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Abstract

Coevolutionary networks can encapsulate information about the dynamics of presence and absence of gene families in

organisms. Analysis of such networks should reveal fundamental principles underlying the evolution of cellular systems and the

functionality of sets of genes. In this study, we describe a new approach for analyzing coevolutionary networks. Our method
detects Mutually Exclusive Orthologous Modules (MEOMs). A MEOM is composed of two sets of gene families, each including

gene families that tend to appear in the same organisms, such that the two sets tend to mutually exclude each other (if one set

appears in a certain organism the second set does not). Thus, a MEOM reflects the evolutionary replacement of one set of genes

by another due to reasons such as lineage/environmental specificity, incompatibility, or functional redundancy. We use our

method to analyze a coevolutionary network that is based on 383 microorganisms from the three domains of life. As we

demonstrate, our method is useful for detecting meaningful evolutionary clades of organisms as well as sets of proteins that

interact with each other. Among our results, we report that: 1) MEOMs tend to include gene families whose cellular functions

involve transport, energy production, metabolism, and translation, suggesting that changes in the metabolic environments that
require adaptation to new sources of energy are central triggers of complex/pathway replacement in evolution. 2) Many MEOMs

are related to outer membrane proteins, such proteins are involved in interaction with the environment and could thus be

replaced as a result of adaptation. 3) MEOMs tend to separate organisms with large phylogenetic distance but they also separate

organisms that live in different ecological niches. 4) Strikingly, although many MEOMs can be identified, there are much fewer

cases where the two cliques in the MEOM completely mutually exclude each other, demonstrating the flexibility of protein

evolution. 5) CO dehydrogenase and thymidylate synthase and the glycine cleavage genes mutually exclude each other in

archaea; this may represent an alternative route for generation of methyl donors for thymidine synthesis.

Introduction

Coevolution of genes is an important force constraining the

evolution of genes, proteins, and other cellular features and
is useful for predicting physical and functional interactions

(Chen and Dokholyan 2006; Juan et al. 2008).

A natural way of representing coevolutionary relations is by

‘‘coevolutionary networks’’ (Dagan et al. 2008; Lima-Mendez

et al. 2008; Halary et al. 2009; Tuller et al. 2009). In the case

of coevolution of genes, each node in a coevolutionary

network corresponds to a gene family (e.g., a Cluster of

Orthologous Groups [COGs] of proteins[Tatusov et al.

2003]), and pairs of nodes are connected by an edge if they

tend to appear in the same organisms. In some cases, the

network can also encompass information about ‘‘anti-

occurrence,’’ that is, proteins or cliques of proteins that

tend ‘‘not to appear’’ in the same organisms are connected

with a different type of edge (Tuller et al. 2009).
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Previous systems biology studies have mainly focused on

other types of biological networks such as protein interaction

networks (see, e.g., Kelley et al. 2003; Sharan et al. 2005),

genetic interaction networks (Kelley and Ideker 2005; Ulitsky

and Shamir 2007), and regulatory networks (e.g., Milo et al.

2004; Hershberg et al. 2005) to understand cellular systems.

One important difference between coevolutionary networks
and other biological networks is the fact that coevolutionary

networks encapsulate information about the evolutionary dy-

namics of cellular systems, whereas the other networks pro-

vide a snapshot of a particular cellular system at a certain time

point (i.e., in a specific organism). Thus, by analyzing coevo-

lutionary networks, it should be possible to detect biological

phenomena that cannot be detected by analyzing other

biological networks.
In this study, we describe a new computational approach

for analyzing coevolutionary networks. The aim of our

method is to find Mutually Exclusive Orthologous Modules

(MEOMs)—pairs of sets of gene families such that each

set tends to appear in the same organisms, but the two sets

usually do not co-occur (see fig. 1). These sets may describe

cases of lineage specificity, where only one divergent lineage

can benefit from a particular functional set. Another expla-

nation can be incompatibility—cases where different cellular

pathways cannot physically coexist in the same organisms.

Alternatively, they may simply represent functional streamlin-

ing where the loss of one cellular subfunction can be either

due to redundancy or an evolutionary consequence of differ-

ent ecological constraints.

Materials and Methods

Information about Taxonomy

This information was downloaded from ftp://ftp.ncbi.nih.gov/
pub/taxonomy/.

Obtaining the Input Network

The nodes in the analyzed networks correspond to the
4,870 COGs (Tatusov et al. 2003) in a large data set of or-

ganisms that will be discussed later.

