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Abstract 

Graph Convolutional Neural Network (GCNN) is a popular class of deep learning (DL) models in material science to 
predict material properties from the graph representation of molecular structures. Training an accurate and compre-
hensive GCNN surrogate for molecular design requires large-scale graph datasets and is usually a time-consuming 
process. Recent advances in GPUs and distributed computing open a path to reduce the computational cost for 
GCNN training effectively. However, efficient utilization of high performance computing (HPC) resources for training 
requires simultaneously optimizing large-scale data management and scalable stochastic batched optimization tech-
niques. In this work, we focus on building GCNN models on HPC systems to predict material properties of millions of 
molecules. We use HydraGNN, our in-house library for large-scale GCNN training, leveraging distributed data parallel-
ism in PyTorch. We use ADIOS, a high-performance data management framework for efficient storage and reading 
of large molecular graph data. We perform parallel training on two open-source large-scale graph datasets to build 
a GCNN predictor for an important quantum property known as the HOMO-LUMO gap. We measure the scalability, 
accuracy, and convergence of our approach on two DOE supercomputers: the Summit supercomputer at the Oak 
Ridge Leadership Computing Facility (OLCF) and the Perlmutter system at the National Energy Research Scientific 
Computing Center (NERSC). We present our experimental results with HydraGNN showing (i) reduction of data load-
ing time up to 4.2 times compared with a conventional method and (ii) linear scaling performance for training up to 
1024 GPUs on both Summit and Perlmutter.
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Introduction
Drug discovery and molecular design rely heavily on pre-
dicting material properties directly from their atomic 
structure. A particular property of interest for molecu-
lar design is the energy gap between the highest occu-
pied molecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO), known as the HOMO-LUMO 

gap. The HOMO-LUMO gap is a valid approximation for 
the lowest excitation energy of a molecule and is used to 
express its chemical reactivity. In particular, molecules 
that are more chemically reactive are characterized by a 
lower HOMO-LUMO gap. There are many physics-based 
computational approaches to compute the HOMO-
LUMO gap of a molecule such as ab initio molecular 
dynamics (MD) [1, 2] and density-functional tight-bind-
ing (DFTB)  [3]. While these methods have been instru-
mental in predictive materials science, they are extremely 
computationally expensive. The advent of deep learning 
(DL) models has provided alternative methodologies to 
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produce fast and accurate predictions of material prop-
erties and hence enable rapid screening in the large 
search space to select material candidates with desirable 
properties [4–7].

In particular, graph convolutional neural network 
(GCNN) models are extensively used in material science 
to predict material properties from atomic information 
[8, 9]. When GCNN models are used as surrogates in 
screening of the vast chemical space, the models have to 
process large amounts of streaming data which is dynam-
ically produced by molecular design applications [10] 
(Fig. 1).

To effectively process large volumes of data in train-
ing large complex GCNN models, both data loading and 
model training must scale on multi-node hybrid CPU-
GPU high-performance computing (HPC) resources. 
HPC techniques to scale the training use distributed data 
parallelism (DDP) to distribute data in batches across 
different processes. Each process computes gradient 
updates for the coefficients of the DL model on the local 
batch, and combines local gradient updates of all pro-
cesses by averaging them. Although DDP is a well estab-
lished technique, the specific use of DDP to scale the 
training of GCNN models is still largely unexplored.

In this work we analyze the scalability of our library 
of GCNN models on two open-source graph datasets 
describing the HOMO-LUMO gap for a wide variety 
of molecules: the PCQM4Mv2 dataset from the Open 
Graph Benchmark (OGB) [11, 12] and the AISD HOMO-
LUMO dataset  [13] generated at Oak Ridge National 
Laboratory (ORNL). The scalability of the data loading 
and GCNN training on the two datasets has been tested 
on the Summit supercomputer at the Oak Ridge Lead-
ership Computing Facility (OLCF) and the Perlmutter 
supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC). For our study, we use 
HydraGNN, a library we have developed for scalable data 
reading and GCNN training with portability on a broad 

variety of computational resources  [14]. HydraGNN is 
capable of multitask prediction of hybrid node-level and 
graph-level properties in large batches of graphs in differ-
ent sizes, i.e., with varying number of nodes. We use the 
ADIOS [15] high-performance data management library 
for efficient storage and reading of graph data. Numerical 
results show that the training of HydraGNN scales lin-
early up to 1024 GPUs on both supercomputers.

