
RESEARCH ARTICLE

An approach on the implementation of full

batch, online and mini-batch learning on a

Mamdani based neuro-fuzzy system with

center-of-sets defuzzification: Analysis

and evaluation about its functionality,

performance, and behavior

Sukey Nakasima-López☯, Juan R. Castro☯, Mauricio A. SanchezID*☯, Olivia Mendoza‡,

Antonio Rodrı́guez-Dı́az‡

Faculty of Chemical Sciences and Engineering, Universidad Autónoma de Baja California, Tijuana, Baja

California, México

☯ These authors contributed equally to this work.
‡ These authors also contributed equally to this work.

* mauricio.sanchez@uabc.edu.mx

Abstract

Due to the rapid technological evolution and communications accessibility, data generated

from different sources of information show an exponential growth behavior. That is, volume

of data samples that need to be analyzed are getting larger, so the methods for its process-

ing have to adapt to this condition, focusing mainly on ensuring the computation is efficient,

especially when the analysis tools are based on computational intelligence techniques. As

we know, if you do not have a good control of the handling of the volume of the data, some

techniques that are based on learning iterative processes could represent an excessive

load of computation and could take a prohibitive time in trying to find a solution that could not

come close to desired. There are learning methods known as full batch, online and mini-

batch, and they represent a good strategy to this problem since they are oriented to the pro-

cessing of data according to the size or volume of available data samples that require analy-

sis. In this first approach, synthetic datasets with a small and medium volume were used,

since the main objective is to define its implementation and in experimentation phase

through regression analysis obtain information that allows us to assess the performance

and behavior of different learning methods under distinct conditions. To carry out this study,

a Mamdani based neuro-fuzzy system with center-of-sets defuzzification with support of

multiple inputs and outputs was designed and implemented that had the flexibility to use any

of the three learning methods, which were implemented within the training process. Finally,

results show that the learning method with best performances was Mini-Batch when com-

pared to full batch and online learning methods. The results obtained by mini-batch learning

method are as follows; mean correlation coefficient �R with 0.8268 and coefficient of

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 1 / 40

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nakasima-López S, Castro JR, Sanchez

MA, Mendoza O, Rodrı́guez-Dı́az A (2019) An

approach on the implementation of full batch,

online and mini-batch learning on a Mamdani

based neuro-fuzzy system with center-of-sets

defuzzification: Analysis and evaluation about its

functionality, performance, and behavior. PLoS

ONE 14(9): e0221369. https://doi.org/10.1371/

journal.pone.0221369

Editor: Jie Zhang, Newcastle University, UNITED

KINGDOM

Received: May 23, 2019

Accepted: August 5, 2019

Published: September 5, 2019

Copyright: © 2019 Nakasima-López et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from http://archive.ics.uci.edu/ml and https://itl.

nist.gov/div898/strd/nls/data/gauss3.shtml.

Funding: Author SN-L received a grant (767582)

from CONACYT, Mexico.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-7473-0546
https://doi.org/10.1371/journal.pone.0221369
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221369&domain=pdf&date_stamp=2019-09-05
https://doi.org/10.1371/journal.pone.0221369
https://doi.org/10.1371/journal.pone.0221369
http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml
https://itl.nist.gov/div898/strd/nls/data/gauss3.shtml
https://itl.nist.gov/div898/strd/nls/data/gauss3.shtml

determination �R2 with 0.7444, and is also the method with better control of the dispersion

between the results obtained from the 30 experiments executed per each dataset

processed.

Introduction

Currently, different sectors of services and products are requiring systems based on simulation

mechanisms for decision making, with the objective of providing greater accuracy, processing

of multiple critical variables and in huge volume. As well as the ability to discover hidden rela-

tionships, in order to get them valuable insights and knowledge. The capability to build effec-

tive solutions that can cope with the complexity intrinsic in data becomes increasingly

necessary.

Data analysis increasingly requires powerful tools that can control imprecisions and incon-

sistencies present in data, which are given by the complex nature of the environment in which

they were generated, as well as having the ability to process different volumes of information,

for which learning methods are identified, such as Batch, Online and Mini-Batch, which are

an excellent alternative to be implemented especially in iterative computational intelligence

techniques to help them have a more efficient performance.

Computational Intelligence (CI) is a discipline that has different bio-inspired approaches

that are considered excellent universal approximators, the most popular techniques are com-

posed by Fuzzy Logic (FL) [1–2], Artificial Neural Networks (ANN) [3–4], Evolutionary Algo-

rithms (EA) [5–6], Bayesian/Belief networks (BN) [7–8], Particle Swarm Optimization (PSO)

[9–10], Kernel methods [11–12], Artificial immune systems (AIS) [13–14], among others,

these techniques have the ability to solve multi-objective and non-linear problems.

Excellent results have been obtained when these techniques have been combined, such as

learning, adaptation and knowledge representation used together have become in a powerful

tool because it is a way to enhance their advantages and overcome the limitations that each

technique could individually achieve, this synergy is known as Hybrid Intelligent Systems

(HIS). Of the techniques from which greater advantages can be exploited when combined are

ANN and FL, since the ANN has the ability to learn from known samples and modeling non-

linear complex relationships, as well as infer hidden relationships what allow a better high vol-

atility of data handling without establishing prior restrictions on inputs, with respect to its

distribution; building generalized models giving great results in prediction, classification, and

clustering, while FL based on approximate reasoning attempting to mimic human cognitive

process, it is easily interpretable and explanatory because of its systems support numeric and

linguistic variables [15]. It has applications in different areas in which their performance has

given very good results, some case studies are shown as follow:

• Academic management system to model student performance: A neuro-fuzzy adaptive sys-

tem was proposed. Its architecture is composed of a Neural Network (NN) multi-layer feed-

forward and back-propagation as training algorithm and the Sugeno algorithm to fuzzy

inference. It is dedicated to decision support and also it allows to measure the effectiveness

of teaching-learning methods, competence level, and skills [16].

• Health systems: It was implemented a neuro-fuzzy system with Gaussian defuzzification, the

architecture characteristics are composed of four layers. The first layer corresponds to

inputs, in the second layer are defined the linguistic terms (Gaussian membership function),

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 2 / 40

https://doi.org/10.1371/journal.pone.0221369

the third layer is dedicated to the definition of rules and the last layer are generated the out-

puts. Its optimization algorithm is Gradient Descent with the back-propagation algorithm

for adjustment of parameters (weights). It helps the diagnosis of different diseases, it is a

great electrocardiogram signals classifier that help detect ischemic heart disease [17–18].

• Traffic control: It is a generic neuro-diffuse system self-organized, the architecture of this

NN is composed of five layers, and its principal’s activities execute in each layer are: first

layer (defuzzification), second layer (antecedents), third layer (rules base), fourth layer (con-

sequent derivation) and layer fifth (output defuzzification). It is useful for safe and effective

traffic management on the roads, also in the definition of tactical maneuvers (lane change,

overtaking, vehicle tracking), coalitions forecast, among others [19].

Other Intelligent Hybrid Systems that have also been successful are: Fuzzy support vector

machine (FSVM) giving support to class imbalance issues [20], Artificial immune system and

genetic algorithm (AIS-GA) aims to automated diagnosis systems [21], Genetic algorithm, and

particle swarm optimization (GA-PSO) used to gene selection [22], Deep learning and extreme

learning machine (DELM) used in EEG classification [23].

The principal contribution of this study is to define the implementation of three learning

methods: Batch, mini-batch, and online. And through experimentation, obtain information

that allows us to assess its performance and behavior under distinct conditions, as well as

through the implementation of a neuro-fuzzy system, to seek the optimal adjustment of the

parameters through learning and the ease of interpretation through Mamdani fuzzy rules.

In this article, we explore different concepts necessary for understanding the of both learn-

ing methods and the neuro-fuzzy system implemented, its sections are organized as follow.

Hybrid intelligent systems section where will address the generalities of artificial neural net-

works, fuzzy logic, fuzzy inferences system and learning methods, the section of description of

model proposed, followed by the section of explanation of the experiment done and results

obtained through regression analysis, section of discussion with regards to performance, accu-

racy, and stability observed on our model proposed and others existing model and the last sec-

tion, it is dedicated to highlighting findings discovery and future work directions.

Hybrid intelligent systems

The combination of different methods of CI provides the opportunity to build HIS, which allow

us to extract the advantages that each offers us, for the development of powerful tools that allow

solving problems effectively, with learning capabilities and interpretability, achieving with this a

good performance and error handling very approximate to human reasoning [24].

CI has elements of learning, adaptation, evolution, and perception, also integrating statisti-

cal and probabilistic methods for better support [25]. Hereunder, we will review some tech-

niques and the concepts on which they are based, to have them as a reference when describing

the developed model.

Artificial neural networks (ANN). It is part of the set of CI techniques, and it is a disci-

pline that tries to imitate the learning process of the brain. It is also defined as adaptive non-

linear and self-organized processing algorithms. It has multiple processing units called neu-

rons, which are interconnected and distributed in different layers of the network, which have

the ability to learn based on their inputs and are adapted according to the learning obtained

from their environment [26].

Their architecture is compound by three major layers wherein each layer does a mapping

process from inputs to outputs. The first layer is dedicated to arranging the inputs and it is

called the Inputs Layer, and these could be any combination of variables that are important for

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 3 / 40

https://doi.org/10.1371/journal.pone.0221369

predicting the output. The output signals between nodes of the layers it is generated through

an activation or transfer function. Intermediate layers are known as Hidden Layers and these

are considered as essential because endow to ANN to ability to learn the relationships in the

data. Finally, in the Output Layer, the results obtained are compared with target sample to

know if task has been achieved, these tasks could be classification, clustering, predictions, esti-

mations, among others [27], as can observed in Fig 1.

The functional properties of ANN’s are: the mapping process is forward, weights are

adjusted iteratively after each training and are stored until the error desired is achieved or the

total of epochs are executed. To calculate the error, backpropagation algorithm is implemented

that has an inverse direction that feedforward process. To calculate the error, backpropagation

algorithm is implemented that has an inverse direction that feedforward process, one of most

optimization algorithm used is Gradient Descendant in order to minimize the error [28].

They are characterized by their adaptability, processing in parallel and distributed comput-

ing, the processing functions from the input to the output can have a linear, semi-linear or

non-linear behavior, the neurons can be defined and distributed according to the needs of the

problem [29]. They have the ability to approach several degrees of accuracy and recognize hid-

den patterns from complex and inaccurate data. They are widely used in problems of control,

prediction and classification [30].

Different ANN architectures have been developed, such as, Hopfield Networks, proposed in

1982 by John Hopfield [31]. It is considered one of the simplest because it consists of a single

neuron and one layer [32]. Multi-layer Perceptron Networks consists of three layers that are:

inputs, hidden and outputs. The hidden layer can be constituted by different numbers of layers

and inside them, it can contain different numbers of neurons [33]. Self-organized Maps, also

known as Kohonen Maps, are known for their grouping, visualization and classification capabil-

ities. It uses unsupervised and competitive learning [34]. Extreme learning machines are Feed-

forward Neural Networks. Its learning principle is essentially a linear model. They have a good

performance of generalization and learning is faster than networks that use backpropagation

training [35]. Convolutional neural networks, like ANN, their neurons self-optimize through

learning. One of their significant differences with respect to traditional ANN is that their neu-

rons are organized in three-dimensional layers, which is composed of input dimensionality

Fig 1. General architecture of artificial neural network.

https://doi.org/10.1371/journal.pone.0221369.g001

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 4 / 40

https://doi.org/10.1371/journal.pone.0221369.g001
https://doi.org/10.1371/journal.pone.0221369

(height and width) and depth [36]. And Deep learning, considers two key factors: non-linear

processing in multiple layers, using supervised and unsupervised learning [37].

The importance of ANN consists of the functional and operational ability stable, it is toler-

ant to partial, noisy and missing information, in the absence of mathematical representation

or model can solve complex problems [28].

Gradient descent algorithm. Algorithms based on gradients are one of the most used for

the optimization of the error function and parameters adjustment in the training stage of a

neural network. They are considered first order, this is referred to how much the function

decreases or increases from its first derivative and a specific point of beginning, thus tracing a

tangent line over the error surface from the initial point established.

This method has the capability to define a feasible descent directions vector through an iter-

ative process based on information derived from an objective function, where mainly looking

adjust parameters (weights) and minimize the model error during its learning process on a

spatial of multidimensional inputs to get close a pseudo-optimal solution.

The fundamental components to the implementation of the gradient descent algorithm are:

• The error function is identified as a cost and said cost results to the difference between the

estimate response ŷ with respect to the response known y, one of the error measures most

used is Sum of Squares Error (SSE), which is expressed in Eq (1).

E ¼ SSE ¼
Pq

p¼1
ðyp � ŷpÞ

2
8p ¼ 1; . . . ; q ð1Þ

• Gradient vector is built through an efficient method known as backpropagation algorithm,

in which the partial derivative of the error function with respect to all parameters per each

layer are propagated in a form iteratively and inverse to the calculation of the output signals

inter-layers processed in the feedforward stage, this could be expressed as shown in Eq (2).

g xð Þ ¼ rE xð Þ≝
@EðxÞ
@x1

;
@EðxÞ
@xi

;
@EðxÞ
@xn

� �T

8i ¼ 1; ::; n ð2Þ

Where g(ξ) is the gradient vector to all parameters, E is the error function and ξ are all

parameters that will be adjusted.

• Generalization of delta rule also known as backpropagation learning rule, is the change

applied to all parameters to be updated or adjusted, this change is given applying a learning

rate (this allows the control of the descent, that is, the adjust velocity) to gradient vector, as is

shown in Eq (3).

rx ¼ � Zg xð Þ ¼ � ZrE xð Þ ¼ � Z
@E
@x

ð3Þ

Whererξ is the directional change, −η is learning rate and g(ξ) is the gradient vector, later

this directional change is applied to the current parameters, to obtain new adjusted parameters

and to continue with the iterative learning process, as is shown in Eq (4).

x
new
¼ x

old
þrx ð4Þ

It is easy to implement and shows good results when it comes to nonlinear optimization,

however, some of its disadvantages are presented in its performance since it is observed slow

and high computing cost when dealing with data sets with high dimensionality.