The coevolutionary networks used in this study were

based on two sources of information: 1) Evidence of co-

functionality or physical interactions (e.g., the String

FIG. 1.—Finding MEOMs in coevolutionary networks: a flow diagram. (A) A coevolutionary network is reconstructed based on biological (e.g.,

physical interaction, coexpression, etc.) and statistical evidence. (B) In a coevolutionary network, each node corresponds to a gene family; green edges

denote co-occurrence of the two nodes in the same organisms; red edges denote mutually exclusive occurrence (i.e., occurrence in different

organisms). (C) The optimization score of a MEOM was based on Kelley and Ideker (2005). (D) Each MEOM is composed of two green (close to) cliques

that are connected by a red (close to) bi-clique; in practice, the green (red) cliques (bi-cliques) may not be perfect (i.e., some of the edges may be

missing; Materials and Methods). (E) Projection of a MEOM on a (gene family) � (organism) table; black denotes a case where there is a gene from the

gene family in the organism; white denote cases where no gene from the gene family appears in the organism. (F) The approach can be implemented

iteratively on subtaxonomic/phylogenetic groups.
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databases mentioned below). 2) Statistical evidences re-
lated to co-occurrence of pairs of COG in the analyzed ge-

nomes.

We put edges between pairs of COGs only if they satisfy

these two conditions.

This is a generic and ‘‘modular’’ approach: that is, it is pos-

sible to replace the first source of information with a differ-

ent one. It is also possible to use only the second source of

information. Similar ideas were used in Tuller, Birin, et al.

(2009) with very good results.

Specifically, the coevolutionary edges were based on in-

formation downloaded from the String database (Jensen

et al. 2009). This database includes information on genomic

neighborhood, coexpression, gene fusion, and more. Each

coevolutionary relation in this data set was based on a com-

posite score, which is a weighted average of these sources

of information. The initial number of coevolutionary rela-

tions downloaded from this database was 962,618. For a co-

evolutionary edge to be included in the network, it should

also satisfy additional statistical requirements:

Let pr00 denote the empirical probability that a pair of

orthologs does not appear in the same organism; let

pr01 denote the probability that the first ortholog does

not appear while the second does; let pr10 denote the prob-

ability that the first ortholog appears, whereas the second

does not appear; finally, let pr11 denote the probability that

the two orthologs appear in the same organism. Let ‘‘green’’

denote a positive co-occurrence relation between the two

orthologs and ‘‘red’’ denote a negative co-occurrence rela-

tion. We considered only significant edges that exhibit

(A) a strong coevolutionary relation, and
(B) the pattern of occurrence/absence of the pair of

proteins is variable: In the case of green edges, there
are organisms with both proteins but also organisms
with neither. In the case of red edges, there are
genomes encoding one of the proteins but not the
other, but there are also cases in which the presence/
absence pattern of these proteins is the opposite (the
second protein is encoded in the genome but the first
one is not).

Statistically, pairs of orthologs with stronger condition (B)

are more surprising as they correspond to cases where there

have been more evolutionary changes in the presence/ab-

sence pattern of each of the proteins/orthologs but the

changes of the two proteins were correlated.

Specifically, we considered the following conditions (k1

and k2 are two thresholds): To satisfy condition A:

1. Candidates for green edges: calculate g1 5 (pr00 þ
pr11)/(pr01 þ pr10) for each edge and choose the
first (1� k1) � 962,618 edges which have the highest
g1 value.

2. Candidates for red edges: calculate r1 5 (pr01 þ
pr10)/(pr00 þ pr11) for each edge and choose the

first (1 – k1) � 962,618 edges which have the highest
r1 value (these edges also have the lowest g1 value).

To satisfy condition B:

3. For each potentially green edge, calculate an
additional value: g2 5 max(pr00, pr11)/min(pr00,
pr11); choose only the edges that have g2 , k2 to be
green.

4. For each potentially red edge, calculate an additional
value: r2 5 max(pr01, pr10)/min(pr01, pr10); choose
only the edges who have r2 , k2 to be red.

The Small Network. This graph corresponds to a set of 95

bacteria, archaea, and eukaryotes downloaded from Tuller,

Birin, et al. (2009). By letting k1 5 95% and k2 5 10, we

obtain a network with 24,944 edges and 2,421 different

orthologs. Specifically, it includes 5,242 red edges and

19,702 green edges.

The Large Network. This graph corresponds to the gene
content of 383 bacteria and archaea and eukaryotes.

These data were downloaded from National Center for

Biotechnology Information (NCBI) (ftp://ftp.ncbi.nih.gov/

genomes/) and based on the data set from Tuller et al.

(2011); the data were analyzed hierarchically. The hierar-

chical partitioning of the data was based on NCBI

taxonomy (ftp://ftp.ncbi.nih.gov/pub/taxonomy/).

At the first stage, we analyzed the entire data set by let-
ting k1 5 90% and k2 5 10, we obtain a network with

31,451 edges and 2,324 different orthologs. Specifically,

it includes 3,655 red edges and 27,796 green edges.

