, representing 82% of the isolates, were
recovered both from surface waters and wildlife captured nearby (one serovar, Rubislaw, was
also identified from well water). Eleven PFGE types were identical between water and animals.
In contrast, only five serovars were recovered from animals alone. While 18 serovars were
found solely in water, these represented only 15% of the isolates. Salmonella isolation was espe-
cially common in opossums and raccoons caught in proximity to the water collection sites in
both watersheds. It is unknown how much these animal species and others [65, 66] contribute

Table 4. Salmonella PFGE types isolated from the Little River and Oconee River watersheds associ-
ated with human illnesses.

Little River Oconee River

Total PFGE types submitted to CDC PulseNet 75 40

PFGE types with matches to patterns in PulseNet 33 19

#Total isolates with PFGE pattern matching PulseNet database (all
serovars)

74 (46%b;
n = 161)

49 (50%b;
n = 98)

• Muenchen isolates 9 (90%c; n = 10) 8 (33%c; n = 24)

• Rubislaw isolates 5 (21%c; n = 24) 2 (7%c; n = 29)

PFGE types associated with illnesses in Georgia a 7 4

#Cases in Georgia associated with matching PFGE types a 28 32

a Of the PulseNet matches, the search of database was restricted to year of isolation for environmental

strain
b Of PFGE patterns submitted to PulseNet, proportion of isolates with PulseNet matches
c For S. Muenchen or S. Rubislaw PFGE patterns submitted to PulseNet, the proportion of isolates with

PulseNet matches

doi:10.1371/journal.pone.0128937.t004
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to Salmonella loading in either river basin, but the results indicate that a significant population
of Salmonella strains may be moving between wildlife hosts and the environment, including
water.

Interestingly, many of the Salmonella serovars identified in the Little River (southern Geor-
gia) have been associated with outbreaks epidemiologically linked to fresh produce [15]. There
is a significant delineation in agricultural output within the state of Georgia, where the south-
ern region is noted more for produce production. As water is especially important in cultiva-
tion and production of produce, the watersheds in southern Georgia are potentially important
conduits for introducing Salmonella contamination to food products. Irrigation ponds in the
region have been shown to harbor Salmonella, but at a lower diversity than noted in the water-
shed studies presented here [39]. Differences between a pond environment and a flowing river
system may reflect differences in loading and contamination and may also reflect ecological
differences in the system.

The overall level of Salmonella and their diversity in natural watersheds supports the idea
that landscapes may be an important feature in sporadic transmission to humans. Similar dis-
parities in the geographic distribution of human illnesses associated with other zoonotic bacte-
ria such as Escherichia coli O157:H7 and Campylobacter sp. have been observed elsewhere,
where higher illness rates are found in regions with high livestock densities, likely due to
increased animal contact and environmental exposure [18, 19, 67, 68]. Evidence from recent
work suggests that direct environmental exposures may be important in non-outbreak scenar-
ios. For example, the prevalence of private wells for drinking water and use of septic systems
are noted risk factors for non-outbreak associated salmonellosis, especially among children
[17, 20]. Similar risk factors were also noted for specific serovars common in the southeast U.S.
[20] While both of the rural areas investigated in this study rely on septic systems for waste dis-
posal, there is a higher rate of private (untreated) wells as the source of drinking water in the
southern part of the state (28.7% of the total population and 95% of the rural population [69].

Salmonella enterica is a commonly detected pathogen in the waters of Georgia, and here
showed a very high level of diversity both at the serovar and PFGE-type strain level, especially
in the Little River watershed in the Atlantic Coastal Plain. Similar observations have been
made regarding the genetic diversity of Salmonella isolated from other river systems [58],
including the Suwanee watershed of South Georgia/North Florida [36, 58]. This temporal turn-
over of Salmonella strain types in the two river basins may follow point-source contamination
and possible impact of land use on prevalence and diversity within these environs. While there
was significant genetic diversity in each of these two river basins, we did identify matching
PFGE patterns between Salmonella recently isolated from the Oconee River and Little River
and those from earlier studies of the two watersheds [37, 53]. This suggests certain Salmonella
strains persist in this environment due to either continued contribution by an animal popula-
tion or long-term persistence within this aquatic environment, suggesting a specific niche
within the river or watershed. For example, evidence indicates that sediment may support
long-term survival and persistence for Escherichia coli O157:H7 [70], Salmonella [70, 71], and
Campylobacter [72]. Storm events can churn up this sediment and reintroduce these dormant,
persistent Salmonella strains into the water column. Salmonella levels within the water column
significantly increase in the river following storm events and there is a positive correlation in
Salmonella prevalence, concentration, and rainfall [37].

Over all serovars tested, there were no differences between the Oconee River and the Little
River basin in the percentage of environmental Salmonella strains that matched human clinical
strains (~50% each, determined by identical PFGE patterns with human isolates reported to
the PulseNet database), despite the fact that prevalence of salmonellosis is higher in the south
(including the Little River area). When focusing on specific Salmonella serovars, we identified
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distinct differences between the watersheds in the proportions of strains matching those of
human isolates in PulseNet. For example, 90% of the S. Muenchen isolates from the Little River
watershed matched entries in PulseNet versus only 33% from the Oconee River watershed. The
greater preponderance of matches between environmental and human isolates for the Little
River and the Oconee River is especially significant due to the high level of genetic diversity
inherent in these populations and may suggest differences in climate, landscape, and human
activities between the two watersheds. In addition to epidemiological studies that may help to
determine where and how humans may be exposed through the environment (including
water), in the future whole genome sequencing of these environmental, animal, and human
isolates, with matching PFGE patterns, will allow us to discern genetics that underlie the patho-
genic potential of environmental Salmonella and genetic markers that identify point source for
contamination.

Conclusion
Studies examining risk factors for salmonellosis can no longer focus only on impacts associated
with food production. Salmonella is a broad zoonotic agent that is likely part of the ecology of
the landscape, with high rates of exchange probable between humans, water, and wildlife.
There are several inherent differences between North and South Georgia in its geography, geol-
ogy, land use, and ecology that may be driving the rates of salmonellosis within the state. The
recent publication of the Salmonella Atlas for 32 major Salmonella serovars by the CDC further
supports geographical differences in the incidence of disease in the United States [73]. Under-
standing ecological interactions between pathogens, the environment, and humans is essential
for reducing the burden of human illnesses due to Salmonella.
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