The remainder of this work is structured as follows. 
"Related work" section describes related work. "Back-
ground" section presents the background of GCNN 
architectures, the HydraGNN library and the ADIOS 
data management framework. "Distributed data paral-
lel training" section briefly describes our DDP approach 
along with efficient data loading of training data. 
"Numerical results" section presents the numerical 
results with comparisons between Summit and Perlmut-
ter in terms of scalability, and "Conclusions and future 
work" section summarizes the analysis of this work and 
discusses future research directions.

Related work
In this section, we review the relevant literature on 
GCNN models for predicting the HOMO-LUMO gap 
and DDP for GCNN.

GCNN modeling work has been reported on predic-
tions of HOMO-LUMO gap  [9, 16–19]. Most of the 
work focuses on the QM9 dataset [20] or the OE62 data-
set  [21]. QM9 has about 134 thousand molecules con-
taining 5 element types (i.e., H,C,N,O and F), and OE62 
covers 16 different elements types (i.e., H, Li, B, C, N, O, 
F, Si, P, S, Cl, As, Se, Br, Te, and I) and about 62 thousand 
molecules. The two datasets used in this work are signifi-
cantly larger and more diverse and hence more challeng-
ing to process and predict—PCQM4Mv2 with 3.3 million 
molecules and 31 element types and AISD HOMO-
LUMO with 10.5 million molecules and 6 element types. 
Some GCNN work  [12, 22, 23] has been reported on 
PCQM4Mv2, but the implementations are not for large-
scale distributed training.

With respect to distributed training of GCNN models, 
recent work surveyed different types of potential paral-
lelization techniques, including DDP  [24]. While most 
of the research has focused on distributing the GCNN 
training with graph partitioning techniques to process 
large-scale graphs, no specific contribution in the litera-
ture has analyzed the scalability of GCNN training using 
DDP. In this paper, we focus on exploring the challenges 
and demonstrating the capability to process millions of 
graphs with DDP at scale.

For efficient storage and loading of large datasets, we 
use the ADIOS  [15] data management library, which is 

Fig. 1  Computational workflow that compares the standard 
procedure to predict material properties with DFTB calculations and 
a GCNN model that uses the molecular structure as input to estimate 
the HOMO-LUMO gap. Once the GCNN model is trained, it is much 
faster than DFTB
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commonly used for science applications. ADIOS pro-
vides a self-describing data format built upon a pub-
lish-subscribe framework. Other scientific data formats 
include the Hierarchical Data Format (HDF5)  [25], 
but we selected ADIOS for its proven performance at 
extreme scale, in addition to the plethora of options for 
tuning I/O and streaming data, along with inbuilt sup-
port for data compression.

Background
In this section, we discuss our use of GCNN for the pre-
diction of HOMO-LUMO gap in molecules. We describe 
the architecture of HydraGNN, our library of GCNNs. 
We discuss the design of the large-scale data loading in 
HydraGNN leveraging ADIOS, a high-performance sci-
entific data management library for managing large-scale 
I/O and data transfers.

Graph convolutional neural networks
GCNNs  [26, 27] are DL models for processing graph 
data. Representing molecules in the form of graphs is 
natural since the atoms can be viewed as nodes and 
chemical bonds as edges of the graph, as shown in Fig. 2. 
Nodes in the graph retain atomic features in molecules 
and edges retain the connectivity and bond properties 
(e.g., the distance between nodes). Each graph can have 
graph-level properties such as the HOMO-LUMO gap.