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 5 / 40

https://doi.org/10.1371/journal.pone.0221369

Different learning methods based on size and partition of the samples for

its processing during the training stage

In order to lighten the computational burden, try to find better global minimums and there-

fore achieve better convergence, there are different learning methods based on size and parti-

tion of the samples, as well as, how the gradient vector will be processed and the learning rule

will be applied, these are [38–40]:

• Batch Training or Full Batch Learning Method: In this method, the partial derivatives of

the error are calculated and accumulated with respect to the parameters for each processed

data, that is, it is required to do the entire processing of training sample, in order to build the

gradient vector, with which finally, the learning rule that will allow updating or adjusting the

parameters of the model can be applied. It is observed in this method that, for samples with

small volume (number of instances), its performance is stable and with an acceptable conver-

gence, however, it tends to stagnate in local minimums, besides that when its number of

instances increases, its time of computation is excessive, it becomes impractical, it cannot be

implemented in a parallel environment and its expense of computation and memory

becomes prohibitive. The aforementioned behavior can be expressed as shown in Eq (5):

gðx; bÞ ¼ rEðx; bÞ ¼
Pq

p¼1
ðyp � ŷpÞ

2
ð5Þ

Where yp is the desired output, ŷp is the estimated output, and g(ξ,b) the gradient vector

constructed from the partial derivative error function E with respect to all its parameters ξ and

bias b, finally the Eq (6) represents the learning rule:

x
new
¼ x

old
� Zgðx; bÞ ð6Þ

Where η is the learning rate, ξold corresponds to the current parameters and to which the

change obtained from the learning rate and gradient vector will be applied, to generate its

update, represented by ξnew.

The following pseudo-code tries to represent the functional behavior of this method:

1. while epoch number does not reach its defined maximum

2. for-each data in training sample

3. The gradient is calculated for all parameters g(ξp,b)
8p = number of data

4. The obtained gradient is accumulated
gðx; bÞ ¼

Pq
p¼1
gðxpÞ8p ¼ 1; ::; q

5. end

6. end

7. The cumulative gradient and the learning rate are used to
update the parameters

8. ξnew = ξold−ηg(ξ,b)

9. end

• Online training or online learning method: in this method, the updating of the design

parameters is done every time a data is processed, that is for each data that is in the sample at

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 6 / 40

https://doi.org/10.1371/journal.pone.0221369

the same epoch. This type of procedure leads to the calculation of an approximate gradient,

its main advantage being the increase in speed, it is adaptable because it is not based on the

distribution of its data, unlike the batch learning method, it greatly decreases the load in

memory of data and also the cost of computing them, can work in real-time environments,

however, their descent is a bit unstable, due to the noise implicit in each data of the processed

sample (high variability), which could be beneficial, since that their jumps could be inter-

preted as potential better local minimums and even achieve a global minimum. Said behav-

ior can be represented as shown in Eq (7):

x
new
¼ x

old
� Zgðx; b; xðpÞ; yðpÞÞ ð7Þ

Where g(. . .) represents the gradient vector, and the parameters within the function are ξ
design parameters, b bias, x(p) inputs, y(p) desired output and p represents the index or position

of the data to be processed.
The following pseudo-code tries to represent the functional behavior of this method:

1. while epoch number does not reach its defined maximum

2. for-each data in training sample

3. The gradient is calculated for all parameters g(ξ,b,
x(p),y(p))8

4. p = number of data

5. The obtained gradient and the learning rate are used to
update the parameters

6. ξnew = ξold−ηg(ξ,b,x(p),y(p))

7. end

8. end

• Mini-batch training o mini-batch learning: This method improves on difficulties presented

both in full batch and online learning method, on one side, it tries to reduce the high vari-

ability generated when calculating for each one data the gradient vector, this behavior is

shown when Online learning method is executed, or well another behavior that could be pre-

sented is when the whole sample is used to build the gradient vector as is the case of the full

batch learning method what causes a high cost computational when loading in memory the

full sample to be processed. Mini-Batch learning method tries to take advantage of both of

them methods, through a partitioning of the data sample into smaller data samples, this

combination can lead to a stable descent, greater velocity and reduction of variability, it is

also widely parallelizable, so it can be executed in a distributed manner, recommended for

use in big data or deep learning environments.

This method is the result of the accumulation of its partial derivatives for each processed

mini-batch, where the gradient vector is constructed from the error function averaged in

between the defined mini-batch, with respect to all the parameters to be updated or adjusted.

Said behavior can be represented under the following Eq (8):

gðx; b; xðp:bsÞ; yðp:bsÞÞ ¼ rEðx; b; xðp:bsÞ; yðp:bsÞÞ ¼
Xbs

p¼1

ðyðpÞ � ŷðpÞÞ2 ð8Þ

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 7 / 40

https://doi.org/10.1371/journal.pone.0221369

Where g(. . .)represents the gradient vector, ξ parameters to be updated or adjusted, b bias,

the following parameters correspond to each mini-batch to process, these are; x(p:bs) inputs,

and y(p:bs) desired output, p index or position of the data in the mini-batch and bs represents

the size of the mini-batch to be processed. Finally, Eq (9) represents the learning rule which

will allow the adjustment or update of parameters.

x
new
¼ x

old
� Zgðx; b; xðp:bsÞ; yðp:bsÞÞ ð9Þ

The following pseudo-code tries to represent the functional behavior of this method:

1. while epoch number does not reach its defined maximum

2. while number of mini-batch does not reach total limit of
mini-batch

3. for-each data in current mini-batch training sample

4. The gradient is calculated for all parameters

5. og(ξ,b,x(p:cbs),y(p:cbs))8p = number of data;

6. cbs = current batch size

7. end

8. The obtained gradient of mini-batch processed is
accumulated

9. gðx; b; xðp:bsÞ; yðp:bsÞÞ ¼
Pbs

p¼1
gðx; b; xðp:bsÞ; yðp:bsÞÞ

10. 8p = 1,..,q;bs = batch size

11. end

12. The cumulative gradient and the learning rate
are used to update the parameters

13. ξnew = ξold−ηg(ξ,b,x(p:bs),y(p:bs))

14. end

Fuzzy logic system (FLS). From 1920, Lukasiewiscz’s spoke about the fact that the values

in the logical systems were nothing more than a logic with continuous values [41]. By 1965,

Zadeh achieved to crystallize his idea of Cointensive Indefinability which he said was a qualita-

tive measure of proximity of meanings of precision, from which he created his concept of

degree of membership, which has been one of the fundamental bases for the development of

the theory of fuzzy sets [42,43].

FL was introduced in 1975 by Zadeh in a paper titled “Fuzzy logic and approximate reason-

ing”. Its inspiration is based on the reasoning of the human mind that is approximate rather

than exact, giving more importance to the meaning than to the precision of the resultant infor-

mation [44]. For example, when an object is about to fall on a person’s head, the important

information for this person is to know that an object will fall on him and not the weight,

shape, trajectory, and speed in which this object will fall on him.

The definition of a complex behavior cannot be expressed precisely, instead, we need a sys-

tem that can tolerate inaccuracies, incomplete information, perceptions, experiences, and

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 8 / 40

https://doi.org/10.1371/journal.pone.0221369

judgments, for this reason, FL requires concepts such as fuzzy sets, linguistic variable, and if-

then rules to build a robust system.

A fuzzy set is defined as a set continuous function in the universe of the discourse of X,

whose domain is defined with values [0,1], in this context, classical binary logic can be seen as

a particular case of Fuzzy Logic (FL). Such a continuous function is known as Membership

Functions (MF), it is denoted as μA(x) and is called a type-1 MF, where A is a fuzzy set of con-

tinuous universes of X, and can be expressed as (10):

A ¼ fx; mAðxÞ _ x�Xg; in which 0 � mAðxÞ � 1 ð10Þ

The value of μA(x) is called the degree of membership, or membership grade, of x in A. The

distributions most commonly used for MFs are triangular, trapezoidal, piecewise linear,

Gaussian, and bell-shaped.

Linguistic variables allow to represent knowledge in approximate reasoning. Values in this

variable are words or sentences in natural language. These variables are characterized by a

quintuple, expressed as (X,T(X),U,G,M), where X is the name of linguistic variable, T(X) is the

collection of linguistic values, U is the universe of discourse (or numeric domain subjacent), G

free-context grammar and M is a semantic rule that associate each linguistic value with its

meaning.

The representation of knowledge is implemented in a proposition in a form of rules if-then

and it is known as fuzzy rules. These rules are expressed as IFhantecedentsiTHENhconsequenti
both antecedent and consequent are fuzzy propositions that contain linguistic variables. Since

fuzzy sets do not have a finite set of possibilities defined for each input, it is necessary to

express its operators as functions for all probable fuzzy values. These operators are expressed

for all A and B fuzzy set as:

• Intersection (operator AND): its generalized form is known as T-norm (11).

mA\BðxÞ ¼ minðmAðxÞ; mBðxÞÞ8x 2 X ð11Þ

• Union (operator OR): its generalized form is known as T-conorm (12).

mA[BðxÞ ¼ maxðmAðxÞ; mBðxÞÞ8x 2 X ð12Þ

• Complement (operator NOT): where the fuzzy set A denote de complement of fuzzy set A
(13).

mAðxÞ ¼ 1 � mAðxÞ8x 2 X ð13Þ

T-norm and T-conorm are considered as generalized disjunction and conjunctions respec-

tively and are known as fuzzy implication. The implication is one of the major connectives in

any logical systems, and it has a very serious influence on the performance of the systems in

which fuzzy logic techniques are employed [45].

Fuzzy inference system (FIS). It is a framework based on concepts of fuzzy logic, fuzzy

set theory, and fuzzy rules, that have been success in application areas, such as control, support

decision, identification systems, among others. Its strength relies on it is capable of handle lin-

guistic concepts (model natural language), it is considered as universal approximator and it is

able to perform nonlinearly mapping between inputs and outputs [46].

´

´

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 9 / 40

https://doi.org/10.1371/journal.pone.0221369

The general architecture of a FIS is based on the follows components; fuzzifier, fuzzy infer-

ence engine, and defuzzifier as shown in Fig 2 [47–48].

The details of each component FIS are described below [47]:

• Fuzzifier is in charge to convert crisp values of the universe of discourse and determine of

the membership degree of these inputs to the associated fuzzy set, through mathematical

procedures. For example, let A and B two fuzzy sets and X the universe of discourse, the fuz-

zification process take the values received a,b2X, and then produce a membership degree,

that can be expressed as follows (14):

mAðaÞ; mAðbÞ; mBðaÞ ^ mBðbÞ ð14Þ

• Fuzzy inference is the process where FL is used through its fuzzy rules, membership func-

tions and operators of fuzzy implication, with the aims of mapping inputs values to outputs.

The flow of this process is as follow; the fuzzified inputs are mapping to a rule base, in this

phase, the antecedent part of the proposition, input sets can be combined through fuzzy

operators to generate a compound fuzzy proposition, and the consequent part are deter-

mined by degrees of membership in inputs sets and its relationships. The rules base can be

seen as follows (15):

Rk ¼ IFx1isA
k
1
^ x2isA

k
2
THENy1isB

k
1
; y2isB

k
2

ð15Þ

• Aggregation, in this process, all fractional membership functions resulting from consequent

part are combined, with the objective to obtain a consolidate fuzzy set. In this phase, a single-

ton value is determined for each yi 2 Bki , generality using the max operator, this can be

expressed as follows (16):

bi ¼ max
8k
ðakiÞ ð16Þ

Where aki is the rule firing of each output y in the consequent.

• Defuzzifier, this is the process in charge to convert a fuzzy set to crisp number as output of a

fuzzy system, this value can be used in expert system to make a decision or in a controller to

exercise action. In a fuzzy system with more than output variable, the defuzzification pro-

cesses are by each output. There are many different of defuzzification methods, one of them

is a variation of the max criterion method, where the popular method in this category is

MOM (Mean of Maxima), in this method, the final output value is calculated by averaging

all output values with the highest membership values. The equation that represent this

Fig 2. General architecture of a FIS.

https://doi.org/10.1371/journal.pone.0221369.g002

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 10 / 40

https://doi.org/10.1371/journal.pone.0221369.g002
https://doi.org/10.1371/journal.pone.0221369

behavior is (17):

Ζ ¼
Pl

i¼1
xi

l
8xi�M ð17Þ

WhereM is the set that contains all maximum membership values, these values are repre-

sented by xi, and l is the cardinality of the setM.

Other popular methods are those based on centers:

Center of Sums (COS), in this method, first calculate the geometric center of area for each

membership. The equation that represent this behavior is (18):

Z ¼
Pn

i¼1
CoAiareaiPn
i¼1
areai

ð18Þ

Where CoAi is the geometric center of area of the scaled membership function in the ith rule,

that there fractioned by firing strength identified, n is the number of scaled membership

functions, and areai is the area of the scaled membership function n.

Center of sets (COS), in this method, for each rule consequent a singleton centroid is located,

as well as, the firing level is necessary. The equation that represent this behavior is (19):

ycos x
0ð Þ ¼

PM
l¼1
clf lðx0Þ

PM
l¼1
f lðx0Þ

ð19Þ

Where cl is the centroid, l is the lth consequent set, and its firing level represented by fl given

by a fuzzy value contained in x0.
Other methods based on centroid is Center of gravity (COG), in this method, COG is calcu-

lated over a series of points continuums in the scaled membership function and finds a rep-

resentative point of COG from fuzzy set. This method can be expressed mathematically as

follow (20):

COG ¼
R b
a mAðxÞxdx
R b
a mAðxÞdx

ð20Þ

Where A is the sub-area from fuzzy set evaluated, a,b is the interval of the sub-area of A, and

x is the sample of values in this interval from sub-area of A.

There are other more defuzzification methods, but only showed the based-on centers and

centroids, because the architecture neuro-fuzzy system proposed was based in el defuzzifica-

tion method on center-of-sets.

The two most used FIS are the Mamdani-type and the Sugeno-type, and their most relevant

differences are in the output, since Mamdani-type generate a fuzzy sets and Sugeno-type are

linear functions or constants in the consequent.