At the next stage, we analyzed eukaryotes (18 organsims;

68,527 green edges, 1,444 red edges, and 1,095 COGS),

archaea (27 organsims; 672 green edges, 1,456 red edges,

1,047 COG), and bacteria (340 organsims; 15,836 green

edges and 1,083 red edges, 1,855 COGs) separately.
At the next stage, we analyzed a few large bacterial sub-

groups (groups with more than 20 organisms):

Proteobacteria (199 organisms; 8,962 green edges, 490

red edges, and 1,405 COGs), Firmicutes (59 organisms;

28,021 green, 522 red edges, and 1,235 COGs), Actinobac-

teria (26 organisms; 6,923 green, 490 red edges, and 1,127

COGs; we used here k1 5 0.85).

Scoring MEOMs

We used an algorithm that is based on Ulitsky and Shamir

(2007). The optimization score was based on Kelley and Ideker

(2005). Let GgðV ; EgÞ be the network induced when consid-
ering only the positive coevolutionary relations (the green

edges); let GrðV ; ErÞ be the network induced when consider-

ing only the reciprocal coevolutionary relations (the red edges).

The nodes, V , in these networks are the set of genes families

(COGs). A MEOM is a pair of disjoint sets V1, V2, such that (a)

=V2=; =V1= � 2; (b) For each Vi, there are unusually many

Mutually Exclusive Orthologous Modules GBE
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green edges between Vi; and (c) there are unusually many red
edges between V1 and V2 (see fig. 1).

To quantify property (b), we derive a log-odds score re-

flecting the likelihood that the density of green edges be-

tween nodes in V1 or in V2 is unusually high. We

compare two hypotheses: under the MEOM hypothesis, ev-

ery pair of genes, one from Vi (i 5 1 or i 5 2), has a coevo-

lutionary relation (green edges) with a high probability a,
independently of all other gene pairs, and the likelihood
of a model Vi is thus

‘
ða;bÞ2ðVi�ViÞ

a:Iða; bÞ þ ð1 � aÞ

ð1 � Iða; bÞÞ, where Iða; bÞ equals 1 if there exists a red edge

between a and b and otherwise it equals 0; in the null hy-

pothesis, every pair (a, b) is connected with probability

rða; bÞ, representing the chance of observing this interaction

at random, given the degrees of a and b in Gg. We estimate

rða; bÞ by generating a random ensemble of networks with
the same degree sequence and counting what fraction of

them contain an interaction between a and b. The log-odds

score is then

SgðViÞ5

log

‘
ða;bÞ2ðVi �ViÞ

a:Iða; bÞ þ ð1 � aÞ:ð1 � Iða;bÞÞ
‘

ða;bÞ2ðVi �ViÞ
rða; bÞ:Iða; bÞ þ ð1 � rða;bÞÞ:ð1 � Iða; bÞÞ :

Similarly, to quantify property (c), we derive a log-odds
score reflecting the likelihood that the density of red edges

between V1 and V2 is unusually high. We compare two hy-

potheses: under the MEOM hypothesis, every pair of genes,

one from V1 and the other from V2, have reciprocal coevo-

lutionary relation (red edges) with a high probability b, in-

dependently of all other gene pairs, and the likelihood of

a model (V1, V2) is thus
‘

ða;bÞeðVi�ViÞ
bIða; bÞ þ ð1 � bÞ

ð1 � Iða; bÞÞ, where Iða; bÞ equals 1 if there exists a red edge

between a and b and otherwise it equals 0; in the null hy-

pothesis, every pair (a, b) is connected with probability

rða; bÞ, representing the chance of observing this interaction

at random, given the degrees of a and b in Gg. We estimate

rða; bÞ by generating a random ensemble of networks with

the same degree sequence and counting what fraction of

them contain an interaction between a and b. The log-odds
score is then.

SrðV1;V2Þ5

log

 ‘
ða;bÞeðVi �ViÞ

b:Iða;bÞ þ ð1 � bÞ:ð1 � Iða; bÞÞ
‘

ða;bÞeðVi �ViÞ
rða; bÞ:Iða;bÞ þ ð1 þ rða; bÞÞ:ð1 þ Iða; bÞÞ

!
:

The final score was SrðV1;V2Þ þ SgðV1Þ þ SgðV2Þ. The

aim was to find subnetworks whose score is as large as pos-

sible. We filtered subnetworks whose probability in ran-
domized networks with similar degree distribution (see

below how these networks were computed) was .

0.05. To assess the statistical significance of the results,

we performed the two randomization tests described

below:

Two Network Randomization Tests. In this paper, we
report two randomization tests.

In the first randomization test, we generated for each

data set a random ensemble of networks (a total of 20 net-

works) with the same degree distribution of red and green

edges (see, e.g., Tuller, Kupiece, and Ruppin 2009). We

counted what fraction of them contained more MEOMs

than the original network.