Graph convolutional (GC) layers are the core of 
GCNNs. They employ a message-passing framework, 
a procedure that combines the knowledge from neigh-
boring nodes. The type of information passed through a 
graph structure can be either related to the topology of 
the graph or the nodal features. An example of topologi-
cal information is the node degree, whereas an example 
of nodal feature in the context of this work is the atomic 
number. The message passing in a single GC layer in 
our applications maps directly to the pairwise interac-
tions of an atom with its neighbors. Through consecutive 
steps of message passing (i.e., stacking multiple GC lay-
ers together), the graph nodes gather information from 

nodes that are further and further away, which implicitly 
represents many-body interactions.

A graph pooling layer is connected at the end of a 
stack of consecutive GC layers to gather feature infor-
mation from the entire graph in prediction tasks of 
graph-level properties. It aims at aggregating the nodal 
feature associated with each atom across a graph into a 
single feature. In our work, we use global mean pool-
ing layer, which averages node features across all the 
nodes in the graph. For atom(node)-level properties 
such as the atomic charge transfer and atomic mag-
netic moment, aggregating the information from all 
atoms into a global feature is not needed. Finally, fully 
connected (FC) layers take the results of pooling, i.e., 
extracted features, and provide the output prediction 
for global properties.

Differing in the policy adopted to aggregate, trans-
fer, and update information through the message 
passing in GC layers, a variety of GCNNs have been 
developed, e.g., Principal Neighborhood Aggregation 
(PNA)  [28], Crystal GCNN (CGCNN)  [8] and Graph-
SAGE  [29]. Many of them have been implemented in 
HydraGNN [30].

HydraGNN
HydraGNN is our in-house library for performant 
creation and testing of various GCNN models, and is 
designed to perform multi-task predictions of graph 
data. It is built on Pytorch  [31, 32] and Pytorch Geo-
metric  [33, 34], and can run on small-scale worksta-
tions to large-scale HPC systems. It is openly available 
on Github [30].

HydraGNN loads molecular data encoded as graph 
structures consisting of a list of nodes (atoms) and 
edges (bonds) either from a file system or directly 
from memory. Training is performed over multiple 
iterations, where each iteration consists of a forward, 
backward, and optimization step as shown in Fig.  3. 
The forward phase computes the model output tensor 
from an input graph with a forward function consist-
ing of GC layers, a global pooling layer, and FC layers. 

Fig. 2  Illustration of a SMILES representation of a molecule (left), its 
corresponding molecular structure (center), and its corresponding 
molecular graph (right). The atoms that are not explicitly 
denominated in the molecular structure are carbon atoms and the 
hydrogen atoms that create a covalence bond with a carbon atom. 
All the hydrogen atoms are suppressed in the figure for the sake of 
brevity but they are treated as nodes of the molecular graph in GCNN 
models

Iterative training

Dataload Forward Backward Opt Step

GPU 
Memory

File system

CPU 
Memory

Fig. 3  HydraGNN workflow to process molecular graph dataset. It 
performs iterative training phases, consisting of data loading, forward, 
backward, and optimization steps
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It calculates the loss between the model output and the 
true tensor values corresponding to the input graph 
as the mean square error (MSE). The backward phase 
calculates the gradients of the loss with respect to 
each parameter in forward function. Finally, the opti-
mization step updates parameters based on gradients 
calculated in the backward step and a user-defined 
optimization policy.

ADIOS data management framework
ADIOS is an open source, high-performance, I/O frame-
work developed as part of the Exascale Computing Pro-
ject (ECP).1 It provides a custom, self-describing data 
format with optimized methods to read and write data 
for massively parallel applications. ADIOS’s focus is to 
provide extreme-scale I/O capabilities on the world’s 
largest supercomputers; it is used in science applica-
tions that generate data on the order of several petabytes. 
ADIOS is run in production in many HPC codes such 
as XGC  [35], GENE  [36], GEM  [37], PIConGPU  [38], 
WarpX  [39], E3SM  [40], LAMMPS  [41], and others, 
providing over 1 Terabyte/second of I/O to the Summit 
GPFS file system [42] at ORNL.