Materials and methods

Description of proposed model

The design and implementation of a Mamdani-based neuro-fuzzy system with center-of-sets

defuzzification was made, that provide flexibility to handle inputs and outputs multiple, as well

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 11 / 40

https://doi.org/10.1371/journal.pone.0221369

as, also can use any of the different learning methods, such as, batch, online or mini-batch,

since the existing neuro-fuzzy systems only support batch learning method. As mentioned,

what this study seeks is to establish a reference with respect to the implementation of different

learning methods based on size and partition of the samples, the accumulation or not of gradi-

ent vector calculated and the form that the parameters will be updated or adjusted during the

training stage. For this reason, we opted for the development of a neuro-fuzzy system that

would allow us to experiment with all three learning methods, full batch, online and mini-

batch.

Description of the architecture of the Mamdani based neuro-fuzzy with center-of-sets

defuzzification. The proposed neuro-fuzzy system was defined as feedforward for the calcu-

lation of the output signals, where each of its layers are defined as follows; the zero layer corre-

sponds to the inputs (which can range from 1 to n), the first hidden layer consists of adaptive

nodes, they are considered adaptive since it contains design parameters that will be adjusted

through the iterative process backpropagation, since this is where the error is calculated from

the output and it is propagated between its layers of an inverse form to the feedforward, within

each node, a Gaussian function has been defined and its adjustable parameters are; its means

and standard deviations, as well as the previous establishment of the rules number (r) that will

correspond to the number of nodes that will contain both layer one and layer two.

The output signals of the first hidden layer will be the inputs to the second hidden layer,

which consists of fixed nodes and where a normalization of said signals will be processed,

finally to generate the calculation of the output signals of the last layer that will be defined by

m outputs, both the signals of the output of the hidden layer two and its centroids (the latter

considered also design parameters, so they will also be adjusted during the training) will be

required, all this behavior can be observed in the (Fig 3).

The above defines the elements and behavior of the neural network for the optimization of

the design parameters, on the other hand, it also makes the definition of the elements and

behavior of the fuzzy part of this system. We begin by defining the knowledge base based on

Mamdani, as shown in the generic rule (21).

Rk : IFx1isF
k
1
^ xiisF

k
i ^ xnisF

k
nTHENy1isCGk

1
; yiisCGki ; ymisCGkm ð21Þ

Where Rk corresponds to the kth rule, the antecedent part is defined by its entries repre-

sented by r xni 8i ¼ 1; . . . ; n, the definition of its firing forces represented by Fki 8i ¼ 1; . . . ; k,

Fig 3. General architecture of the proposed Mamdani based neuro-fuzzy system with center-of-sets

defuzzification.

https://doi.org/10.1371/journal.pone.0221369.g003

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 12 / 40

https://doi.org/10.1371/journal.pone.0221369.g003
https://doi.org/10.1371/journal.pone.0221369

the consequent part defined by their outputs ymi 8i ¼ 1; . . . ;m and its generic centroids repre-

sented by CGkm8m ¼ 1; . . . ; k:Hereunder, each one of the layers defined in the architecture of

the neuro-fuzzy system proposed is detailed:

• Layer 0: in this layer is to find the input matrix (22), which are used to calculate the firing

force. The sub-index i0 corresponds to the entries in layer zero and p it is the sub-index of

the data for each entry.

a0 ¼ ½a0

i0 ;p
�8p ¼ 1; ::; q; i0 ¼ 1; . . . ; n ð22Þ

• Layer 1: in this layer, the firing force is calculated from the inputs a0
i0 ;p

and the adjustable

design parameters during the iterative backpropagation process, are;mi1 ;i0
(mean) and si1 ;i0

(standard deviation). The adaptive nodes of this layer contain a Gaussian function and their

definition is shown in the Eq (23).

a1

i1 ;p
¼ exp

� 1

2

Pn
i0¼1

a0
i0 ;p
� mi1 ;i0

si1 ;i0

 !2()" #

ð23Þ

8p ¼ 1; ::; q; i1 ¼ 1; . . . ; r

Where sub-index i0 corresponds to the inputs of layer 0, sub-index i1 corresponds to neurons

in layer 1, r is the rules number in the layer, p is the input data index and q is the total num-

ber of data.

• Layer 2: in this layer, firing forces are normalized (24), from the output signals of the previ-

ous layer.

a2

i2 ;p
¼

a1
i1 ;pPr

i1¼1
a1
i1 ;p

ð24Þ

8i2 ¼ 1; . . . ; r; i1 ¼ 1; . . . ; r; p ¼ 1; ::; q

Where a1
i1 ;p

is the output signal of the layer 1.

• Layer 3: in this layer, the output signals are obtained a3
i3 ;p

, from the output signal of the previ-

ous layer a2
i2 ;p

and the centroids that are part of the design parameters Ci3 ;i2 (25).

a3

i3 ;p
¼
Pm

i3¼1
Ci3 ;i2a

2

i2 ;p
8i2 ¼ 1; . . . ; r; i3 ¼ 1; . . . ;m ð25Þ

This whole trajectory is known as the feedforward method, once reached the last layer, it

begins the backpropagation process to calculate the error partial derivates with respect to all

design parameters:

• Error calculation: obtained from the difference of the desired output and the estimated out-

put signal (26).

e ¼ T � a3

i3 ;p
ð26Þ

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 13 / 40

https://doi.org/10.1371/journal.pone.0221369

• Error calculation squared by each data: of the obtained, the error is individually squared

(27).

Ep ¼
Pm

i3¼1
e2

i3 ;p
ð27Þ

8i3 ¼ 1; . . . ;m

• Sum of the squared errors: a summation is made to obtain a total error, from the error by

each data raised to the square (28).

E ¼ SSE ¼
Pq

p¼1
Ep ð28Þ

After the feedforward routine was finished, the iterative process backpropagation begin,

this is the procedure to find the gradient vector (33). Its inverse trajectory is done as follows:

• Layer 3: the error is calculated ε3
i3 ;p

(29), this is the derivative of the error measure Ep.

ε3

i3 ;p
¼ � 2ei3;p ð29Þ

8p ¼ 1; . . . ; q; i3 ¼ 1; . . . ;m

In this same layer, the partial derivative of the error with respect to the centroid is evaluated

Ci3 ;i2 and the output of layer 2 (30).

@þE

@Ci3 ;i2
¼
Pq

p¼1

@þEp

@Ci3 ;i2
¼ ε3

i3 ;p
:a2

i2 ;p
ð30Þ

8p ¼ 1; . . . ; q; i3 ¼ 1; . . . ;m; i2 ¼ 1; . . . ; r

• Layer 2: the error is calculated ε2
i2 ;p

, from the centroids and error of layer 3 (31).

ε2

i2 ;p
¼
Pm

i3¼1
Ci2 ;i3ε

3

i3 ;p
ð31Þ

8p ¼ 1; . . . ; q; i3 ¼ 1; . . . ;m; i2 ¼ 1; . . . ; r

• Layer 1: the error ε1
i1;p

is calculated from the difference between the error of the previous

layer ε2
i1 ;p

minus the error product of the same layer and the output signal of the previous

layer a2
i2 ;p

between each of the output signals of the current layer a1
i1 ;p

(32).

ε1

i1 ;p
¼
ε2
i1 ;p
�
Pr

i2¼1
ε2
i2 ;p
a2
i2 ;pPr

i1¼1
a1
i1;p

ð32Þ

8p ¼ 1; . . . ; q; i1 ¼ 1; . . . ; r

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 14 / 40

https://doi.org/10.1371/journal.pone.0221369

The derivatives of the mean parameters were calculated (33) and standard deviation (34),

same that will serve to build the gradient vector, to finally update the design parameters with

the new directional vector.

@þE

@mi1 ;i0

¼
Pq

p¼1

@þEp

@mi1 ;i0

¼ ε1

i1 ;p
a1

i1 ;p

a0
i0 ;p
� mi1 ;i0

s2
i1 ;i0

ð33Þ

@þE

@si1 ;i0
¼
Pq

p¼1

@þEp

@si1 ;i0
¼ ε1

i1 ;p
a1

i1;p

ða0
i0 ;p
� mi1 ;i0

Þ
2

s3
i1;i0

ð34Þ

8i0 ¼ 1; . . . ; n; i1 ¼ 1; . . . ; r; p ¼ 1; . . . ; q

Once the partial derivatives of the mean, standard deviation and centroids parameters with

respect to the error are obtained, the gradient vector is built, and a learning rate is applied (35)

to generate the directional change with it which will update or adjusted all parameters (36).

rx ¼ � ZrE xð Þ ¼ � Z
@E
@x

ð35Þ

x
new
¼ x

old
þrx ð36Þ

Where ξ2{σ,m,C} is the vector of all design parameters of the Mamdani-based neuro-fuzzy

system with center-of-sets defuzzification, and −η corresponds to the change in the learning

rate which is part of the training parameters.

Hyperparameters and functionality description. As is known, hyperparameters are

those that must be configured prior to the execution of training, although there are recommen-

dations to choose their appropriate values, there is nothing conclusive, as in the case of the rate

of learning, it is known that a learning rate with very low values will lead to a slow and compu-

tationally expensive training, since it will require many iterations to be able to approach a

quasi-optimal solution and depending on the complexity of the dataset, it could never be

achieved, or, if the established value is very high, it will tend to diverge the solution area. In the

case of the experimentation carried out, to palliate this problem, for each dataset analyzed, the

best values for each hyperparameter were located, establishing a range of values and searching

among them, those that would provide better results with respect to the minimization of the

error function. The hyperparameters required for the Neuro-Fuzzy system that was proposed

are:

• Training parameters, these parameters are defined in order to control training duration, as

described below:

■ Total epochs number is the maximum limit of iterations that will be carried out during

training.

■ Goal error, the minimum value of the ideal error that could reach.

■ Learning rate (η), this parameter allows us to determine how fast or slow the gradient

vector moves towards obtaining the optimal parameters.

■ Momentum (mc), fraction of the change in parameters that allows smoothing the oscilla-

tion in the trajectory, either increasing or decreasing the parameters change in each itera-

tion [49].

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 15 / 40

https://doi.org/10.1371/journal.pone.0221369

■ Maximum validation failures number is the maximum limit of failures allowed in the

validation process.

■ Maximum error increase, refers to the maximum allowed limit of the calculated error

■ Minimum gradient limit is the minimum value of the norm of the calculated gradient

vector.

■ Decrease rate, this value is established, to decrease the learning rate to this defined pro-

portion, in case the calculated error is greater than the maximum increase established.

■ Increase rate, this value is established to increase the learning rate to this defined propor-

tion, in case the calculated error is less than previously calculated.

■ Rules number (r), this value is established, to indicate the rules number with which the

fuzzy part will count, this parameter will be equivalent to the number of neurons that will

contain layer 1 and 2 of the network.

• Design parameters are those that will be adjusted in each execution of the training until

reaching the optimum. These parameters are;mean, standard deviation and centroid. Its ini-

tial values are obtained from the dataset to be processed, thus generating a matrix with r×n
dimension, where r is the rules number and n is the inputs number.

• Three main functional processes are identified, to carry out the learning, these are:

• Initialization: In this first process, the initial change of the design parameters is calculated as

is represented in Eq (37), it is required since in the training the optimization function of the

Gradient Descendent with Momentum and Adaptive Learning Rate will use it.

rxprev ¼ � Z
@E
@x

ð37Þ

• Training: It starts calculating the Gradient Descendent with Momentum and Adaptive

Learning Rate (38):

rxnow ¼ mcrxprev � ð1 � mcÞZgðxÞ ð38Þ

It is in this process, where the learning method to be used is established, which will define

the way in which you will be sending the data to generate the gradient vector and the calcula-

tion of the error.

In order to control the velocity and direction of gradient descent, the following heuristics

were implemented as shown in the following pseudo-code:

1. While epoch number does not reach its defined maximum

2. Gradient descent with momentum and adaptive learning rate
is calculated

3. rξnow = mcrξprev−(1−mc)ηg(ξ)

4. Temporal update parameters are calculated ξtemporal =
ξold+rξnow

5. Current error is calculated with the change applied to the
parameters

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 16 / 40

https://doi.org/10.1371/journal.pone.0221369

6. If (current error/previous error) is greater than maximum
error increase parameter then

7. Learning rate is decreased η = η�decreaserateparameter

8. The gradient vector is updated applying the new learn-
ing rate g(ξ) = η�g(ξ)

9. Else

10. If current error is smaller than previous error
then

11. Learning rate is increased η =
η�increaserrateparameter

12. end

13. Parameters are updated with the change calculated
as in line 4, but now in permanent form

14. ξnew = ξold + rξnow

15. Previous error is replaced by current error

16. Gradient vector is recalculated with the new
parameters

17. End

18. End

The following criteria were also considered, which allow deciding the moment in which the

training should be interrupted, this is:

■ When the epochs number processed is equal to the training parameter defined as total

epochs number.

■ When the calculated error is less than or equal to the training parameter defined as goal

error.

■ When the norm of the gradient vector is less than the training parameter defined as the

minimum gradient limit.

■ When the accumulated validation failures number is greater than the training parameter

defined as the maximum validation failures number. Lastly is calculated from the valida-

tion data sample, the calculation of the error (using the design parameters that were pre-

viously adjusted in the training), it is validated if the current error is greater than the

previous error, in this case it is increased a counter of validation faults, and if this counter

becomes greater than this parameter, then training is interrupted.

Finally, the error function that is sought to be minimized during the training process was

defined as Sum of the squared errors, this is a validation metric which allows to verify the prog-

ress of the training in the direction of the optimal convergence.

Results and discussion

In this section, the experimentation methodology and the regression analysis of the results

obtained are presented. The objective of this analysis is to carry out a comparative study of the

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 17 / 40

https://doi.org/10.1371/journal.pone.0221369

performance of each of the exposed learning methods (batch, online and mini-batch), exe-

cuted on a proposed Mamdani based neuro-fuzzy system with center-of-sets defuzzification.

Different datasets were used to carry out experimentation, their descriptive characteristics

being those found in Table 1.

The random sub-sampling validation technique was used, for which 30 experiments were

defined, where for each experiment a new test set is constructed, distributed in the following

way; 60% for training, 20% for validation and 20% for testing, in order to avoid overfitting and

overtraining, and to ensure the robustness of the neuro-fuzzy system used.