The second randomization test was similar to the one re-
ported in Lima-Mendez et al. (2008). In this randomization

test, we generated a total of 20 networks where we ran-

domly assigned COGs to each organism maintaining the to-

tal number of COGs in the organism. In this case, we used k1

such that the number of edges in the random network will

be similar to the number of edges in the original network.

Jackknifing. Jackknifing (see, e.g., Shao and Tu 1995) was

performed as described below.
Repeat 100 times:

1. Randomly choose 90% of the edges in the network
(STRING).

2. Run the algorithm to find MEOMs.

Count for each MEOM the number of times it appears
(Jaccard index [Jaccard 1912] . 0.5 corresponding to the

nodes in the two MEOMs) in resultant random networks.

MEOMs’ Separation Versus Phylogenetic/Environ-
mental Proximity

To show that the separation of MEOMs corresponds both to

phylogentical proximity and to environmental proximity, we
used the following definitions:

A pair of organisms is separated by a MEOM if one of

them has most of the COGs (i.e., more than 50%) of the

first cluster but does not have most of the genes (COGs)

of the second cluster, whereas the second organism have

most of the genes of the second cluster but does not have

most of the genes of the first cluster. The MEOMs’ separa-

tion score for a pair of organisms is the number of times
these two organisms are separated by a MEOM. Evolution-

ary proximity between two organisms was defined as the

number of nodes separating the two taxa in NCBI taxonomy

tree (see, e.g., Farris 1969). A pair of organisms was defined

to share environments if it appears in the same community

according to Freilich et al. (2010).

To control for the size of the genomes of the analyzed

organisms, we computed for each pair of genomes the

Zhang et al. GBE
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mean number of COGs in that pair. We performed nonpara-

metric multivariate analysis (see details below) where we

computed the following correlations 1) Correlation between

MEOM separation and ‘‘phylogenetic’’ proximity when con-
trolling for ‘‘ecological’’ proximity and the size of the ge-

nomes together. 2) Correlation between MEOM

separation and ecological proximity when controlling for

phylogenetic proximity and the size of the genomes to-

gether. The correlations were 0.53 and �0.082, respectively

(P , 10�16 in both cases).

Nonparametric Multivariate Analysis. Let X and Y de-

note two variables and Z5 [Z1, Z2, Z3, . . . ] denote a set of

variables. The nonparametric multivariate analysis that is re-

ported in this paper includes partial Spearman correlations

of the form R(X,YjZ). Roughly, if such a correlation is signif-

icant it means that there is a relation between X and Y that

cannot be explained by the variables in Z.

Results and Discussion

We analyze two coevolutionary networks, one that corre-

sponds to 95 organisms and was previously used (Tuller

et al. 2009) to reconstruct ancestral gene content and

a new coevolutionary network extracted from 383 microor-

ganisms (see Materials and Methods); the smaller data set is
based on the commonly used COG database (Tatusov et al.

2003) and is a subset of the second data set.

We performed the following general steps to obtain

MEOMs: First, based on physical and statistical evidence,

we generated a coevolutionary network of 383 organisms

and 4,870 COGs (fig. 1A and B; Materials and Methods). In

this network, we found MEOMs (two green cliques that are

connected by a red bi-clique, that is, a highly connected
component of red edges; fig. 1C–E; Materials and Methods)

and analyzed the COGs and organisms corresponding to

each MEOM. This procedure was implemented hierarchi-

cally: in each step, we divided the set of organisms to sub-

taxonomical groups and applied our method to find MEOMs

in each of these subsets separately (fig. 1F).

MEOMs Divide the Three Domains of Life Accord-
ing to Ribosomal and Proteasomal Proteins

To demonstrate our approach, we began with a relatively
small data set (95 species of bacteria, archaea, and eukar-

yotes). The most striking MEOM found by our method ap-

pears in figure 2 (see supplementary table 1,

Supplementary Material online, for the list of all nine

MEOMs that were found for this data set). One of the

green cliques in this MEOM corresponded to a set of ribo-

somal proteins that appear exclusively in Bacteria, whereas

the second corresponded to the ribosomal proteins that
only appear in Archaea (see fig. 2). Indeed, since bacterial

and archaeal ribosomes differ significantly, many of the ri-

bosomal proteins should appear either in Archaea or in

Bacteria, they mutually excluding each other (Roberts

et al. 2008). In addition, it was shown that the ribosomal

proteins undergo less horizontal gene transfer (HGT) than

other protein families (Cohen and Pupko 2009). In

FIG. 2.—The most striking MEOM detected in data set of 95 organisms. (A) The coevolutionary edges between the gene families that are part of

the MEOM. (B) The solution splits the analyzed organisms to the three domains of life (bacteria, archaea, and eukarya).
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contrast, the only domain of life where both sets of ribo-

somal proteins appear is Eukarya—the archaeal ribosome is

similar to the cytosolic eukaryotic ribosome, whereas the

bacterial ribosome is similar to the mitochondrial eukary-

otic ribosome (see fig. 2). Reassuringly, this is exactly the

result obtained in the ribosomal MEOM in Eukarya (fig.