At its core, ADIOS provides a concept of abstract 
“Engine”. Engines execute the I/O heavy tasks and are 
conceived as workflows tackling specific applications’ 
needs optimized for HPC filesystems, hierachical data 
management, or data access over the wide area network. 
We leverage ADIOS’s optimized I/O writing and reading 
performance on HPC file systems in the presence of mul-
tiple concurrent processes, which is necessary for per-
forming large-scale distributed data-parallel training for 
HydraGNN.

Besides the performance boost, ADIOS provides a scal-
able yet flexible data format that can manage millions of 
graphs with varying sizes. ADIOS stores data in a custom 
format termed BP (binary-packed). It is a highly efficient 
self-describing format for storing data along with meta-
data from various sources in a distributed application. 
An ADIOS file consists of variables and attributes, where 
variables can be scalars or arrays. Array variables can be 
local to a process or can be global arrays that are distrib-
uted amongst processes. Global arrays are used to con-
struct large data structures that can be written and read 
efficiently in a parallel fashion. For example, edge attrib-
utes of all graphs in HydraGNN are stored as part of a 
single global array for fast storage and retrieval.

An ADIOS file is a container of one or more subfiles, 
with one subfile per writer. The number of writers for a 
group of ADIOS variables is configurable so that a user 
may tune the number of subfiles created in the ADIOS 

container. Internally, ADIOS transparently converts this 
N → M I/O pattern such that data from N processes is 
aggregated and output by M processes, where 1 ≤M≤ N. 
At extreme scale where applications spawn hundreds of 
thousands of processes, this leads to significant perfor-
mance benefits as users can avoid overwhelming the file 
system by creating a large number of subfiles. Several 
other options are available in the ADIOS library to fur-
ther tune and optimize I/O performance.

Distributed data parallel training
Large supercomputers available at DOE national labora-
tories such as Summit and Perlmutter allow us to process 
millions of molecules (graph objects) concurrently to 
build and test various GCNN models. To explore the high 
degree of parallelism available on these nodes, we apply 
DDP to accelerate the training process in HydraGNN.

In deep learning, DDP refers to a method of performing 
training in parallel by distributing the same model across 
multiple nodes but assigning disjoint datasets to consume 
for each model. In other words, each process computes 
gradients of parameters in parallel for its assigned data-
set. At the end of the computation, we aggregate gradi-
ents and re-distribute them to all processes to make each 
process maintain the same model parameters (Fig.  4). 
In general, gradients aggregation is an expensive opera-
tion in parallel computing. For Summit and Perlmutter, 
both equipped with NVIDIA GPUs, we use NCCL, an 
NVIDIA library to communicate directly between GPUs, 
without having to copy data to the host CPU first, which 
results in an efficient and inexpensive inter-process com-
munication for gradient aggregation. The communication 
overhead will vary depending on the models’ size and the 
frequency of aggregation.

Another challenge in DDP training in an HPC system 
is data management, including pre-processing and data 
loading during training. Each process regularly reads a 
group of data objects from the storage to form a batch 
of graph objects for training. The random I/O access 
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Fig. 4  Overview of DDP training. Each process independently loads 
and processes a batch of data and synchronizes local gradients with 
others through a gradient aggregation process which requires global 
communications

1  https://​www.​exasc​alepr​oject.​org.

https://www.exascaleproject.org
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pattern is common to maintain shuffled and disjointed 
subsets with other processes to avoid duplication dur-
ing training and increase the fairness of training. 
However, without careful data management, loading 
training data can become a bottleneck for training. To 
mitigate this issue, we leverage ADIOS [15] for our dis-
tributed GCNN training.

We emphasize here the importance of pre-pro-
cessing. Many open-source molecular databases use 
the simplified molecular-input line-entry system 
(SMILES)  [43], the de facto standard format to repre-
sent 2D molecular structures in text strings (see Fig. 2 
for an example). HydraGNN employs a pre-processing 
step to convert SMILES strings to graph representa-
tions in files. Depending on the scale of the input data 
(graph), an optimal pre-processing step for graph con-
version is crucial to the performance. Without pre-
processing, data loading has to perform conversion of 
SMILES data into a graph which can cause a bottleneck 
in training. To avoid this, our workflow includes a par-
allel pre-processing step in which graph data generated 
from SMILES strings is stored into the ADIOS high-
performance data format, and is later read back for 
training. This avoids converting the SMILES data into 
graph objects for every iteration of the training.