One of the critical training hyperparameters, which help to minimize the error function

during training, if it is established with the appropriate value, is the number of rules, to be able

to choose the right value to the evaluated dataset. Per dataset 30 experiments were done, a

range of minimum and maximum values were established that could be assigned as a rule

number value, for each value of the range, training was executed and the error obtained was

stored, finally, that rule number value associated with a minor error result was counted and

the one that had more frequency was the value chosen as adequate, to perform the complete

experimentation and obtain the general results.

The metrics on which the comparative analysis was based were R correlation coefficient, R2

coefficient of determination and RMSE root mean square error. We start by evaluating and

analyzing the results obtained from all the datasets used for the first metric. As we can see in

Table 2 those learning methods that obtained the best means and maximum results, as well as

those that presented greater stability by showing lower standard deviation, have been

highlighted in bold.

As can be observed in Table 2, the highest means of correlation coefficients (�R) compared

between learning methods and processed dataset were for; mini-batch with 5 best �R from a

total of 7 processed datasets, with a representation percentage of 71% of its experiments with

the best �R obtained, followed by full batch with 2 better �R from a total of 7 processed datasets,

showing a percentage representing 29% of their experiments with better �R obtained, in no case

the mean result of the online learning method was better than mini-batch and full batch, how-

ever, as can be observed in Fig 4, their differences with respect to the full batch and mini-batch

learning methods were not very large.

An indicator was defined as % stability, this indicator was calculated as follows, for each

learning method, dataset processed and experiment executed, its R results that went from the

mean to higher were counted (remember that the experimentation consists of 30 runs), this

allows monitoring the stability of the neuro-fuzzy system. Mini-batch learning method, was

which obtained 4 of 7 datasets processed with a stability of 57%, followed by the full batch

learning method was which obtained 3 out of 7 data sets processed with a 43% stability, finally,

Table 1. Descriptive characteristics from used datasets in experimentation [50–51].

Datasets Dataset description Total

Attributes (Inputs) Target (Outputs) Instances

Synthetic curve A very simple data fitting benchmark 1 1 94

Gauss3 Two blended Gaussians on decaying exponential baseline plus noise included 1 1 250

Engine behavior Contain the behavior of two attributes, these are Torque and Nitrous oxide emissions 2 2 1199

Chemical sensor It contains the measurements taken from eight sensors during a chemical process 8 1 498

Abalone shell

rings

It contains eight attributes that describe different shells 8 1 4177

Bodyfat

percentage

It contains thirteen attributes with which we can estimate the percentage of body fat of a

person

13 1 252

https://doi.org/10.1371/journal.pone.0221369.t001

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 18 / 40

https://doi.org/10.1371/journal.pone.0221369.t001
https://doi.org/10.1371/journal.pone.0221369

the online learning method got 29% stability, it should be noted that in the chemical data set

both the mini-batch and online learning method obtained the same result, as can be seen in

Fig 5, the differences between stability percentages each learning method are not very large,

only for gauss3 dataset case with online learning method, and the bodyfat dataset with the

mini-batch learning method, some minimal peaks are observed with respect to those that

obtained a greater percentage of stability, outside theses, the rest of datasets and their % stabil-

ity are shown with very close differences.

Another important indicator is the rules number since this hyperparameter refers to the

capacity of the model to generalize a solution surface, consequently, it is considered that the

smaller the rules number, the greater will be their ability to have a generalized model. The

Table 2. Results obtained with the evaluation of the R metric.

Dataset Learning methods Min Mean Max Std % Stability in Experimentation Rules Epochs

Synthetic curve Batch 0.9144 0.9703 0.9985 0.0239 53 5 417

Online 0.8770 0.9477 0.9935 0.0257 77 9 315

Mini-Batch 0.9044 0.9698 0.9975 0.0259 70 15 148

Gauss3 Batch 0.9957 0.9975 0.9983 0.0007 77 6 360

Online 0.9705 0.9791 0.9952 0.0062 40 6 178

Mini-Batch 0.9725 0.9953 0.9968 0.0043 97 7 296

Bodyfat percentage Batch 0.2060 0.6696 0.8401 0.1407 93 6 217

Online 0.0403 0.5093 0.8405 0.1879 80 14 535

Mini-Batch 0.7031 0.8217 0.8560 0.0325 53 15 99

Chemical sensor Batch -0.8198 0.4900 0.8200 0.5850 83 6 91

Online -0.8272 0.6126 0.8339 0.4672 90 16 23

Mini-Batch -0.8182 0.6407 0.8358 0.4760 90 6 37

Engine behavior (output 1) Batch 0.8017 0.9383 0.9658 0.0317 90 15 544

Online 0.9296 0.9673 0.9895 0.0140 73 15 178

Mini-Batch 0.9403 0.9702 0.9946 0.0153 80 10 721

Engine behavior (output 2) Batch 0.7273 0.8656 0.8994 0.0331 93 15 544

Online 0.7633 0.8634 0.9376 0.0382 73 15 178

Mini-Batch 0.8459 0.8919 0.9652 0.0254 77 10 721

Abalone shell rings Batch 0.5460 0.5956 0.6852 0.0358 50 10 943

Online 0.5397 0.5480 0.5541 0.0034 50 12 34

Mini-Batch 0.5862 0.6025 0.6246 0.0069 57 16 147

https://doi.org/10.1371/journal.pone.0221369.t002

Fig 4. Best mean results of R by learning method.

https://doi.org/10.1371/journal.pone.0221369.g004

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 19 / 40

https://doi.org/10.1371/journal.pone.0221369.t002
https://doi.org/10.1371/journal.pone.0221369.g004
https://doi.org/10.1371/journal.pone.0221369

results that were obtained were the following; 71% of the datasets that were processed under

the full batch learning method were processed with fewer rules, that is, 5 of 7 datasets, followed

by the mini-batch learning method with 43% representing 3 of 7 processed datasets and finally

the online learning method which obtained 14% with only 1 of 7 processed datasets, as it is

shown in Fig 6.

Finally, an indicator that allows observing neuro-fuzzy system performance with respect to

the computational load that could be represented by the iterations number necessary to the

processing of the dataset under different learning methods, it is known as the epochs number

required during the training stage to generate the model. As it is shown in Fig 7, who required

more epochs number were the Full Batch and Mini-Batch learning methods, of the which the

latter in 2 of 7 processed datasets trained in fewer numbers of times than the rest of the learn-

ing methods with a representation percentage of 29%, at all times the full batch learning

method exceeded the epochs number required for training, and who generated their training

in fewer epochs number was the online learning method with 5 of 7 datasets processed and a

representation percentage of 71% with a lower epochs number required in training, however,

the fact that it has ended early, it does not mean that it has achieved a better correlation coeffi-

cient or a better convergence, as shown in the previous figures, really, the online learning

Fig 5. Stability among learning methods.

https://doi.org/10.1371/journal.pone.0221369.g005

Fig 6. Comparative of rules number by learning method.

https://doi.org/10.1371/journal.pone.0221369.g006

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 20 / 40

https://doi.org/10.1371/journal.pone.0221369.g005
https://doi.org/10.1371/journal.pone.0221369.g006
https://doi.org/10.1371/journal.pone.0221369

method behavior obeyed the validation criterion that monitored if the error function no longer

decreased then the training was interrupted.

Another metric analyzed was the coefficient of determination R2, which allows us to know

how well the generated model fits the data, as shown in Table 3, the results that were obtained

from the Mini-Batch learning method was 71% of the best R2 with 5 of 7 processed datasets,

followed by the Full Batch learning method with 2 of 7 datasets processed with the best mean

results of R2 with a percentage of representation of 29%, and even though the online learning

method did not obtain the best means in any of the processed datasets with respect to the

other learning methods, their differences were not as significant. These frequencies are shown

in Fig 8.

Fig 7. Comparative of epochs number required in training by learning method.

https://doi.org/10.1371/journal.pone.0221369.g007

Table 3. Results obtained with the evaluation of the R2 metric.

Dataset Learning methods Min Mean Max Std % Stability in Experimentation

Synthetic curve Batch 0.9144 0.9415 0.9970 0.0467 50

Online 0.7666 0.8977 0.9869 0.0488 70

Mini-Batch 0.8160 0.9406 0.9950 0.0503 70

Gauss3 Batch 0.9914 0.9950 0.9967 0.0013 77

Online 0.9417 0.9585 0.9904 0.0123 40

Mini-Batch 0.9456 0.9906 0.9936 0.0085 97

Bodyfat percentage Batch 0.0386 0.4654 0.7045 0.1543 83

Online -0.0024 0.2907 0.7053 0.1761 80

Mini-Batch 0.4923 0.6749 0.7317 0.0519 93

Chemical sensor Batch 0.0639 0.5701 0.6718 0.1731 83

Online 0.2577 0.5854 0.6948 0.1097 80

Mini-Batch 0.1403 0.6288 0.6980 0.1152 87

Engine behavior (output 1) Batch 0.6424 0.8813 0.9327 0.0565 90

Online 0.8641 0.9357 0.9791 0.0269 87

Mini-Batch 0.8841 0.9415 0.9893 0.0297 80

Engine behavior (output 2) Batch 0.5285 0.7502 0.8087 0.0539 93

Online 0.5823 0.7467 0.8790 0.0651 90

Mini-Batch 0.7152 0.7960 0.9316 0.0458 73

Abalone shell rings Batch 0.2980 0.3558 0.4694 0.0436 50

Online 0.2911 0.3001 0.3069 0.0037 50

Mini-Batch 0.3435 0.3628 0.3900 0.0084 57

https://doi.org/10.1371/journal.pone.0221369.t003

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 21 / 40

https://doi.org/10.1371/journal.pone.0221369.g007
https://doi.org/10.1371/journal.pone.0221369.t003
https://doi.org/10.1371/journal.pone.0221369

For the purposes of the indicator % stability by learning methods, as shown in Fig 9, it is

considered as stable the experiments that obtained R2 results from the mean upwards, so for

each dataset processed and for each experiment executed in said dataset, the experiments that

obtained results from mean or bigger were counted, based on this, it was obtained that for the

Mini Batch learning method its stability percentage was 71% (5 of 7 datasets processed), fol-

lowed by the full batch learning method with 29% stability (2 of 7 datasets processed) and

finally the online learning method with 14% stability (with 1 of 7 processed dataset).

Finally, the last metric evaluated is the root mean square error RMSE, which shows the dif-

ferences obtained between the estimated and expected model, as shown in Table 4 and Fig 10,

the behavior and trends among the three learning methods is very similar, however, the learn-

ing method that achieved a greater decrease in error based on the RMSE metric (Root Mean

Square Error) was mini-batch with 4 of 7 datasets processed, with a percentage of representa-

tion of 57%, as well as for full batch and online learning methods with 2 of 7 processed datasets

and 29% representation percentage.

Hereunder, we will analyze obtained results from the perspective of applied learning meth-

ods, to try to highlight some relevant characteristics of each of the evaluated learning method,

Table 5 allows us to compare the efficiency and performance based on the mean results of cho-

sen metrics.

As previously mentioned, the composition of these results is based on the mean obtained

from all the experiments generated from the different datasets analyzed, for each applied

Fig 8. Best mean results of R2 by learning method.

https://doi.org/10.1371/journal.pone.0221369.g008

Fig 9. % Stability among learning methods with respect to R2 metric.

https://doi.org/10.1371/journal.pone.0221369.g009

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 22 / 40

https://doi.org/10.1371/journal.pone.0221369.g008
https://doi.org/10.1371/journal.pone.0221369.g009
https://doi.org/10.1371/journal.pone.0221369

learning method. As seen in Table 5, the general tendency of �R was positive, with the mini-

batch learning method showing the greatest strength in its correlation and better control in its

variability, this can be clearly seen in Fig 11 and Fig 12 respectively.

The models obtained from the learning methods based on mini-batch were better adjusted

to the data, so they presented a better explanation of the variability of the estimated values with

respect to the expected ones, as presented in Fig 13 and Fig 14 respectively.

Stability studies were carried out, that is, from each experiment processed, how many

obtained correlation coefficients from the mean to the maximum, with the batch learning

Table 4. Results obtained with the evaluation of the RMSE metric.

Dataset Learning methods Min Mean Max Std C.V.

Synthetic curve Batch 0.16 0.60 1.10 0.30 49.11

Online 0.30 0.83 1.29 0.20 24.55

Mini-Batch 0.20 0.60 1.05 0.26 44.28

Gauss3 Batch 2.31 2.81 3.66 0.35 12.34

Online 3.89 7.90 9.59 1.40 17.75

Mini-Batch 3.20 3.72 9.06 1.02 27.38

Bodyfat percentage Batch 3.68 4.55 5.57 0.46 10.09

Online 3.53 4.83 6.13 0.60 12.34

Mini-Batch 3.30 3.84 4.58 0.33 8.59

Chemical sensor Batch 2.47 4.12 8.48 1.17 28.45

Online 0.24 1.86 3.58 0.85 45.96

Mini-Batch 0.44 3.19 7.55 1.35 42.43

Engine behavior (output 1) Batch 130.08 157.58 200.51 15.19 9.64

Online 77.71 121.56 180.56 23.91 19.67

Mini-Batch 55.80 116.75 159.06 28.72 24.60

Engine behavior (output 2) Batch 174.42 196.19 282.54 22.84 11.64

Online 127.60 188.21 235.54 22.94 12.19

Mini-Batch 113.88 178.34 203.48 19.51 10.94

Abalone shell rings Batch 1.14 1.43 1.57 0.11 7.86

Online 0.21 0.35 0.56 0.07 20.91

Mini-Batch 1.40 1.48 1.60 0.04 2.85

https://doi.org/10.1371/journal.pone.0221369.t004

Fig 10. Behavior of the metric RMSE by learning method.

https://doi.org/10.1371/journal.pone.0221369.g010

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 23 / 40

https://doi.org/10.1371/journal.pone.0221369.t004
https://doi.org/10.1371/journal.pone.0221369.g010
https://doi.org/10.1371/journal.pone.0221369

method obtaining the highest percentage, but only by one percentage point with respect to

mini-batch, as can be seen, both in Table 5 and Fig 15.