2). Thus, although our method is unsupervised and does

not assume any phylogenetic tree, it accurately divided the
organisms in the data set into the three domains of life

and identified the most central and evolutionarily conserved

complex (the ribosome) that separates these organisms.

Another important complex that is specific to the ar-

chaeal/eukaryotic branch of the tree of life is the protea-

some (the notable exception being Mycobacterium
tuberculosis [Lin et al. 2006]). Indeed, several proteasome

subunits are also domain-specific MEOMs. Curiously, two
proteins of unknown function, a GTPase and a putative

transcription factor, appear as part of the eukaryotes/arch-

aea-specific MEOM set. We can therefore speculate that it

is highly likely that they represent some yet unidentified

component of either the translational apparatus or

proteasome-mediated degradation.

Analysis of a Data set of 383 Species of Bacteria,
Archaea, and Eukaryotes Reveals the Systems
Biological Properties of MEOMs

To better obtain general evolutionary observations, we

extended our approach to analyze a larger data set of

383 microorganisms, better representing multiple levels

of prokaryotic taxonomic diversity (see fig. 3A). In each sub-

group of this data set, dozens of MEOMs were detected (the

exact number of MEOMs that was detected in each sub-

group appears in fig. 3A; the details about all the MEOMs

found in each group of organisms appear in supplementary

tables 2–8, Supplementary Material online). We performed

two randomization tests to show that the number of de-

tected MEOMs is significant. In the first test, we compared

the number of MEOMs to the result obtained for random-

ized coevolutionary networks with a similar network degree

distribution (see the Materials and Methods section). In the

second test, we compared our MEOM data with the results

obtained when we randomly assigned COGs to genomes

while maintaining the same number of COGs in each ge-

nome (Materials and Methods and Lima-Mendez et al.

FIG. 3.—General properties of MEOMS. (A) The subgroups that were analyzed from a data set of 383 organisms, the number of organisms in each

subgroup (blue) and the number of MEOMs that were detected in each subgroup (red). (B) Number of incomplete mutually exclusions in each of the

analyzed group of organisms (out of the total number of MEOMs detected). (C–E) MEOMs reflect both lineage specificity and environmental changes.

(C) Mean MEOMs’ separation increases with phylogenetic distance (Materials and Methods) for pair of organisms that are not in the same environment

(Spearman correlation r 5 0.96; P 5 2.4 � 10�10). (D) Mean MEOM separation increases with phylogenetic distance for pair of organisms that are in

the same environment (Spearman correlation r 5 0.96; P 5 3.3 � 10�9). (E) For every phylogenetic distance, pairs of organisms that are in the same

community (Materials and Methods) have lower mean MEOM separation than pairs of organisms that are in different communities (Wilcoxon test: P 5

0.0005).
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2008). All the P values but one were significant (i.e., all P
value , 0.0045); one P value was borderline significant

(P value 5 0.083); in most of the cases (all data sets for

the first randomization, 5 of 6 data sets for the second ran-

domization), the number of detected MEOMs in the ran-

domized networks was zero or close to zero (see details

in supplementary table 10, Supplementary Material online).

In addition, we performed Jackknifing (see, details in the

Materials and Methods section) to show that most of the
resultant MEOMs reported in the paper are robust to

changes in the input database.

We found that 78% of the MEOMs appear in at least

90% of the sampled databases (96% of the MEOMs appear

in at least 70% of the sampled databases) demonstrating

that the results reported in the paper are robust and that

smaller data sets can also be used reliably (see details in sup-

plementary table 10, Supplementary Material online).

Flexibility in the Coevolution of Protein Complexes

Interestingly, excluding the eukaryotes, in all the other

groups analyzed, we found organisms that include both

green cliques of the MEOMs (i.e., there are relatively few

cases where these cliques completely mutually exclude each

other, hinting to the existence of putatively incompatible

gene families; fig. 3B). This is surprising as the aim of our
algorithm is to find sets of orthologs with ‘‘as few organisms

with both cliques as possible.’’ This result demonstrates the

great evolutionary flexibility of protein evolution because it

implies that almost any combination of two complexes can

coexist in the same cell without any deleterious effect or at

least that in some organisms an evolutionary solution can be

found that allows this coexistence. This inherent flexibility

and adaptability of cellular life could help explain why lateral
gene transfer is such a common evolutionary phenomenon

because acquiring a functional complex in its entirety (e.g.,

by acquisition of a ‘‘selfish operon,’’ [Lawrence and Roth

1996]) will outweigh the possible deleterious effects, at least

in some lineages. More generally, this result is in accordance

with previous studies emphasizing the robustness and flex-

ibility of many biological systems (see, e.g., Barkai and

Leibler 1997; Kitano 2004; Lehar et al. 2008; Li et al.
2009; Shinar and Feinberg 2010).