To this end, we develop the ADIOS schema for graph 
datasets. The schema describes the mapping of graph 
objects to ADIOS components. We aggregate each 
graph attribute into a global multi-dimensional array 
and save it in ADIOS variable format. The main graph 
attributes are node features, edge attributes, and edge 
index, as summarized in Table 1.

We have developed an extensible data loader module 
in HydraGNN that allows reading data from different 
storage formats. In this work, we evaluate the following 
three methods for loading data from training datasets.

•	 Inline data loading: load SMILES strings written in 
CSV format into memory and then convert each 
SMILES into a graph object at every batch data 
loading. It has the smallest memory footprint.

•	 Object data loading: convert all SMILES strings 
into graph objects and export them in a serialized 
format (e.g., Pickle) during a preprocessing phase. 

A process loads each data batch directly from the 
file system and unpacks into a memory.

•	 ADIOS data loading: convert SMILES strings into 
graph objects mapped to ADIOS variables, and write 
them into an ADIOS file in a pre-processing step. 
Each process then loads its batch data during training 
in parallel along with other processes.

We will discuss performance comparisons in the next 
section.

Numerical results
In this section, we assess our development of DDP train-
ing in HydraGNN on two state-of-the-art DOE super-
computers, Summit and Perlmutter. We discuss the 
scalability of our approach, and compare the perfor-
mance of different I/O backends for storing and reading 
graph data.

Setup
We perform our evaluation on two supercomputers of 
DOE. Both systems provide state-of-the-art GPU-based 
heterogeneous architectures.

Summit is a supercomputer at OLCF, one of DOE’s 
Leadership Computing Facilities (LCFs). Summit consists 
of about 4600 compute nodes. Each node has a hybrid 
architecture containing two IBM POWER9 CPUs and 
six NVIDIA Volta GPUs connected with NVIDIA’s high-
speed NVLink. Each node contains 512 GB of DDR4 
memory for CPUs and 96 GB of High Bandwidth Mem-
ory (HBM2) for GPUs. Summit nodes are connected in a 
non-blocking fat-tree topology using a dual-rail Mellanox 
EDR InfiniBand interconnection.

Perlmutter is a supercomputer at NERSC. Perlmutter 
consists of about 3000 CPU-only nodes and 1500 GPU-
accelerated nodes. We use only the GPU-accelerated 
nodes in our work. Each GPU-accelerated node has an 
AMD EPYC 7763 (Milan) processor and four NVIDIA 
Ampere A100 GPUs connected to each other with 
NVLink-3. Each GPU node has 256 GB of DDR4 memory 
and 40 GB HBM2 per each GPU. All nodes in Perlmutter 
are connected with the HPE Cray Slingshot interconnect.

We demonstrate the performance of HydraGNN 
using two large-scale datasets, a previously 

Table 1  ADIOS schema for graph dataset

Variable Description Array shape

x Features associated to nodes (#nodes, #node features)

edge index Edge connectivity between nodes (#2, #edges)

edge attr Features associated to edges (#edges, #edge features)

y Target features in graph-level or node-level (#target, #features)
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published benchmark dataset for graph-based learn-
ing (PCQM4Mv2)  [11, 44] and a custom dataset gener-
ated for this work (AISD HOMO-LUMO) [13]. For both 
datasets, molecule information is provided as SMILES 
strings. The PCQM4Mv2 consists of HOMO-LUMO gap 
values for about 3.3 million molecules. In total, 31 dif-
ferent types of atoms (i.e., H, B, C, N, O, F, Si, P, S, Cl, 
Ca,Ge,As, Se, Br, I, Mg, Ti, Ga, Zn, Ar, Be, He, Al, Kr, V, 
Na, Li, Cu, Ne, Ni) are involved in the dataset. The cus-
tom AISD HOMO-LUMO dataset was generated using 
molecular structures from previous work [45]. It is a col-
lection of approximately 10.5 million molecules and con-
tains 6 element types (i.e., H, C, N, O, S, and F).