The rules number mean required for the training shows that both the batch and mini-batch

learning methods required fewer rules number during their experimentation than the online-

based learning, as can be seen in Fig 16, however, it was this the last one who finished his train-

ing in fewer epochs number, this being an advantage with respect to batch, because as shown

previously both have very close results in the metrics of �R and �R2 , however, the stability of the

online learning was below both batch learning and mini-batch.

In order to evaluate the goodness of fit of the trained model with the neuro-fuzzy system

proposed under the different learning methods, an error minimization performance analysis

was executed using the following metrics; SSE (Sum of Squared Error), MSE (Mean-Squared

Error) and RMSE (Root Mean-Squared Error), generated in two moments, the first one

occurred in training where for each dataset (training, validation and tests) results were

obtained from aforementioned metrics and finally after the model was adjusted, the test is gen-

erated with the complete entries to evaluate its goodness of fit, also under the same metrics.

According to Table 6 and Table 7, it is observed that 3 out of 6 datasets used in the experi-

mentation with respect to its mean value calculated had greater error reduction, representing

50% of the processed datasets, with the mini-batch learning method being the one had better

control in the minimization of the error and that also showed more stability as can be observed

in the results obtained in the standard deviation.

Finally, the following figures show the behavior of minimization of SSE in training time

and in the adjusted model test. These figures are shown below by processed dataset. The fol-

lowing figures correspond to synthetic curve dataset, for which in Fig 17 it is observed that the

batch learning method was the one that achieved the best minimization of the SSE during

training, but also in a greater epochs number. Fig 18. shows stable behavior in the minimiza-

tion of the SSE, this analysis is supported in Table 6 according to its results of mean and stan-

dard deviation and it is concluded that mini-batch learning method obtained better results.

Table 5. Comparative table of mean results obtained from the experiments executed with all the datasets used.

Learning Methods �R C:V: ¼ f ð�RÞ �R2 C:V : ¼ f ð �R2 Þ % stability in experimentation Rules Epoch

Batch 0.7708 19.42 0.6906 14.61 82 8 429

Online 0.7520 20 0.6456 15.51 76 12 211

Mini-Batch 0.8268 14.12 0.7444 6.50 81 9 241

https://doi.org/10.1371/journal.pone.0221369.t005

Fig 11. Correlation coefficient mean by learning method.

https://doi.org/10.1371/journal.pone.0221369.g011

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 24 / 40

https://doi.org/10.1371/journal.pone.0221369.t005
https://doi.org/10.1371/journal.pone.0221369.g011
https://doi.org/10.1371/journal.pone.0221369

Continue with gauss3 dataset, for which in Fig 19 it is observed that the batch learning

method was the one that achieved a better minimization of the SSE during the training, but

also in a greater epochs number. It is also shown that this same learning method achieved

greater stability in the minimization of the SSE when testing on the adjusted model, as can be

seen in Fig 20, the analysis is supported by mean and standard deviation shown in Table 6.

Follows with bodyfat percentage dataset, for which in Fig 21 it is observed that the mini-

batch learning method was one who achieved the best SSE minimization during training, and

in a smaller epochs number. It is also shown that this same learning method achieved greater

stability in the minimization of the SSE when testing on the adjusted model, as can be seen in

Fig 22, also supporting the conclusion of the results through the mean and standard deviation

shown in Table 6.

Following dataset corresponds to chemical sensor dataset, for which the learning method

that achieved a better minimization of the SSE both in training and in the test on the adjusted

model was for online, as can be seen in Fig 23 and Fig 24 respectively, also supporting the con-

clusion of the mean and standard deviation results shown in Table 7.

For the engine behavior dataset, the learning method that achieved a better minimization of

the SSE during training and also during the test on the adjusted model was for mini-batch, as

Fig 12. Variation coefficient with respect to mean R by learning method.

https://doi.org/10.1371/journal.pone.0221369.g012

Fig 13. Determination coefficient mean by each learning method.

https://doi.org/10.1371/journal.pone.0221369.g013

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 25 / 40

https://doi.org/10.1371/journal.pone.0221369.g012
https://doi.org/10.1371/journal.pone.0221369.g013
https://doi.org/10.1371/journal.pone.0221369

Fig 14. Variation coefficient mean by each learning method.

https://doi.org/10.1371/journal.pone.0221369.g014

Fig 15. % stability of the experiments by each learning method.

https://doi.org/10.1371/journal.pone.0221369.g015

Fig 16. Rules experiments by each learning method.

https://doi.org/10.1371/journal.pone.0221369.g016

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 26 / 40

https://doi.org/10.1371/journal.pone.0221369.g014
https://doi.org/10.1371/journal.pone.0221369.g015
https://doi.org/10.1371/journal.pone.0221369.g016
https://doi.org/10.1371/journal.pone.0221369

Table 6. Comparative analysis about the behavior of goodness of fit based on SSE, MSE and RMSE per learning method and dataset processed (part 1).

Dataset Learning

Method

Stages where metrics

were calculated

SSE MSE RMSE

Min Mean Max Std Min Mean Max Std Min Mean Max Std

Synthetic

curve

Batch Training 1.23E

+00

1.04E

+02

2.30E

+03

3.44E

+02

2.94E-

03

2.50E-

01

5.52E

+00

8.26E-

01

0.05 0.27 2.35 0.42

Validation 6.80E-

01

3.72E

+01

8.69E

+02

1.29E

+02

1.63E-

03

8.93E-

02

2.08E

+00

3.09E-

01

0.04 0.16 1.44 0.25

Test 3.77E-

01

2.65E

+01

5.74E

+02

8.55E

+01

9.04E-

04

6.35E-

02

1.38E

+00

2.05E-

01

0.03 0.13 1.17 0.22

Test in adjusted model 2.28E

+00

4.11E

+01

1.11E

+02

3.21E

+01

2.47E-

02

4.46E-

01

1.20E

+00

3.49E-

01

0.16 0.60 1.10 0.30

Online Training 1.80E

+00

3.49E

+01

2.02E

+02

3.32E

+01

5.69E-

03

1.10E-

01

6.38E-

01

1.05E-

01

0.08 0.29 0.80 0.17

Validation 8.22E

+00

2.35E

+01

5.94E

+02

3.49E

+01

2.60E-

02

7.43E-

02

1.88E

+00

1.10E-

01

0.16 0.25 1.37 0.10

Test 5.51E

+00

1.99E

+01

1.28E

+02

1.49E

+01

1.74E-

02

6.29E-

02

4.06E-

01

4.72E-

02

0.13 0.24 0.64 0.09

Test in adjusted model 8.52E

+00

6.63E

+01

1.52E

+02

3.01E

+01

9.26E-

02

7.21E-

01

1.65E

+00

3.28E-

01

0.30 0.83 1.29 0.20

Mini-Batch Training 1.95E

+00

8.42E

+01

2.20E

+03

2.93E

+02

1.32E-

02

5.69E-

01

1.48E

+01

1.98E

+00

0.11 0.49 3.85 0.57

Validation 1.22E

+00

3.13E

+01

8.38E

+02

1.19E

+02

8.26E-

03

2.12E-

01

5.66E

+00

8.04E-

01

0.09 0.27 2.38 0.37

Test 9.19E-

01

2.32E

+01

7.31E

+02

9.33E

+01

6.21E-

03

1.57E-

01

4.94E

+00

6.30E-

01

0.08 0.24 2.22 0.32

Test in adjusted model 3.77E

+00

3.88E

+01

1.02E

+02

3.00E

+01

4.10E-

02

4.22E-

01

1.11E

+00

3.27E-

01

0.20 0.60 1.05 0.26

Gauss 3 Batch Training 7.91E

+02

1.40E

+04

2.14E

+05

2.67E

+04

2.20E

+00

3.89E

+01

5.94E

+02

7.42E

+01

1.48 4.18 24.37 4.63

Validation 2.28E

+02

4.12E

+03

2.81E

+05

1.60E

+04

6.34E-

01

1.15E

+01

7.81E

+02

4.46E

+01

0.80 2.26 27.94 2.52

Test 2.76E

+02

5.10E

+03

8.02E

+04

9.78E

+03

7.67E-

01

1.42E

+01

2.23E

+02

2.72E

+01

0.88 2.50 14.92 2.82

Test in adjusted model 1.33E

+03

1.98E

+03

3.33E

+03

5.07E

+02

5.35E

+00

7.99E

+00

1.34E

+01

2.04E

+00

2.31 2.81 3.66 0.35

Online Training 2.68E

+03

1.51E

+05

7.54E

+05

2.36E

+05

1.51E

+01

8.46E

+02

4.23E

+03

1.32E

+03

3.88 20.05 65.07 21.13

Validation 7.44E

+02

5.35E

+04

2.70E

+05

8.43E

+04

4.18E

+00

3.01E

+02

1.52E

+03

4.74E

+02

2.05 11.91 38.96 12.64

Test 1.02E

+03

5.68E

+04

2.88E

+05

8.96E

+04

5.73E

+00

3.19E

+02

1.62E

+03

5.03E

+02

2.39 12.41 40.25 12.90

Test in adjusted model 3.76E

+03

1.60E

+04

2.28E

+04

4.62E

+03

1.52E

+01

6.43E

+01

9.20E

+01

1.86E

+01

3.89 7.90 9.59 1.40

Mini-Batch Training 1.36E

+03

7.08E

+03

7.33E

+05

4.89E

+04

4.59E

+00

2.39E

+01

2.47E

+03

1.65E

+02

2.14 3.00 49.75 3.87

Validation 7.60E

+02

2.88E

+03

2.81E

+05

2.03E

+04

2.57E

+00

9.72E

+00

9.50E

+02

6.85E

+01

1.60 1.98 30.82 2.41

Test 4.17E

+02

1.75E

+03

1.75E

+05

1.12E

+04

1.41E

+00

5.90E

+00

5.90E

+02

3.79E

+01

1.19 1.62 24.30 1.81

Test in adjusted model 2.55E

+03

3.69E

+03

2.04E

+04

3.16E

+03

1.03E

+01

1.49E

+01

8.22E

+01

1.28E

+01

3.20 3.72 9.06 1.02

(Continued)

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 27 / 40

https://doi.org/10.1371/journal.pone.0221369

can be seen in Fig 25, Fig 26 and Fig 27 respectively, also supporting the conclusion of the

mean and standard deviation results shown in Table 7.

Finally, for the abalone shell rings dataset, the learning method that achieved a better mini-

mization of the SSE during training was for batch and during the test on the adjusted model it

was for online, as can be seen in Fig 28 and Fig 29 respectively, also supporting the conclusion

of the mean and standard deviation results shown in Table 7.

Conclusions

This paper establishes the basis for the implementation of Full Batch, Online and Mini-Batch

learning methods both in a manner theoretical and practical, those methods are oriented to

the processing of data according to the size or volume of the sample data and the form that the

gradient vector is built and the parameters are adjusted or updated. Due to existing neuro-

fuzzy systems which can only be trained under full batch learning method, it was necessary to

implement a Mamdani based Neuro-Fuzzy with Center-of-Sets Defuzzification with the flexi-

bility to work with any of the three learning methods during the training stage.

The main contribution of this paper as a first approach was to offer detailed theoretical and

practical procedures about the three learning methods on a neuro-fuzzy system with the objec-

tive to better understand its functionality, performances, and behaviors under different con-

texts when a model is built. A variety of synthetic and real datasets with small and medium

volume were used to carry out the experimentation.

The results obtained at a general level, that is, for each learning method evaluated, were

based on the mean, obtained from all the experiments generated from different analyzed data-

sets through regression model built from neuro-fuzzy system proposed. It was observed that

Table 6. (Continued)

Dataset Learning

Method

Stages where metrics

were calculated

SSE MSE RMSE

Min Mean Max Std Min Mean Max Std Min Mean Max Std

Bodyfat

percentage

Batch Training 2.39E

+03

7.09E

+03

5.67E

+04

6.15E

+03

1.10E

+01

3.27E

+01

2.61E

+02

2.84E

+01

3.32 5.42 16.16 1.82

Validation 1.10E

+03

1.99E

+03

2.13E

+04

2.13E

+03

5.09E

+00

9.17E

+00

9.80E

+01

9.81E

+00

2.26 2.87 9.90 0.95

Test 1.24E

+03

2.29E

+03

1.56E

+04

1.55E

+03

5.72E

+00

1.05E

+01

7.19E

+01

7.14E

+00

2.39 3.15 8.48 0.78

Test in adjusted model 3.39E

+03

5.23E

+03

7.74E

+03

1.04E

+03

1.36E

+01

2.09E

+01

3.10E

+01

4.17E

+00

3.68 4.55 5.57 0.46

Online Training 2.82E

+03

1.01E

+04

6.40E

+04

1.41E

+04

8.00E

+00

2.87E

+01

1.81E

+02

4.00E

+01

2.83 4.66 13.46 2.65

Validation 2.82E

+03

1.01E

+04

6.40E

+04

1.41E

+04

8.00E

+00

2.87E

+01

1.81E

+02

4.00E

+01

2.83 4.66 13.46 2.65

Test 1.33E

+03

3.81E

+03

2.12E

+04

4.60E

+03

3.76E

+00

1.08E

+01

6.01E

+01

1.30E

+01

1.94 2.96 7.75 1.43

Test in adjusted model 3.11E

+03

5.93E

+03

9.39E

+03

1.47E

+03

1.24E

+01

2.37E

+01

3.76E

+01

5.89E

+00

3.53 4.83 6.13 0.60

Mini-Batch Training 3.00E

+03

4.27E

+03

2.84E

+04

2.75E

+03

3.03E

+01

4.31E

+01

2.87E

+02

2.78E

+01

5.51 6.43 16.94 1.35

Validation 8.76E

+02

1.30E

+03

2.20E

+04

2.19E

+03

8.85E

+00

1.31E

+01

2.22E

+02

2.21E

+01

2.97 3.38 14.91 1.32

Test 8.51E

+02

1.06E

+03

4.81E

+03

4.36E

+02

8.60E

+00

1.07E

+01

4.86E

+01

4.40E

+00

2.93 3.24 6.97 0.48

Test in adjusted model 2.73E

+03

3.71E

+03

5.24E

+03

6.39E

+02

1.09E

+01

1.49E

+01

2.10E

+01

2.56E

+00

3.30 3.84 4.58 0.33

https://doi.org/10.1371/journal.pone.0221369.t006

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 28 / 40

https://doi.org/10.1371/journal.pone.0221369.t006
https://doi.org/10.1371/journal.pone.0221369

Table 7. Comparative analysis about the behavior of goodness of fit based on SSE, MSE and RMSE per learning method and dataset processed (part 2).

