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Abstract. Gene expression data of hepatocellular carcinoma 
(HCC) was compared with that of cirrhosis (C) to identify 
critical genes in HCC. A total of five gene expression data 
sets were downloaded from Gene Expression Omnibus. HCC 
and healthy samples were combined as dataset HCC, whereas 
cirrhosis samples were included in dataset C. A network was 
constructed for dataset HCC with the package R for performing 
Weighted Gene Co‑expression Network Analysis. Modules were 
identified by cluster analysis with the packages flashClust and 
dynamicTreeCut. Hub genes were screened out by calculating 
connectivity. Functional annotations were assigned to the hub 
genes using the Database for Annotation, Visualization and 
Integration Discovery, and functional annotation networks 
were visualized with Cytoscape. Following the exclusion of 
outlier samples, 394 HCC samples and 47 healthy samples 
were included in dataset HCC and 233 cirrhosis samples were 
included in dataset C. A total of 6 modules were identified 
in the weighted gene co-expression network of dataset HCC 
(blue, brown, turquoise, green, red and yellow). Modules blue, 
brown and turquoise had high preservation whereas module 
yellow exhibited the lowest preservation. These modules were 
associated with transcription, mitosis, cation transportation, 

cation homeostasis, secretion and regulation of cyclase activity. 
Various hub genes of module yellow were cytokines, including 
chemokine (C-C motif) ligand 22 and interleukin-19, which 
may be important in the development of HCC. Gene expression 
profiles of HCC were compared with those of cirrhosis and 
numerous critical genes were identified, which may contribute 
to the progression of HCC. Further studies on these genes may 
improve the understanding of HCC pathogenesis.

Introduction

Hepatocellular carcinoma (HCC) is the most common type of 
liver cancer. It is the fifth most frequently occurring cancer 
worldwide and the third most common cause of cancer-asso-
ciated mortality (1). Numerous advances have been made in 
the understanding of the pathogenesis of HCC. Various signal 
transduction pathways are implicated in HCC, including 
the Wnt/β-catenin (2), pRb (3,4), mitogen‑activated protein 
kinase (5,6) and Ras signaling pathways (7), and these are 
being extensively studied to identify potential biomarkers.

HCC is predominantly associated with cirrhosis, which 
is associated with alcohol, hepatitis B, hepatitis C and 
non‑alcoholic fatty liver disease. Liang et al (8) conducted 
a meta-analysis and demonstrated that primary biliary 
cirrhosis is associated with a greater risk of HCC. The 
regulation/dysregulation of apoptosis of (pre) neoplastic cells 
as well as proliferation may be important in the process of 
hepatocarcinogenesis (9). Laouirem et al (10) reported that 
progression from cirrhosis to cancer is associated with early 
ubiquitin post-translational modifications. Inhibition of 
inflammation and mitosis may delay the development of HCC 
from hepatitis virus‑associated cirrhosis (11). Geranylgeranyl 
diphosphate synthase 1 may be important during the devel-
opment of HCC from cirrhosis and is of clinical significance 
for the biological characterization of HCC (12). However, 
the molecular mechanisms underlying the progression of 
cirrhosis to HCC remain to be fully elucidated.

Gene expression profiling has been widely used to detect 
hepatocarcinogenesis and to identify its underlying molecular 
mechanisms. Nam et al (13) performed gene expression 
profiling to investigate molecular changes from dysplastic 
nodules to HCC. Villanueva et al (14) combined clinical, 
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pathological and gene expression data to predict recurrence 
of HCC. Jia et al (15) identified potential biomarkers of HCC 
using gene expression profiling.

Reanalyzing existing gene expression data with bioinfor-
matics tools may provide novel insights into the pathogenesis 
of HCC. The present study therefore analyzed gene expression 
data of HCC and cirrhosis samples to identify critical genes 
involved in the development of cirrhosis to HCC. The findings 
of the present study may improve the understanding of the 
molecular mechanisms underlying HCC.

Materials and methods

Gene expression data. A total of five gene expression datasets 
(GSE63898, GSE17548, GSE14323, GSE60502 and GSE62232) 
were downloaded from Gene Expression Omnibus (ncbi.nlm.
nih.gov/geo/; Table I). Cirrhosis HCC samples from GSE14323 
were excluded. In addition, nine sets of gene expression data 
were collected with HG-U133A whereas others were collected 
with HG-U133A_2 from Gene Expression Omnibus (GEO). 
To reduce systematic errors, the 9 samples (GSM358103, 
GSM358104, GSM358105, GSM358106, GSM358107, 
GSM358108, GSM358109, GSM358110, GSM358111) were 
removed. Finally, 441 HCC and healthy samples were included 
in dataset HCC, and 234 cirrhosis samples were included in 
dataset C.