For scalability tests, we use HydraGNN with 6 PNA [28] 
convolutional layers and 55 neurons per PNA layer. The 
model is trained by using the AdamW method [46] with 
a learning rate of 0.001, local batch size of 128, and maxi-
mum epochs set to 3. The training set for each of the NN 
represents 94% of the total dataset; the validation and 
test sets each represent 1/3rd and 2/3rd parts respectively 
of the remaining data. For the error convergence tests, 
the HydraGNN model uses 200 neurons per layer.

Scalability of DDP
We perform DDP training with HydraGNN for 
PCQM4Mv2 and AISD data on Summit at ORNL and 
Perlmutter at NERSC using multiple CPUs and GPUs. 
The number of graphs and size in the datasets are sum-
marized in Table 2.

We measure the total training time for PCQM4Mv2 
and AISD HOMO-LUMO datasets over three epochs. 
As discussed previously, each training consists of a data 
loading phase, followed by forward calculation, back-
ward calculation, and optimizer update. We test the scal-
ability of DDP by varying the number of nodes on each 
system, ranging from a single node up to 256 nodes on 
Summit and 128 nodes on Perlmutter, corresponding to 
using 1536 Volta GPUs and 512 A100 GPUs respectively. 
Figure  5 shows the result. The scaling plot (top) shows 
the averaged training time for PCQM4Mv2 and AISD 
HOMO-LUMO on each system with a varying number 
of nodes, and the detailed timings of each sub-function 
during the training on Summit are shown at the bottom.

We obtain near-linear scaling up to 1024 GPUs for 
both PCQM4Mv2 and AISD HOMO-LUMO data. As 
we further scale the workflow on Summit, the number 
of batches per GPU decreases, leading to sub-optimal 
utilization of GPU resources. As a result, we see a drop 
in speedup as we scale beyond 1024 GPUs on Summit. 
We expect similar scaling behavior on Perlmutter, but we 
were limited to using 128 nodes (i.e., 512 GPUs) for this 
work.

Comparing different I/O backends
Data loading takes a significant amount of time in train-
ing, as shown in Fig. 5, and hence is a crucial step in the 
overall workflow. We compare three different data load-
ing methods—inline, object loading, and ADIOS data 
loading, as discussed in  "Distributed data parallel train-
ing"  section. Figure  6 presents time taken by the three 
methods for the PCQM4Mv2 data set on Summit. As 
expected, it outperforms the CSV data loading test case 
in which SMILES data is converted into a graph object 
for every molecule. ADIOS outperforms Pickle-based 
data loading by 4.2x on a single Summit node and 1.5x 
on 32 Summit nodes. To provide a complete picture of 
HydaGNN’s data processing, Fig.  7 shows the pre-pro-
cessing performance in converting the PCQM4Mv2 data 
into ADIOS2 on Summit. ADIOS supports parallel writ-
ing and shows scalable performance as we add CPUs in 
parallel.

Accuracy
Next, we perform long-running HydraGNN training for 
the HOMO-LUMO gap prediction with PCQM4Mv2 and 
AISD HOMO-LUMO datasets until training converges.

Figures  8 and  9 show the prediction results for 
PCQM4Mv2 and AISD HOMO-LUMO datasets respec-
tively. With PCQM4Mv2, we achieve a prediction error 
of around 0.10 and 0.12 eV, measured in mean absolute 
error (MAE), for the training and validation set, respec-
tively. We note that PCQM4Mv2 is a public dataset 
released without test data for the purpose of maintaining 
the OGB-LSC Leaderboards2. The reported validation 
MAE from multiple models varies from 0.0857 to 0.1760 

Table 2  Dataset description

1 Average number of nodes (atoms) per graph

Dataset Graph size Data file size (GB)