Dataset Learning

Method

Stages where metrics

were calculated

SSE MSE RMSE

Min Mean Max Std Min Mean Max Std Min Mean Max Std

Chemical sensor Batch Training 4.58E

+03

9.67E

+05

4.40E

+07

5.37E

+06

5.04E

+01

1.06E

+04

4.84E

+05

5.91E

+04

7.10 41.68 695.44 94.80

Validation 1.94E

+03

6.08E

+05

2.55E

+07

3.21E

+06

2.13E

+01

6.68E

+03

2.81E

+05

3.53E

+04

4.62 29.86 529.80 76.50

Test 2.07E

+03

3.32E

+05

1.54E

+07

1.86E

+06

2.28E

+01

3.65E

+03

1.69E

+05

2.04E

+04

4.77 24.62 411.54 55.44

Test in adjusted

model

3.03E

+03

9.08E

+03

3.56E

+04

6.10E

+03

6.11E

+00

1.83E

+01

7.19E

+01

1.23E

+01

2.47 4.12 8.48 1.17

Online Training 4.15E

+03

3.12E

+04

6.25E

+05

1.29E

+05

2.28E

+01

4.77E

+02

2.72E

+04

2.83E

+03

4.77 13.47 164.82 17.29

Validation 1.97E

+03

1.11E

+06

2.56E

+07

5.34E

+06

2.28E

+01

1.24E

+04

1.11E

+06

1.17E

+05

4.77 22.23 1055.00 109.66

Test 1.97E

+03

2.17E

+03

3.03E

+03

2.06E

+02

2.28E

+01

1.59E

+02

7.06E

+02

1.86E

+02

4.77 10.85 26.58 6.42

Test in adjusted

model

2.79E

+01

2.06E

+03

6.37E

+03

1.53E

+03

5.63E-

02

4.16E

+00

1.28E

+01

3.08E

+00

0.24 1.86 3.58 0.85

Mini-Batch Training 4.53E

+03

1.48E

+06

5.08E

+07

8.35E

+06

1.22E

+02

4.00E

+04

1.37E

+06

2.26E

+05

11.06 58.50 1171.93 193.81

Validation 1.36E

+03

8.09E

+05

2.54E

+07

4.21E

+06

3.67E

+01

2.19E

+04

6.86E

+05

1.14E

+05

6.06 41.03 828.48 144.05

Test 1.75E

+03

1.29E

+05

4.35E

+06

7.14E

+05

4.73E

+01

3.47E

+03

1.18E

+05

1.93E

+04

6.88 20.93 343.04 55.86

Test in adjusted

model

9.62E

+01

5.92E

+03

2.82E

+04

5.09E

+03

1.94E-

01

1.19E

+01

5.69E

+01

1.03E

+01

0.44 3.19 7.55 1.35

Engine behavior

(output 1)

Batch Training 4.89E

+07

8.97E

+07

1.36E

+09

1.55E

+08

8.99E

+04

1.65E

+05

2.50E

+06

2.84E

+05

299.83 368.61 1581.40 170.70

Validation 1.83E

+07

3.46E

+07

5.27E

+08

6.23E

+07

3.37E

+04

6.36E

+04

9.69E

+05

1.14E

+05

183.54 226.94 984.63 109.93

Test 1.95E

+07

3.35E

+07

4.85E

+08

5.47E

+07

3.59E

+04

6.15E

+04

8.92E

+05

1.01E

+05

189.49 227.34 944.27 99.39

Test in adjusted

model

2.03E

+07

3.00E

+07

4.81E

+07

6.02E

+06

1.69E

+04

2.51E

+04

4.02E

+04

5.03E

+03

130.08 157.58 200.51 15.19

Online Training 2.55E

+07

6.60E

+07

1.01E

+09

1.02E

+08

6.89E

+03

9.82E

+04

6.29E

+06

3.41E

+05

83.02 199.42 2508.62 241.91

Validation 8.82E

+06

2.37E

+07

4.71E

+08

4.21E

+07

6.89E

+03

3.96E

+04

2.92E

+06

1.36E

+05

83.02 147.34 1710.13 133.72

Test 8.07E

+06

2.16E

+07

1.63E

+08

2.64E

+07

6.89E

+03

3.66E

+04

1.01E

+06

9.34E

+04

83.02 145.54 1006.21 124.45

Test in adjusted

model

7.23E

+06

1.83E

+07

3.90E

+07

7.22E

+06

6.04E

+03

1.53E

+04

3.26E

+04

6.03E

+03

77.71 121.56 180.56 23.91

Mini-Batch Training 1.35E

+07

3.38E

+07

1.34E

+09

7.42E

+07

1.87E

+04

4.69E

+04

1.86E

+06

1.03E

+05

136.65 190.50 1362.95 103.09

Validation 3.94E

+06

1.06E

+07

4.62E

+08

2.59E

+07

5.46E

+03

1.47E

+04

6.41E

+05

3.59E

+04

73.91 104.93 800.78 60.65

Test 4.97E

+06

1.12E

+07

4.00E

+08

2.10E

+07

6.89E

+03

1.55E

+04

5.55E

+05

2.92E

+04

83.02 112.17 745.11 54.16

Test in adjusted

model

3.73E

+06

1.73E

+07

3.03E

+07

7.86E

+06

3.11E

+03

1.44E

+04

2.53E

+04

6.57E

+03

55.80 116.75 159.06 28.72

(Continued)

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 29 / 40

https://doi.org/10.1371/journal.pone.0221369

the Mini-Batch learning method with respect to the general trend of �R was positive, It showed

greater strength in its correlation and better control in its variability with mean results of

0.8268 y 14.12% respectively, followed by the Batch learning method with �R = 0.7708 and

Table 7. (Continued)

Dataset Learning

Method

Stages where metrics

were calculated

SSE MSE RMSE

Min Mean Max Std Min Mean Max Std Min Mean Max Std

Engine behavior

(output 2)

Batch Training 4.89E

+07

8.97E

+07

1.36E

+09

1.55E

+08

8.99E

+04

1.65E

+05

2.50E

+06

2.84E

+05

299.83 368.61 1581.40 170.70

Validation 1.83E

+07

3.46E

+07

5.27E

+08

6.23E

+07

3.37E

+04

6.36E

+04

9.69E

+05

1.14E

+05

183.54 226.94 984.63 109.93

Test 1.95E

+07

3.35E

+07

4.85E

+08

5.47E

+07

3.59E

+04

6.15E

+04

8.92E

+05

1.01E

+05

189.49 227.34 944.27 99.39

Test in adjusted

model

3.64E

+07

4.67E

+07

9.56E

+07

1.27E

+07

3.04E

+04

3.90E

+04

7.98E

+04

1.06E

+04

174.42 196.19 282.54 22.84

Online Training 2.55E

+07

6.60E

+07

1.01E

+09

1.02E

+08

6.89E

+03

9.82E

+04

6.29E

+06

3.41E

+05

83.02 199.42 2508.62 241.91

Validation 8.82E

+06

2.37E

+07

4.71E

+08

4.21E

+07

6.89E

+03

3.96E

+04

2.92E

+06

1.36E

+05

83.02 147.34 1710.13 133.72

Test 8.07E

+06

2.16E

+07

1.63E

+08

2.64E

+07

6.89E

+03

3.66E

+04

1.01E

+06

9.34E

+04

83.02 145.54 1006.21 124.45

Test in adjusted

model

1.95E

+07

4.30E

+07

6.64E

+07

1.00E

+07

1.63E

+04

3.59E

+04

5.55E

+04

8.37E

+03

127.60 188.21 235.54 22.94

Mini-Batch Training 1.35E

+07

3.38E

+07

1.34E

+09

7.42E

+07

1.87E

+04

4.69E

+04

1.86E

+06

1.03E

+05

136.65 190.50 1362.95 103.09

Validation 3.94E

+06

1.06E

+07

4.62E

+08

2.59E

+07

5.46E

+03

1.47E

+04

6.41E

+05

3.59E

+04

73.91 104.93 800.78 60.65

Test 4.97E

+06

1.12E

+07

4.00E

+08

2.10E

+07

6.89E

+03

1.55E

+04

5.55E

+05

2.92E

+04

83.02 112.17 745.11 54.16

Test in adjusted

model

1.55E

+07

3.85E

+07

4.96E

+07

7.75E

+06

1.30E

+04

3.22E

+04

4.14E

+04

6.47E

+03

113.88 178.34 203.48 19.51

Abalone shell

rings

Batch Training 1.39E

+04

1.62E

+04

2.24E

+05

9.66E

+03

1.47E

+01

1.72E

+01

2.38E

+02

1.02E

+01

3.84 4.10 15.42 0.60

Validation 4.65E

+03

5.72E

+03

9.17E

+04

4.33E

+03

4.93E

+00

6.06E

+00

9.72E

+01

4.59E

+00

2.22 2.42 9.86 0.43

Test 4.56E

+03

5.36E

+03

7.77E

+04

3.39E

+03

4.84E

+00

5.69E

+00

8.24E

+01

3.59E

+00

2.20 2.36 9.08 0.36

Test in adjusted

model

5.40E

+03

8.54E

+03

1.02E

+04

1.28E

+03

1.29E

+00

2.04E

+00

2.45E

+00

3.07E-

01

1.14 1.43 1.57 0.11

Online Training 2.05E

+04

2.09E

+04

2.37E

+04

6.15E

+02

6.02E

+02

6.15E

+02

6.98E

+02

1.81E

+01

24.54 24.79 26.42 0.36

Validation 7.73E

+03

1.01E

+04

8.86E

+04

1.39E

+04

2.27E

+02

2.98E

+02

2.60E

+03

4.08E

+02

15.07 16.17 51.04 6.16

Test 8.97E

+03

9.09E

+03

9.39E

+03

1.02E

+02

2.64E

+02

2.67E

+02

2.76E

+02

3.00E

+00

16.24 16.35 16.62 0.09

Test in adjusted

model

1.80E

+02

5.26E

+02

1.29E

+03

2.28E

+02

4.32E-

02

1.26E-

01

3.10E-

01

5.46E-

02

0.21 0.35 0.56 0.07

Mini-Batch Training 1.69E

+04

2.37E

+04

2.73E

+05

3.27E

+04

1.18E

+02

1.66E

+02

1.91E

+03

2.28E

+02

10.86 12.09 43.67 4.46

Validation 4.89E

+03

7.17E

+03

8.90E

+04

1.17E

+04

3.42E

+01

5.01E

+01

6.22E

+02

8.16E

+01

5.85 6.50 24.95 2.81

Test 5.57E

+03

7.23E

+03

8.81E

+04

9.65E

+03

3.89E

+01

5.06E

+01

6.16E

+02

6.75E

+01

6.24 6.72 24.83 2.34

Test in adjusted

model

8.21E

+03

9.14E

+03

1.06E

+04

5.27E

+02

1.97E

+00

2.19E

+00

2.55E

+00

1.26E-

01

1.40 1.48 1.60 0.04

https://doi.org/10.1371/journal.pone.0221369.t007

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 30 / 40

https://doi.org/10.1371/journal.pone.0221369.t007
https://doi.org/10.1371/journal.pone.0221369

finally the Online learning method �R = 0.7520 but both with a very close coefficient of varia-

tion, with a difference of 0.58%, giving advantage to the Batch learning method. A similar

behavior occurred with respect to the determination coefficient where the Mini-Batch learning

method obtained a �R2 ¼ 0.7444 with a C.V = 6.50%, followed by the Batch learning method

Fig 17. Performance progress of SSE in training stage by learning method to synthetic curve dataset.

https://doi.org/10.1371/journal.pone.0221369.g017

Fig 18. Performance progress of SSE in test stage with adjusted model by learning method to synthetic curve

dataset.

https://doi.org/10.1371/journal.pone.0221369.g018

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 31 / 40

https://doi.org/10.1371/journal.pone.0221369.g017
https://doi.org/10.1371/journal.pone.0221369.g018
https://doi.org/10.1371/journal.pone.0221369

with �R2 ¼ 0.6906 and finally, the online learning method with �R2 ¼ 0.6456, with a C.

V = 14.61% y 15.51% respectively. Finally, it is observed that the most stable learning methods

in their experimental executions were the Batch and Mini-Batch learning method, being Batch

learning method who had an advantage, but only by 1% more than Mini-Batch, it is also

observed that it was these two learning methods that required the least number of rules, but it

was the Mini-Batch and Online learning method that finished their training in fewer epochs.

Fig 19. Performance progress of SEE in training stage by learning method to gauss3 dataset.

https://doi.org/10.1371/journal.pone.0221369.g019

Fig 20. Performance progress of SEE in test stage with adjusted model by learning method to gauss3 dataset.

https://doi.org/10.1371/journal.pone.0221369.g020

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 32 / 40

https://doi.org/10.1371/journal.pone.0221369.g019
https://doi.org/10.1371/journal.pone.0221369.g020
https://doi.org/10.1371/journal.pone.0221369

We consider that the study is relevant due to the growing necessity of tools that have the

possibility of being able to handle and analyze large volumes of data, and that allows for ade-

quate management of their computational resources. The Mini-Batch learning method is

Fig 21. Performance progress of SEE in training stage by learning method to bodyfat percentage dataset.

https://doi.org/10.1371/journal.pone.0221369.g021

Fig 22. Performance progress of SEE in test stage with adjusted model by learning method to bodyfat percentage

dataset.

https://doi.org/10.1371/journal.pone.0221369.g022

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 33 / 40

https://doi.org/10.1371/journal.pone.0221369.g021
https://doi.org/10.1371/journal.pone.0221369.g022
https://doi.org/10.1371/journal.pone.0221369

highlighted as a very good alternative, since it can be performed in distributed environments

because they are highly parallelizable and attenuate the difficulties that the Batch and Online

learning methods present individually. As subsequent works, it is necessary to look for other

Fig 23. Performance progress of SEE in training stage by learning method to chemical sensor dataset.

https://doi.org/10.1371/journal.pone.0221369.g023

Fig 24. Performance progress of SEE in test stage with adjusted model by learning method to chemical sensor

dataset.

https://doi.org/10.1371/journal.pone.0221369.g024

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 34 / 40

https://doi.org/10.1371/journal.pone.0221369.g023
https://doi.org/10.1371/journal.pone.0221369.g024
https://doi.org/10.1371/journal.pone.0221369

methods of optimization that will lead us to better results with respect to the minimization of

the error function and also to scale it to Deep Learning and Big Data environments, where

treatment of high volumes of data are required for its processing.