Pretreatment of raw data was conducted with package 
affy (http://www.bioconductor.org/packages/release/bioc/
html/affy.html) (16) and probes were mapped into genes. 
Raw data was acquired using four different platforms and a 
total of 12,012 common genes were selected for the following 
analysis. Normalization was performed using the quantiles 
method (16). Gene expression data were divided into two 
datasets: HCC (HCC and healthy samples) and C (cirrhosis 
samples).

The comparability of the HCC and C datasets was 
evaluated by correlations of gene expression levels 
and connectivity. A high correlation indicated high 
comparability. Connectivity was calculated using the soft‑
Connectivity function from package Weighted Gene Co‑exp
ression Network Analysis (WGCNA; labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/Rpackages/WGCNA/) (17) 
with 5,000 randomly selected genes.

Cluster analysis was conducted with hclust (http://
www.r-tutor.com/gpu-computing/clustering/hierarchical- 
cluster‑analysis) to exclude outliers. Finally, 394 HCC samples 
and 47 healthy samples were included in dataset HCC, and 233 
cirrhosis samples were included in dataset C.

Construction of weighted gene co‑expression networks. 
A weighted gene co-expression network was constructed 
for dataset HCC with package WGCNA (2). Cluster 
analysis was performed with the flashClust function from 
package flashClust (labs.genetics.ucla.edu/horvath/htdocs/
CoexpressionNetwork/Rpackages/flashClust/) and modules 
were identified with the cutreeHybrid function from package 
dynamicTreeCut (labs.genetics.ucla.edu/horvath/htdocs/
CoexpressionNetwork/BranchCutting/). The preservation of 
modules in dataset C was examined with the modulePreserva‑
tion function from package WGCNA.

Screening of hub genes. Module Eigengene (ME) was calcu-
lated with the moduleEigengenes function from package 
WGCNA. Connectivity between each gene and ME was 
calculated with signedKME, which indicated the module 
membership (MM) of the genes in the module. Genes with 
high MM values were regarded as hub genes.

Functional annotations. Genes with MM >0.6 were regarded as 
module‑specific genes. All module‑specific genes were identi-
fied and functional enrichment analysis was performed with the 
Database for Annotation, Visualization and Integration Discovery 
(david.abcc.ncifcrf.gov/) (18), including Gene Ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (19). Functional networks were constructed with the 
Enrichment Map (20) in Cytoscape (www.cytoscape.org) (21).

Results

HCC and C datasets. The comparability between the HCC and 
C datasets was examined with correlations of gene expression 
levels and connectivity. To calculate connectivity, weighted 
gene co-expression networks were constructed with 5,000 
genes. As described previously (22) the optimal soft threshold 
power was set as 7 (Fig. 1).

As presented in Fig. 2, the comparability between dataset 
HCC and dataset C was good. The correlation of gene expres-
sion was 0.97 and the connectivity value was 0.69.

The cluster analysis result presented in Fig. 3 revealed that 
no outlier sample was observed in dataset HCC, whereas one 
outlier sample was detected in dataset C. Therefore, 394 HCC 
and 47 healthy samples were included in dataset HCC and 233 
cirrhosis samples were included in dataset C.

Gene co‑expression network and modules. A total of 6 
modules were identified in the weighted gene co‑expression 
network of dataset HCC (blue, brown, turquoise, green, red 
and yellow; Fig. 4; Table II). The cluster analysis result of 
dataset C revealed that turquoise, red, blue and green modules 
demonstrated a high preservation (Fig. 4).

The preservation of these modules was examined with 
modulePreservation from package WGCNA and the results 
are presented in Table III. Unclassified genes were included in 
module grey whereas random genes were included in module 
gold. Theoretically, the z‑score of conservative module should be 
greater than that of modules grey and gold. Modules blue, brown 
and turquoise demonstrated a greater preservation compared 
with module yellow, which exhibited the lowest preservation.

Clustering of modules. Cluster analysis and principle compo-
nent analysis were performed for the modules. As presented in 
Fig. 5, two clusters were revealed, one containing modules red 
and green and the other containing the remaining 5 modules.

Functional annotations of modules. Significantly over‑repre-
sented GO terms and KEGG pathways were assigned for 
genes with MM >0.6. Functional annotation networks were 
constructed with the plug-in EnrichmentMap of Cytoscape. 
A node represented a GO term. If two nodes shared >50% 
genes, a line connected the two nodes. Cluster analysis was 
performed for nodes based on connectivity using another 
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plug-in, ClusterOne of Cytoscape. A node cluster should 
have no less than 10 nodes. The clusters with less than 10 
nodes were labeled artificially according to similarity of 
annotations.