MEOMs Tend to Separate Organisms with Large
Phylogenetic Distance but Also Separate Organ-
isms That Live in Different Ecological Niches

In the next step, we wanted to verify if MEOMs represent

both evolutionary proximity and environmental changes.

Thus, we performed the following experiment: we consid-
ered the data set of all the bacteria; for each pair of bacterial

species, we counted the number of times this pair of organ-

isms appeared in different green cliques of a MEOM. We

denote this number as the ‘‘MEOM separation index’’ of

the pair of organisms.

We compared the MEOM separation of pairs of organ-
isms with their evolutionary proximity (the topological dis-

tance in NCBI taxonomy; Materials and Methods) and

their environmental proximity (according to Freilich et al.

[2010], Materials and Methods). To show that the separa-

tion of MEOM decreases with phylogenetic distance while

controlling for environmental proximity, we computed the

correlation between the phylogenetic distance and the

mean MEOM separations of organisms that do not inhabit
the same environment (Spearman correlation r5 0.96; P5
2.4 � 10�10) and for organisms that do live in the same

niche (Spearman correlation r 5 0.96; P 5 3.3 � 10�9).

To show that MEOM separation decreases with environmen-

tal proximity, we computed for each possible phylogenetic

distance the mean MEOM separation of pairs of organisms

with this phylogenetic distance. We computed such a vector

of mean MEOM separation for pairs of organisms from the
same community and pairs of organisms that are in different

communities. We compared these vectors to show that

a component in the first vector tends to be smaller than

the corresponding component in the second vector; that

is, for every phylogenetic distance, pairs of organisms that

are in the same community have lower mean MEOM sep-

aration indexed than pairs of organisms that are in different

communities (Wilcoxon test: P 5 0.0005). The correspond-
ing graphs appear in figure 3C–E and show that the mean

MEOM separation increases both with the mean evolution-

ary distance (even when controlling for environmental dis-

tance) and with environmental distance (Freilich et al. 2010)

(even when controlling for evolutionary distance). In addi-

tion, we performed a multivariate regression analysis (see

details in the Materials and Methods section). We showed

that 1) there is correlation between MEOM separation and
phylogenetic proximity even when controlling for ecological

proximity and the size of the genomes together. 2) There is

a correlation between MEOM separation and ecological prox-

imity even when controlling for phylogenetic proximity and

the size of the genomes together (P , 10�16 in both cases).

These results suggest that MEOMs reflect both lineage-

specific and adaptation-driven changes (e.g., due to a shift

in environmental conditions or lateral gene transfer).

MEOMs Are Enriched with Metabolic Genes and
Outer Membrane Proteins

In order to understand if there are cellular functions that tend

to appear more frequently in MEOMs, we computed for each

group of organisms the number of times each cellular function

appears in a MEOM. We considered three functional ontolo-

gies: the GO ontology of S. cerevisiae (Harris et al. 2004), the
GO ontology of Escherichia coli (Harris et al. 2004), and the

more general COG ontology (Tatusov et al. 2003). Table 1

depicts the top cellular functions that are enriched in MEOMs

when considering the COG ontology. As can be seen, the

main cellular functions that are enriched in MEOMs relate

Mutually Exclusive Orthologous Modules GBE

Genome Biol. Evol. 3:413–423. doi:10.1093/gbe/evr030 Advance Access publication April 17, 2011 419

http://gbe.oxfordjournals.org/cgi/content/full/evr030/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr030/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr030/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr030/DC1


to ‘‘Transport,’’ ‘‘Energy production,’’ ‘‘Metabolism,’’ and

‘‘Translation’’ (similar results were obtained when we used

the GO ontologies of E. coli or S. cerevisiae; supplementary

table 9, Supplementary Material online; all the P values appear
in supplementary tables 1–8, Supplementary Material online)

suggesting that changes in the metabolic environments that

require adaptation to new sources of energy are central

triggers of complex/pathway replacement in evolution.