Fig 25. Performance progress of SEE in training stage by learning method to engine behavior dataset.

https://doi.org/10.1371/journal.pone.0221369.g025

Fig 26. Performance progress of SEE in test stage with adjusted model by learning method to engine behavior

dataset to output 1.

https://doi.org/10.1371/journal.pone.0221369.g026

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 35 / 40

https://doi.org/10.1371/journal.pone.0221369.g025
https://doi.org/10.1371/journal.pone.0221369.g026
https://doi.org/10.1371/journal.pone.0221369

Fig 27. Performance progress of SEE in test stage with adjusted model by learning method to engine behavior

dataset to output 2.

https://doi.org/10.1371/journal.pone.0221369.g027

Fig 28. Performance progress of SEE in training stage by learning method to abalone shell rings dataset.

https://doi.org/10.1371/journal.pone.0221369.g028

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 36 / 40

https://doi.org/10.1371/journal.pone.0221369.g027
https://doi.org/10.1371/journal.pone.0221369.g028
https://doi.org/10.1371/journal.pone.0221369

Supporting information

S1 Code.

(ZIP)

Acknowledgments

We thank the MyDCI program of the Division of Graduate Studies and Research, UABC, for

the financial support provided by our sponsor CONACYT contract grant number: 767582.

Author Contributions

Conceptualization: Juan R. Castro, Mauricio A. Sanchez, Antonio Rodrı́guez-Dı́az.

Data curation: Olivia Mendoza.

Formal analysis: Sukey Nakasima-López, Juan R. Castro, Antonio Rodrı́guez-Dı́az.

Investigation: Sukey Nakasima-López.

Methodology: Sukey Nakasima-López, Juan R. Castro.

Project administration: Mauricio A. Sanchez.

Resources: Olivia Mendoza.

Supervision: Juan R. Castro, Mauricio A. Sanchez, Antonio Rodrı́guez-Dı́az.

Validation: Mauricio A. Sanchez.

Visualization: Sukey Nakasima-López, Olivia Mendoza.

Writing – original draft: Sukey Nakasima-López.

Fig 29. Performance progress of SEE in test stage with adjusted model by learning method to abalone shell rings

dataset.

https://doi.org/10.1371/journal.pone.0221369.g029

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 37 / 40

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221369.s001
https://doi.org/10.1371/journal.pone.0221369.g029
https://doi.org/10.1371/journal.pone.0221369

Writing – review & editing: Mauricio A. Sanchez, Antonio Rodrı́guez-Dı́az.

References

1. Zadeh LA. Fuzzy logic—A personal perspective. Fuzzy Sets Syst [Internet]. 2015 Dec 15 [cited 2018

Apr 10]; 281:4–20. Available from: https://www.sciencedirect.com/science/article/pii/

S0165011415002377

2. Zadeh LA. Fuzzy sets. Inf Control [Internet]. 1965 Jun 1 [cited 2018 Apr 10]; 8(3):338–53. Available

from: https://www.sciencedirect.com/science/article/pii/S001999586590241X

3. Prieto A, Atencia M, Sandoval F. Advances in artificial neural networks and machine learning. Neuro-

computing [Internet]. 2013 Dec 9 [cited 2018 Apr 10]; 121:1–4. Available from: https://www.

sciencedirect.com/science/article/pii/S0925231213001549

4. Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, et al. Neural networks: An overview of early

research, current frameworks and new challenges. Neurocomputing [Internet]. 2016 Nov 19 [cited 2018

Apr 10]; 214:242–68. Available from: https://www.sciencedirect.com/science/article/pii/

S0925231216305550

5. Nissen V. A Brief Introduction to Evolutionary Algorithms from the Perspective of Management Science.

In: Innovative Research Methodologies in Management [Internet]. Cham: Springer International Pub-

lishing; 2018 [cited 2018 Apr 10]. p. 165–210. Available from: http://link.springer.com/10.1007/978-3-

319-64394-6_8

6. Bartz-Beielstein T, Branke J, Mehnen J, Mersmann O. Overview: Evolutionary Algorithms [Internet].

Bibliothek der Technischen Hochschule Köln; 2015. Available from: https://books.google.com.mx/

books?id=NmIdtAEACAAJ

7. Newton A. Bayesian Belief Networks in Environmental Modelling: A Review of Recent Progress. In:

Environmental Modelling: New Research [Internet]. 2009 [cited 2018 Apr 10]. p. 13–50. Available from:

https://www.researchgate.net/profile/Adrian_Newton2/publication/262522486_Bayesian_Belief_

Networks_in_environmental_modelling_a_review_of_recent_progress/links/

00b7d537e2341551af000000/Bayesian-Belief-Networks-in-environmental-modelling-a-review-of-

recent

8. Mittal S, Maskara SL. A review of some Bayesian Belief Network structure learning algorithms. In: 2011

8th International Conference on Information, Communications Signal Processing. 2011. p. 1–5.

9. Zhang Y, Wang S, Ji G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its

Applications. Math Probl Eng [Internet]. 2015 Oct 7 [cited 2018 Apr 10]; 2015:1–38. Available from:

http://www.hindawi.com/journals/mpe/2015/931256/

10. Adewumi AO, Popoola PA. A multi-objective particle swarm optimization for the submission decision

process. Int J Syst Assur Eng Manag [Internet]. 2016 [cited 2018 Apr 10];9. Available from: https://link.

springer.com/content/pdf/10.1007%2Fs13198-016-0487-2.pdf

11. Sewell M, Shawe-Taylor J. Forecasting foreign exchange rates using kernel methods. Expert Syst Appl

[Internet]. 2012 [cited 2018 Apr 10]; 39(9):7652–62. Available from: https://ac.els-cdn.com/

S0957417412000395/1-s2.0-S0957417412000395-main.pdf?_tid=b32bb3f9-f3dd-4de7-b769-

2b01605e6ac9&acdnat=1523400207_d2dd6d96298e348b3edffec7b818c5f1

12. Paul J, D’Ambrosio R, Dupont P. Kernel methods for heterogeneous feature selection. Neurocomputing

[Internet]. 2015 [cited 2018 Apr 10]; 169:187–95. Available from: https://ac.els-cdn.com/

S0925231215004348/1-s2.0-S0925231215004348-main.pdf?_tid=ceb61bd9-95a2-42df-b180-

1c339c5e8714&acdnat=1523400151_6839be58d276ace90ac7c6e20d773888

13. Costa Silva G, Caminhas WM, Palhares RM. Artificial immune systems applied to fault detection and

isolation: A brief review of immune response-based approaches and a case study. Appl Soft Comput

[Internet]. 2017 [cited 2018 Apr 10]; 57:118–31. Available from: https://ac.els-cdn.com/

S1568494617301552/1-s2.0-S1568494617301552-main.pdf?_tid=41686bd6-132b-4939-8f62-

30cae15c729b&acdnat=1523400805_a29271cc0560ddd60e2ec702baace1f4

14. Yang H, Li T, Hu X, Wang F, Zou Y. A survey of artificial immune system based intrusion detection

[Internet]. Vol. 2014, The Scientific World Journal. Hindawi; 2014 [cited 2018 Apr 10]. p. 156790. Avail-

able from: http://www.ncbi.nlm.nih.gov/pubmed/24790549 https://doi.org/10.1155/2014/156790 PMID:

24790549

15. Abraham A, Nath B. Hybrid intelligent systems design: A review of a decade of research. . . . Trans-

actions Syst Man Cybern (. . . [Internet]. 2000 [cited 2018 Apr 10]; Available from: http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.18.469

16. Kar S, Das S, Ghosh PK. Applications of neuro fuzzy systems: A brief review and future outline [Inter-

net]. Vol. 15, Applied Soft Computing Journal. Elsevier; 2014 [cited 2018 Jan 19]. p. 243–59. Available

from: http://www.sciencedirect.com/science/article/pii/S1568494613003487?via%3Dihub

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 38 / 40

https://www.sciencedirect.com/science/article/pii/S0165011415002377
https://www.sciencedirect.com/science/article/pii/S0165011415002377
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S0925231213001549
https://www.sciencedirect.com/science/article/pii/S0925231213001549
https://www.sciencedirect.com/science/article/pii/S0925231216305550
https://www.sciencedirect.com/science/article/pii/S0925231216305550
http://link.springer.com/10.1007/978-3-319-64394-6_8
http://link.springer.com/10.1007/978-3-319-64394-6_8
https://books.google.com.mx/books?id=NmIdtAEACAAJ
https://books.google.com.mx/books?id=NmIdtAEACAAJ
https://www.researchgate.net/profile/Adrian_Newton2/publication/262522486_Bayesian_Belief_Networks_in_environmental_modelling_a_review_of_recent_progress/links/00b7d537e2341551af000000/Bayesian-Belief-Networks-in-environmental-modelling-a-review-of-recent
https://www.researchgate.net/profile/Adrian_Newton2/publication/262522486_Bayesian_Belief_Networks_in_environmental_modelling_a_review_of_recent_progress/links/00b7d537e2341551af000000/Bayesian-Belief-Networks-in-environmental-modelling-a-review-of-recent
https://www.researchgate.net/profile/Adrian_Newton2/publication/262522486_Bayesian_Belief_Networks_in_environmental_modelling_a_review_of_recent_progress/links/00b7d537e2341551af000000/Bayesian-Belief-Networks-in-environmental-modelling-a-review-of-recent
https://www.researchgate.net/profile/Adrian_Newton2/publication/262522486_Bayesian_Belief_Networks_in_environmental_modelling_a_review_of_recent_progress/links/00b7d537e2341551af000000/Bayesian-Belief-Networks-in-environmental-modelling-a-review-of-recent
http://www.hindawi.com/journals/mpe/2015/931256/
https://link.springer.com/content/pdf/10.1007%2Fs13198-016-0487-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs13198-016-0487-2.pdf
https://ac.els-cdn.com/S0957417412000395/1-s2.0-S0957417412000395-main.pdf?_tid=b32bb3f9-f3dd-4de7-b769-2b01605e6ac9&acdnat=1523400207_d2dd6d96298e348b3edffec7b818c5f1
https://ac.els-cdn.com/S0957417412000395/1-s2.0-S0957417412000395-main.pdf?_tid=b32bb3f9-f3dd-4de7-b769-2b01605e6ac9&acdnat=1523400207_d2dd6d96298e348b3edffec7b818c5f1
https://ac.els-cdn.com/S0957417412000395/1-s2.0-S0957417412000395-main.pdf?_tid=b32bb3f9-f3dd-4de7-b769-2b01605e6ac9&acdnat=1523400207_d2dd6d96298e348b3edffec7b818c5f1
https://ac.els-cdn.com/S0925231215004348/1-s2.0-S0925231215004348-main.pdf?_tid=ceb61bd9-95a2-42df-b180-1c339c5e8714&acdnat=1523400151_6839be58d276ace90ac7c6e20d773888
https://ac.els-cdn.com/S0925231215004348/1-s2.0-S0925231215004348-main.pdf?_tid=ceb61bd9-95a2-42df-b180-1c339c5e8714&acdnat=1523400151_6839be58d276ace90ac7c6e20d773888
https://ac.els-cdn.com/S0925231215004348/1-s2.0-S0925231215004348-main.pdf?_tid=ceb61bd9-95a2-42df-b180-1c339c5e8714&acdnat=1523400151_6839be58d276ace90ac7c6e20d773888
https://ac.els-cdn.com/S1568494617301552/1-s2.0-S1568494617301552-main.pdf?_tid=41686bd6-132b-4939-8f62-30cae15c729b&acdnat=1523400805_a29271cc0560ddd60e2ec702baace1f4
https://ac.els-cdn.com/S1568494617301552/1-s2.0-S1568494617301552-main.pdf?_tid=41686bd6-132b-4939-8f62-30cae15c729b&acdnat=1523400805_a29271cc0560ddd60e2ec702baace1f4
https://ac.els-cdn.com/S1568494617301552/1-s2.0-S1568494617301552-main.pdf?_tid=41686bd6-132b-4939-8f62-30cae15c729b&acdnat=1523400805_a29271cc0560ddd60e2ec702baace1f4
http://www.ncbi.nlm.nih.gov/pubmed/24790549
https://doi.org/10.1155/2014/156790
http://www.ncbi.nlm.nih.gov/pubmed/24790549
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.469
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.469
http://www.sciencedirect.com/science/article/pii/S1568494613003487?via%3Dihub
https://doi.org/10.1371/journal.pone.0221369

17. Taylan O, Karagözoğlu B. An adaptive neuro-fuzzy model for prediction of student’s academic perfor-

mance. Comput Ind Eng [Internet]. 2009 Oct 1 [cited 2018 Jan 19]; 57(3):732–41. Available from: http://

www.sciencedirect.com/science/article/pii/S0360835209000394?via%3Dihub

18. Neagoe V-E, Iatan I-F, Grunwald S. A neuro-fuzzy approach to classification of ECG signals for ische-

mic heart disease diagnosis. AMIA. Annu Symp proceedings AMIA Symp [Internet]. 2003 [cited 2018

Jan 19]; 2003:494–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14728222

19. Neagoe V-E, Iatan I-F. Face recognition using a fuzzy-Gaussian neural network. Proc First IEEE Int

Conf Cogn Informatics [Internet]. 2002 [cited 2018 Jan 19];(c):361–8. Available from: http://ieeexplore.