Module blue (Fig. 6) was associated with transcription 
(regulation of transcription, RNA slicing and nuclear lumen), 
mitosis (histone protein methylation, chromosome organization, 

Figure 1. Optimizing soft‑threshold power using network topology as a function of soft threshold power. The left panel shows the scale‑free fit index (y‑axis) 
as a function of the soft‑threshold power (x‑axis). The values of the corresponding soft threshold power are labeled. A guidance line is shown at the value of 
0.85 for fit index. When the fit index reaches a plateau (a relatively high value of 0.85), the minimal value of soft threshold power should be 7. The right panel 
displays the mean connectivity (degree, y‑axis) as a function of the soft‑threshold power (x‑axis). When power is 7, the mean connectivity reaches a steady value.

Figure 2. The comparability of datasets HCC and C. The left panel reveals 
the correlation of expression ranks of genes between the two datasets. The 
correlation is 0.97 and P<1e‑200. The right panel reveals the correlation 
of connectivity ranks of 5,000 random genes between the two data sets. 
The correlation is 0.69 and P<1e‑200. HCC, hepatocellular carcinoma;  
C, cirrhosis; Cor, correlation.

Figure 3. Clustering diagram of samples based on their Euclidean distance 
to detect outlier samples. The top panel is the clustering diagram for dataset 
HCC. The bottom panel is the clustering diagram for dataset C. Red line indi-
cates the cut tree cutoff at height 160, so that one outlier sample in dataset C 
was removed. HCC, hepatocellular carcinoma; C, cirrhosis.

Table I. Summary of five gene expression datasets.

Accession Sample groups No. of samples Platform

GSE63898 Cirrhosis/HCC 396 HG-U219
GSE17548 Cirrhosis/HCC   37 HG-U133_Plus_2
GSE14323 Healthy/cirrhosis/HCC/cirrhosisHCC 124 HG-U133A/HG-U133A_2
GSE60502 Healthy/HCC   36 HG-U133A
GSE62232 Healthy/HCC   91 HG-U133_Plus_2

HCC, hepatocellular carcinoma.
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cell cycle and microtubule cytoskeleton), as well as protein 
ubiquitination and adenosine triphosphate binding. Module 
brown (Fig. 7) had similar biological functions to module blue 
and was associated with mitosis. Module turquoise (Fig. 8) was 
associated with ion channels, cation transportation and cation 

Table II. Modules identified by weighted gene co‑expression 
network analysis-based clustering.

Module No. of genes

Blue 3,635
Brown 2,121
Turquoise 5,360
Green 755
Red 606
Yellow 1,004

Table III. Preservation of modules between the hepatocellular 
carcinoma and cirrhosis datasets.

Module No. of genes Z‑score

Blue 400 43.785690
Brown 400 42.285353
Turquoise 400 40.996754
Grey 400 22.025369
Green 139 16.709992
Red 101 12.126042
Gold 100   9.438428
Yellow 168   6.539301

Module grey contains all uncharacterized genes; module gold 
contains random genes.

Figure 5. Cluster analysis and PCA of the 6 modules. ME, Module Eigengene; 
PCA, principle component analysis; MDS, multidimensional scaling.

Figure 6. Gene ontology-annotation enrichment map for module blue. Nodes 
represent annotation terms and lines indicate the linked two annotation terms 
share >50% common genes.

Figure 4. Clustering diagram and modules identified by Weighted Gene 
Co-expression Network Analysis. The clustering diagram and 6 modules in 
different colors (blue, brown, turquoise, green, red and yellow) presented in 
the left panel for dataset HCC. Grey color indicates uncharacterized genes. 
Right panel presents the clustering result for dataset C. HCC, hepatocellular 
carcinoma; C, cirrhosis.

Figure 7. Gene ontology‑annotation enrichment map for module brown. 
Nodes represent annotation terms and lines indicate the linked two annota-
tion terms share >50% common genes.
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homeostasis. Module yellow (Fig. 9) demonstrated similarities 
with module turquoise and was additionally associated with 
secretion and regulation of cyclase activity.

Hub genes. The top 10 hub genes of modules were identified 
for databases HCC and C (Table IV). The top 20 hub genes of 
modules for database HCC are presented in Table V, in which 
the overlapped hub genes with database C were marked as 
bold. The number of overlapping hub genes may reflect the 
preservation of the module. Module yellow demonstrated 
low preservation and thus these hub genes may distinguish 
cirrhosis from HCC. Therefore, functional annotations were 
given for these genes (P<0.05; Table VI). Cytokine activity 
and cytokine‑cytokine receptor interaction were significantly 
over‑represented in the hub genes. Chemokine (C‑C motif) 
ligand 22 (CCL22), cardiotrophin 1 (CTF1) and interleukin‑19 
(IL‑19) were three cytokines identified that may be important 
in the progression of HCC.