In addition, we see many results that are related to outer

membrane proteins (e.g., 5 of the 21 bacterial MEOMs were

enriched with GO terms related to the outer membrane). Such

proteins are involved in the interaction of Gram-negative bacte-
ria with the environment and could thus be replaced as a result

of adaptation (indeed, when considering only these MEOMs,

for every phylogenetic distance, pairs of organisms that are in

the same community have lower mean MEOM separation than

pairs of organisms that are in different communities; Wilcoxon

test: P 5 0.005). Furthermore, different organismal lineages

differ in their cellular envelope structure, imposing different

constraints on the families of outer membrane proteins that
can be found in them (e.g., lipid monolayers in some archaea,

double membranes in Gram-negative bacterial lineages, mycolic

acid in some cell walls, etc.). Thus, for example, in Bacteria

(bacterial MEOM 1) the Gram-positive bacteria that do not pos-

sess the conserved outer membrane proteins common to Gram

negatives, have a mutually exclusive clique of protein compo-

nents of a putative ABC transporter, which includes a typical

Gram-positive lipoprotein substrate-binding subunit.

Our algorithm detects pairs of cliques, each with very

strong coevolutionary relations. Therefore, in many cases,

the entire clique is replaced by another clique. Thus, the al-

gorithm identifies only very rigid co-occurrence cliques, that
is, protein complexes (or subcomplexes) where ‘‘subunits’’

cannot be substituted by members of other protein families

while still maintaining the function of the complex. This of-

ten results in the identification of the most basic functional

modules within a complex. Our results imply that acquisition

and subsequent replacement of subunits in these complexes

(or subcomplexes) by lateral gene transfer will only proceed

through xenologous gene replacement rather than by intro-
duction of nonhomologous subunits. Thus, it is possible that

many of the cliques reported in this paper (e.g., the outer

membrane complexes and ribosomal/proteosomal subcom-

plexes mentioned above) are such basic functional modules.

Mutual Exclusion of H1-ATPase and F-ATPase in
Bacteria and Archaea

We described above an example of mutually exclusive com-
plexes due to divergence of lineages, that is, the translational

apparatus of Archaea and Bacteria. In the case of the ribo-

some, lineage divergence probably coincides with incompati-

bility because the same cell cannot harbor two different

ribosome types, unless some compartmentalization had

occurred (e.g., eukaryotic organelles). However, mutually

exclusive protein complexes can also be a result of the loss

of functional redundant complexes, where an activity does

Table 1

Cellular Functions (COG Ontology; Tatusov et al. 2003) That Tend to Appear in MEOMs

Group of

Organisms

Cellular

Functions

Number of MEOMs

with the Function

Total Number of

Enriched Functions

Total Number of

MEOMs

Most/Least

Significant P Value

All Translation, ribosomal structure

and biogenesis

4 16 22 2.22 � 1016/2.27 � 10�02

Energy production and

conversion

4 16 22 4.46 � 10�11/6.88 � 10�04

Archaea Energy production and

conversion

1 2 11 4.43 � 10�004

Amino acid transport and

metabolism

1 2 11 1.95 � 10�004

Bacteria Energy production and

conversion

5 14 21 6.08 � 10�12/4.88 � 10�04

Replication, recombination,

and repair

2 14 21 1.19 � 10�05/1.06 � 10�3

Eukaryotes Translation, ribosomal structure,

and biogenesis

1 4 14 2.21 � 10�008

Amino acid transport and metabolism 1 4 14 2.21 � 10�008

Proteobacteria Energy production and conversion 5 10 9 2.41 � 10�13/7.58 � 10�04

Carbohydrate transport and metabolism 3 10 9 6.88 � 10�10/4.45 � 10�05

Firmicutes Energy production and conversion 2 3 5 4.07 � 10�05/5.16 � 10�04

Amino acid transport and metabolism 1 3 5 4.44�10�05/3.04 �10�04

Actinobacteria Cell wall/membrane/envelope

biogenesis

2 8 15 1.37 � 10�06/7.71 � 10�04

Intracellular trafficking, secretion,

and vesicular transport

2 8 15 5.77 � 10�08/5.42 � 10�05
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not need to be carried out by two parallel mechanisms. This

situation can arise following acquisition of a gene cluster by

HGT or after a large duplication event. An interesting

example is the case of the Archaeal/vacuolar-type Hþ-ATPase
in bacteria (Bernasconi et al. 1989; Hilario and Gogarten 1993,

1998). Bacteria in general lack the Archaeal/vacuolar-type Hþ-

ATPase complex, with a few notable exceptions attributed to

lateral gene transfer, such as the spirochete Borrelia burgdor-
feri (Fraser et al. 1997; Hilario and Gogarten 1998) and Chla-
mydia species (Stephens et al. 1998), both intracellular

pathogens. Curiously, these intracellular bacteria have lost

the ancestral bacterial F-ATPase, hence their detection as
MEOMs (when considering the entire data set; see fig. 4),

and it appears likely that the laterally acquired ATPase now

pumps out protons from the cytoplasm and generates a proton

gradient, for energy, transport, or both, similar to the role of

the ancestral bacterial system (McClarty 1999). One can spec-

ulate that the reason that the acquired ATPase replaced the

ancestral one is some adaptation to life inside a eukaryotic cell.