ieee.org/document/1039318/

20. Yu H, Changyin S, Yang X, Zheng S, Zou H. Fuzzy Support Vector Machine with Relative Density Infor-

mation for Classifying Imbalanced Data. IEEE Trans Fuzzy Syst [Internet]. 2019 [cited 2019 May 7];1–

1. Available from: https://ieeexplore.ieee.org/document/8637811/

21. Liang C, Peng L. An automated diagnosis system of liver disease using artificial immune and genetic

algorithms. J Med Syst. 2013;

22. Gong YJ, Li JJ, Zhou Y, Li Y, Chung HSH, Shi YH, et al. Genetic Learning Particle Swarm Optimization.

IEEE Trans Cybern [Internet]. 2016 Oct [cited 2019 May 7]; 46(10):2277–90. Available from: https://

ieeexplore.ieee.org/document/7271066/ https://doi.org/10.1109/TCYB.2015.2475174 PMID:

26394440

23. Kalantari A, Kamsin A, Shamshirband S, Gani A, Alinejad-Rokny H, Chronopoulos AT. Computational

intelligence approaches for classification of medical data: State-of-the-art, future challenges and

research directions. Neurocomputing [Internet]. 2017 [cited 2018 Apr 11]; 276:2–22. Available from:

https://ac.els-cdn.com/S0925231217315436/1-s2.0-S0925231217315436-main.pdf?_tid=c6353fd2-

3766-46a7-b691-814ddbfeb257&acdnat=1523472210_42f23d1faefd05d154b742219ff76583

24. Partouche D, Pasquier M, Spalanzani A. Intelligent Speed Adaptation Using a Self-Organizing Neuro-

Fuzzy Controller. 2007 IEEE Intell Veh Symp [Internet]. 2007 Jun [cited 2018 Jan 19];846–51. Available

from: http://ieeexplore.ieee.org/document/4290222/

25. Bodyanskiy Y. Computational Intelligence Techniques for Data Analysis. [cited 2018 Jan 17];15–36.

Available from: http://subs.emis.de/LNI/Proceedings/Proceedings72/GI-Proceedings.72-1.pdf

26. Darwish A, Abraham A. The Use of Computational Intelligence in Digital Watermarking: Review, Chal-

lenges, and New Trends. Int J Non-Standard Comput Artif Intell [Internet]. 2008 [cited 2017 Dec 16]; 21

(4):277–97. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.3820&rep=

rep1&type=pdf

27. Solomatine D, See LM, Abrahart RJ. Data-Driven Modelling: Concepts, Approaches and Experiences.

In: Practical Hydroinformatics [Internet]. [cited 2018 Apr 11]. p. 17–30. Available from: https://pdfs.

semanticscholar.org/641e/66d275ddd9b905a2c9f562772b7921ac208d.pdf

28. Jain LC, Seera M, Lim CP, Balasubramaniam P. A review of online learning in supervised neural net-

works [Internet]. Vol. 25, Neural Computing and Applications. 2014 [cited 2018 Apr 11]. p. 491–509.

Available from: https://link.springer.com/content/pdf/10.1007%2Fs00521-013-1534-4.pdf

29. Kar AK. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst Appl.

2016; 59:20–32.

30. Ka Yuk Chan C, Zorina ZA, Sparks JR, Lopez Ornat S, Tsang CD, Grigorenko EL, et al. Learning in Arti-

ficial Neural Networks. In: Encyclopedia of the Sciences of Learning [Internet]. Boston, MA: Springer

US; 2012 [cited 2017 Dec 17]. p. 1893–8. Available from: http://www.springerlink.com/index/10.1007/

978-1-4419-1428-6_332

31. Araghi S, Khosravi A, Creighton D. A review on computational intelligence methods for controlling traffic

signal timing. Vol. 42, Expert Systems with Applications. 2015. p. 1538–50.

32. Elmetwally MM, Aal FA, Awad ML, Omran S. A Hopfield Neural Network Approach for Integrated Trans-

mission Network Expansion Planning. J Appl Sci Res. 2008; 4(11):1387–94.

33. Jang J, Sun C.T. ME. Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and

Machine Intelligence. Autom Control IEEE [Internet]. 1997; 42(10):1482–1484. Available from: http://

www.cs.rpi.edu/academics/courses/fall01/soft-computing/pdf/jang1.pdf%5Cnhttp://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=633847

34. Ali Saud M, Al-Tubi M, Bevan G, Wallace P, Harrison DK, P Ramachandran K. A REVIEW ON APPLI-

CATIONS OF GENETIC ALGORITHM FOR ARTIFICIAL NEURAL NETWORK. 2016; 50:2106–320.

35. MiljkovićD. Brief Review of Self-Organizing Maps. 2017.

36. Alade O, Selamat A, Sallehuddin R. A Review of Advances in Extreme Learning Machine Techniques

and Its Applications. 2018. p. 885–95.

37. O’Shea K, Nash R. An Introduction to Convolutional Neural Networks. ArXiv e-prints. 2015;

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 39 / 40

http://www.sciencedirect.com/science/article/pii/S0360835209000394?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S0360835209000394?via%3Dihub
http://www.ncbi.nlm.nih.gov/pubmed/14728222
http://ieeexplore.ieee.org/document/1039318/
http://ieeexplore.ieee.org/document/1039318/
https://ieeexplore.ieee.org/document/8637811/
https://ieeexplore.ieee.org/document/7271066/
https://ieeexplore.ieee.org/document/7271066/
https://doi.org/10.1109/TCYB.2015.2475174
http://www.ncbi.nlm.nih.gov/pubmed/26394440
https://ac.els-cdn.com/S0925231217315436/1-s2.0-S0925231217315436-main.pdf?_tid=c6353fd2-3766-46a7-b691-814ddbfeb257&acdnat=1523472210_42f23d1faefd05d154b742219ff76583
https://ac.els-cdn.com/S0925231217315436/1-s2.0-S0925231217315436-main.pdf?_tid=c6353fd2-3766-46a7-b691-814ddbfeb257&acdnat=1523472210_42f23d1faefd05d154b742219ff76583
http://ieeexplore.ieee.org/document/4290222/
http://subs.emis.de/LNI/Proceedings/Proceedings72/GI-Proceedings.72-1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.3820&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.3820&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/641e/66d275ddd9b905a2c9f562772b7921ac208d.pdf
https://pdfs.semanticscholar.org/641e/66d275ddd9b905a2c9f562772b7921ac208d.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00521-013-1534-4.pdf
http://www.springerlink.com/index/10.1007/978-1-4419-1428-6_332
http://www.springerlink.com/index/10.1007/978-1-4419-1428-6_332
http://www.cs.rpi.edu/academics/courses/fall01/soft-computing/pdf/jang1.pdf%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=633847
http://www.cs.rpi.edu/academics/courses/fall01/soft-computing/pdf/jang1.pdf%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=633847
http://www.cs.rpi.edu/academics/courses/fall01/soft-computing/pdf/jang1.pdf%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=633847
https://doi.org/10.1371/journal.pone.0221369

38. Park JS, Kim HG, Kim DG, Yu IJ, Lee HK. Paired mini-batch training: A new deep network training for

image forensics and steganalysis. Signal Process Image Commun [Internet]. 2018 Sep [cited 2019 May

8]; 67:132–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092359651830434X

39. Sharma A. Guided Stochastic Gradient Descent Algorithm for inconsistent datasets. Appl Soft Comput

J [Internet]. 2018 Dec [cited 2019 May 8]; 73:1068–80. Available from: https://linkinghub.elsevier.com/

retrieve/pii/S156849461830557X

40. Nakama T. Theoretical analysis of batch and on-line training for gradient descent learning in neural net-

works. Neurocomputing [Internet]. 2009 [cited 2019 May 8]; 73(1–3):151–9. Available from: www.

elsevier.com/locate/neucom

41. Nagy B, Basbous R, Tajti T. Lazy evaluations in Lukasiewicz type fuzzy logic. Fuzzy Sets Syst [Inter-

net]. 2018 Nov [cited 2019 May 8]; Available from: https://linkinghub.elsevier.com/retrieve/pii/

S0165011418309357

42. Smets P, Magrez P. Implication in fuzzy logic. Int J Approx Reason [Internet]. 1987 Oct 1 [cited 2018

Apr 13]; 1(4):327–47. Available from: https://www.sciencedirect.com/science/article/pii/

0888613X87900235

43. Sanchez MA, Castillo O, Castro JR. An Overview of Granular Computing Using Fuzzy Logic Systems.

In Springer Verlag; 2017 [cited 2018 Apr 13]. p. 19–38. Available from: http://link.springer.com/10.

1007/978-3-319-47054-2_2

44. Wang CY, Wan L. Type-2 fuzzy implications and fuzzy-valued approximation reasoning. Int J Approx

Reason [Internet]. 2018 Nov [cited 2019 May 8]; 102:108–22. Available from: https://linkinghub.

elsevier.com/retrieve/pii/S0888613X18303827

45. Ying M. Implication operators in fuzzy logic. IEEE Trans Fuzzy Syst [Internet]. 2002 [cited 2018 Apr 13];

10(1):88–91. Available from: http://ieeexplore.ieee.org/document/983282/

46. Guillaume S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE

Trans Fuzzy Syst [Internet]. 2001 [cited 2018 Apr 11]; 9(3):426–43. Available from: http://sci2s.ugr.es/

keel/pdf/specific/articulo/guillaum01Interpt.pdf

47. Sabri N, Aljunid SA, Salim MS, Badlishah RB, Kamaruddin R, Abd Malek MF. Fuzzy inference system:

Short review and design. Int Rev Autom Control [Internet]. 2013 [cited 2018 Apr 11]; 6(4):441–9. Avail-

able from: https://www.researchgate.net/profile/Naseer_Sabri2/publication/280739444_Fuzzy_

inference_system_Short_review_and_design/links/5900293daca2725bd71e8630/Fuzzy-inference-

system-Short-review-and-design.pdf

48. Castellano G, Fanelli AM, Mencar C. Design of transparent Mamdani fuzzy inference systems. Des

Appl hybrid Intell Syst [Internet]. 2003;468–76. Available from: http://books.google.com/books?hl=

en&lr=&id=B966pPFGiQ4C&oi=fnd&pg=PA468&dq=Design+of+Transparent+Mamdani+Fuzzy

+Inference+Systems&ots=8VnJjh67z-&sig=zqA4GAxe7YbzQjTSdoPqdJes1Ws%5Cnhttp://dl.acm.

org/citation.cfm?id=998038.998094

49. Rehman Gillani SM, Mohd Nawi N. The Effect of Adaptive Momentum in Improving the Accuracy of Gra-

dient Descent Back Propagation Algorithm on Classification Problems. Vol. 179, Communications in

Computer and Information Science. 2011. p. 380–90.

50. Dua D, Graff C. {UCI} Machine Learning Repository [Internet]. 2017. Available from: http://archive.ics.

uci.edu/ml

51. Rust B. StRD Dataset Gauss3 [Internet]. 1996 [cited 2019 May 19]. Available from: https://itl.nist.gov/

div898/strd/nls/data/gauss3.shtml

An approach on the implementation of full batch, online and mini-batch learning on a neuro-fuzzy system

PLOS ONE | https://doi.org/10.1371/journal.pone.0221369 September 5, 2019 40 / 40

https://linkinghub.elsevier.com/retrieve/pii/S092359651830434X
https://linkinghub.elsevier.com/retrieve/pii/S156849461830557X
https://linkinghub.elsevier.com/retrieve/pii/S156849461830557X
http://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
https://linkinghub.elsevier.com/retrieve/pii/S0165011418309357
https://linkinghub.elsevier.com/retrieve/pii/S0165011418309357
https://www.sciencedirect.com/science/article/pii/0888613X87900235
https://www.sciencedirect.com/science/article/pii/0888613X87900235
http://link.springer.com/10.1007/978-3-319-47054-2_2
http://link.springer.com/10.1007/978-3-319-47054-2_2
https://linkinghub.elsevier.com/retrieve/pii/S0888613X18303827
https://linkinghub.elsevier.com/retrieve/pii/S0888613X18303827
http://ieeexplore.ieee.org/document/983282/
http://sci2s.ugr.es/keel/pdf/specific/articulo/guillaum01Interpt.pdf
http://sci2s.ugr.es/keel/pdf/specific/articulo/guillaum01Interpt.pdf
https://www.researchgate.net/profile/Naseer_Sabri2/publication/280739444_Fuzzy_inference_system_Short_review_and_design/links/5900293daca2725bd71e8630/Fuzzy-inference-system-Short-review-and-design.pdf
https://www.researchgate.net/profile/Naseer_Sabri2/publication/280739444_Fuzzy_inference_system_Short_review_and_design/links/5900293daca2725bd71e8630/Fuzzy-inference-system-Short-review-and-design.pdf
https://www.researchgate.net/profile/Naseer_Sabri2/publication/280739444_Fuzzy_inference_system_Short_review_and_design/links/5900293daca2725bd71e8630/Fuzzy-inference-system-Short-review-and-design.pdf
http://books.google.com/books?hl=en&lr=&id=B966pPFGiQ4C&oi=fnd&pg=PA468&dq=Design+of+Transparent+Mamdani+Fuzzy+Inference+Systems&ots=8VnJjh67z-&sig=zqA4GAxe7YbzQjTSdoPqdJes1Ws%5Cn
http://books.google.com/books?hl=en&lr=&id=B966pPFGiQ4C&oi=fnd&pg=PA468&dq=Design+of+Transparent+Mamdani+Fuzzy+Inference+Systems&ots=8VnJjh67z-&sig=zqA4GAxe7YbzQjTSdoPqdJes1Ws%5Cn
http://books.google.com/books?hl=en&lr=&id=B966pPFGiQ4C&oi=fnd&pg=PA468&dq=Design+of+Transparent+Mamdani+Fuzzy+Inference+Systems&ots=8VnJjh67z-&sig=zqA4GAxe7YbzQjTSdoPqdJes1Ws%5Cn
http://dl.acm.org/citation.cfm?id=998038.998094
http://dl.acm.org/citation.cfm?id=998038.998094
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://itl.nist.gov/div898/strd/nls/data/gauss3.shtml
https://itl.nist.gov/div898/strd/nls/data/gauss3.shtml
https://doi.org/10.1371/journal.pone.0221369