Discussion

A total of five gene expression datasets of HCC and cirrhosis 
were collected and analyzed in the present study. A weighted 
gene co-expression network was used for dataset HCC, from 
which 6 modules were identified. Five out of the 6 modules 
indicated considerable preservation in dataset C and were 
revealed to be associated with transcription, mitosis, protein 
ubiquitination and cation homeostasis.

The other module may be closely involved in the progres-
sion of HCC. Functional enrichment analysis demonstrated 
that module yellow was associated with cation transport, 
secretion and regulation of cyclase activity. Hub genes of 
module yellow were obtained and revealed to be involved in 
cytokine-cytokine receptor interactions and cell motility. It 
has been suggested that cytokine-mediated signal transduc-
tion may contribute to the development of HCC. Various 
critical genes were identified, including CCL22, CTF1 and 
IL-19. CCL22 binds to chemokine receptor type 4 and may 
be important in the trafficking of activated T lymphocytes 
to inflammatory sites and other aspects of activated T 
lymphocyte physiology. CCL22 was revealed to enhance 
tumor migration and associate with venous infiltration in 
HCC (23). Yang et al (24) demonstrated that transforming 
growth factor-β-miR-34a-CCL22 signaling-induced regula-
tory T cell recruitment promotes venous metastases of HCC. 
Therefore, it may be regarded as a potential therapeutic 
target for metastatic HCC (25). IL-19 is upregulated in breast 
cancer and promotes tumor progression (26). Guo et al (27) 
reported that the copy number of IL-19 is significantly 
increased in HCC. Oleksyk et al (28) reported that 

Table IV. Hub genes identified in hepatocellular carcinoma and cirrhosis datasets.

Module Hub genes

Blue CUL1, EPN1, LSM14B, METTL2B, NACA2, PDAP1, POM121, TIGD6, ZNF440, ZNF480
Brown AFF4, CHM, EXOSC1, FOXN2, PPP4R2, SLC39A9, SMEK2, THRAP3, WRNIP1, ZNF770
Turquoise ADRBK1, CXXC1, DTX2P1-UPK3BP1-PMS2P11, EPOR, GDPD2, KRTAP5-8, PAX8, PNPLA2, PRB1, WAS
Grey ATG16L1, EPN1, GPATCH1, MAP2K7, METTL2B, PRDM10, PRMT7, RBBP5, SBNO1, ZNF37A
Green ERN1, FGD2, H2AFJ, HIPK3, KRTAP1‑3, LNPEP, PACS1, PACS2, SH3GLB2, ZSWIM1
Red ARL15, CBX4, ETV3, HSD17B1, KCNK3, LIN7A, MAGIX, TMOD3, WHSC1L1, ZKSCAN8
Yellow C6orf15, CETN1, FAM155B, GJA8, KCNS1, NTRK3, OR1F1, PLCD1, SLC39A2, TMPRSS15

Figure 8. Gene ontology‑annotation enrichment map for module turquoise. 
Nodes represent annotation terms and lines indicate the linked two annota-
tion terms share >50% common genes.

Figure 9. Gene ontology‑annotation enrichment map for module yellow (left), 
green (top right) and red (bottom right). Nodes represent annotation terms and 
lines indicate the linked two annotation terms share >50% common genes.
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polymorphism of IL‑19 may be involved in natural clearance 
of the hepatitis C virus in the African‑American popula-
tion. Therefore, it has been hypothesized that IL-19 may be 
important in the progression of HCC. In addition, various 
hub genes require further research to verify their roles in 
the development of HCC. B‑cell lymphoma/leukemia 11A 
(BCL11A) is a C2H2 type zinc‑finger protein that is essen-
tial for normal lymphoid development (29) and is implicated 
in lymphoid malignancy (30) as well as non-small cell lung 
cancer (31). Claudin (CLDN) 17 is a member of the claudin 
family, which is a family of integral membrane proteins and 
tight junction strand components. Various members of the 
claudin family have been implicated in HCC. Suppression 
of CLDN10 may inhibit HCC invasion (32). CLDN10 
expression levels are associated with recurrence of primary 
HCC (33). CLDN6 and 9 function as additional co-receptors 
for hepatitis C virus (34). BCL11A and CLDN17 may be 
involved in the progression of HCC.

In conclusion, package WGCNA was used to analyze HCC 
and cirrhosis gene expression data. A total of 6 gene modules 
were identified, including one module that was closely associ-
ated with HCC. Furthermore, a variety of critical genes were 
revealed, further investigation of which may help to advance 
understanding of the pathogenesis of HCC.
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