Mutual Exclusion of CO Dehydrogenase/Thymi-
dylate Synthase and the Glycine Cleavage Gen-
es—Clues for Thymidine Metabolism in Archaea?

Although proteins of the putative glycine cleavage system
are abundant in archaea, their roles are unclear and

a Haloferax volcanii mutant defective for one of its compo-

nents, dihydrolipoamide dehydrogenase, showed no

growth inhibition on a variety of minimal media (Nakamura

et al. 2004). These genes are present in all archaea in our
data set, except the methanogens and Archaeoglobus
fulgidus, an archeon that also has some methanogenesis-

related genes. The latter organisms have a clique of proteins

mutually exclusive with the glycine cleavage system. These

proteins include CO dehydrogenase, which is found in

methanogenic archaea, and can function either as an

acetyl-CoA synthase or in the fermentation of acetate to

methane (Ciccarelli et al. 2006). Another protein in this
clique is the ThyA-type thymidylate synthase. Because

methanogens do not synthesize folate and its derivatives,

it is assumed that different molecules provide the required

methyl group for converting dUMP to dTMP, such as the

modified folate tetrahydromethanopterin. Glycine can pro-

vide a methylene group by glycine cleavage and generate

either 5,10-methylenetetrahydrofolate (from tetrahydrofo-

late) or the analogous tetrahydromethanopterin. Thus,
archaeal species that have the alternative thymidylate

synthase ThyX (Jaccard 1912) may use glycine cleavage

for dTMP synthesis. We therefore predict that unlike the lack

of phenotype observed in the Hfx. volcanii mutant

(Nakamura et al. 2004), the same mutation in the halophilic

FIG. 4.—One of the MEOMs found in the entire data set (383 organisms): the ‘‘archaeal/vacuolar-type Hþ-ATPase’’ versus ‘‘F0/F1-type ATP

synthase.’’ The COGs related to these two pathways are marked.
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archeon Halobacterium salinarum, which relies on ThyX
rather than ThyA (Giladi et al. 2002), should yield a strain

deficient in the synthesis of thymidine.

Conclusions

Coevolutionary networks represent relations between

proteins that tend to coevolve. These networks can yield

important evolutionary insights at the individual complex
level as well as reveal important general trends in evolu-

tionary systems biology, yet few methods to explore these

networks have been developed. Here, we used a novel ap-

proach for analyzing coevolutionary networks. Our

method captures both lineage-specific and environ-

ment-specific changes and can therefore be used inde-

pendently of an organismal phylogeny to investigate

complex evolutionary scenarios that include HGT, gene
duplication, and linage-specific changes in very large

number of organisms. This is important because most

evolutionary algorithms rely on a given ‘‘tree of life,’’

whereas in reality, many relationships are not well sup-

ported due to HGT (Jin et al. 2006; Doolittle and Bapteste

2007) or simply because deep relationships no longer

maintain sufficient evolutionary signal (Ciccarelli et al.

2006). Another important feature of our method is that
it was designed to infer both relations between organisms

and between gene families. Thus, it adds an additional di-

mension to previous approaches in molecular evolution

that mainly infer either relations between gene families

(see, e.g., Nakamura et al. 2004; Tuller, Birin, et al.

2009; Tuller, Kupiece, and Ruppin 2009) or between or-

ganisms (see, e.g., Ge et al. 2005; Doolittle and Bapteste

2007; Dagan et al. 2008). Another advantage of our ap-
proach is the fact that it can be implemented in a hierar-

chical manner to study biologically relevant groups of

organisms, at different taxonomic levels, revealing key

adaptations of subsets within phylogenetic groups.

The fact that most of the cliques reported in this paper

corresponded to known functional complexes confirms

that our method usually detects biologically meaningful

results. In addition, it suggests that it can be applied in
the future for detecting functional relations between gene

families. A gene family that is connected by coevolutionary

relations to many gene families with a certain function

probably has a similar cellular function (see also Tuller,

Kupiece, and Ruppin 2009). For example, MEOM 8 of

the Actinobacteria includes many flagellar genes but also

some uncharacterized proteins. We believe that the

uncharacterized proteins may also be related to motility
(other examples were reported above). The MEOM princi-

ple can also be generalized to study different network

types. Thus, one can analyze networks whose nodes

correspond to domains within proteins or organisms in

a community network (Freilich et al. 2010).

Supplementary Material

Supplementary tables S1–S10 are available at Genome Biol-
ogy and Evolution online (http://gbe.oxfordjournals.org/).
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