#Graphs #Nodes #Edges #Avg1 CSV Pickle ADIOS

PCQM4Mv2 3.6 M 105.8 M 214.6 M 29.4 0.16 34 22

AISD HOMO-LUMO 10.5 M 550.6 M 1.1 B 52.4 0.88 94 60

2  https://​ogb.​stanf​ord.​edu/​docs/​lsc/​leade​rboar​ds/

https://ogb.stanford.edu/docs/lsc/leaderboards/
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Fig. 5  Strong scaling performance of HydraGNN training on OLCF’s Summit and NERSC’s Perlmutter(top), and detailed timing (bottom). We 
perform data-parallel training for PCQM4Mv2 and AISD HOMO-LUMO data sets with HydraGNN using up to 1500 GPUs and observe linear scaling 
up to 1024 GPUs

Fig. 6  Comparison of different I/O methods in HydraGNN. We 
measure ADIOS data loading time compared with CSV and Pickle 
with PCQM4Mv2 dataset on Summit

Fig. 7  The performance of PCQM4Mv2 pre-processing in HydraGNN. 
We convert PCQM4Mv2 data into ADIOS data by using multiple CPUs 
on Summit
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eV on the Leaderboard. The validation error of 0.12 eV in 
this work is within the accepted range. As for the AISD 
HOMO-LUMO dataset, it contains almost thrice as 
many molecules as the PCQM4Mv2 dataset. The MAE 
errors for training, validation, and test sets are 0.14 eV, 
which is similar to the PCQM4Mv2 dataset. Figure  10 
shows the accuracy convergence on the AISD HOMO-
LUMO dataset using different numbers of Summit GPUs. 
It shows that the HydraGNN training with 192 GPUs 
quickly converged in 0.3 h (wall time) to the similar accu-
racy level achieved by the 6 GPUs (a single Summit node) 
that took about 8.2 h.

We highlight that the convergence of the distributed 
GCNN training with 192 GPUs is deteriorated compared 
to the distributed training with only 6 GPUs. This is due 
to a well known numerical artifact that destabilizes the 
training of DL models at large scale and causes a perfor-
mance drop because large scale DDP training is math-
ematically equivalent to large-batch training. In fact, 
processing data in large batches significantly reduces the 
stochastic oscillations of the stochastic optimizer used 
for DL training, thus making the DL training more likely 
to be trapped in steep local minima, which adversely 
affect generalization. Although the final accuracy of the 

GCNN training with 192 GPUs is slightly worse than 
the one obtained using 6 GPUs for training, we empha-
size the significant advantage that HPC resources pro-
vide in speeding-up the training. Better accuracy can 
be obtained when training DL models at large scale by 
adaptively tuning the learning rate [47, 48] or by applying 
quasi-Newton accelerations  [49], but this goes beyond 
the focus of our current work.

Conclusions and future work
In this paper, we present a computational workflow 
that performs DDP training to predict the HOMO-
LUMO gap of molecules. We have implemented DDP 
in HydraGNN, a GCNN library developed at ORNL, 
which can utilize heterogeneous computing resources 
including CPUs and GPUs. For efficient storage and 
loading of large molecular data, we use the ADIOS 
high-performance data management framework. 
ADIOS helps reduce the storage footprint of large-
scale graph structures as compared with commonly 
used methods, and provides an easy way to efficiently 
load data and distribute them amongst processes. We 
have conducted studies using two molecular data-
sets on the OLCF’s Summit and NERSC’s Perlmutter 

Fig. 8  HydraGNN predicted values against DFT values of 
HOMO-LUMO Gap for molecules in PCQM4Mv2 training and 
validation sets

Fig. 9  HydraGNN predicted values against DFT values of HOMO-LUMO Gap for molecules in AISD HOMO-LUMO training, validation and test sets

Fig. 10  Convergence of the training and validation runs for the AISD 
HOMO-LUMO data on Summit with different GPU counts



Page 9 of 10Choi et al. Journal of Cheminformatics           (2022) 14:70 	

supercomputers. Our results show the near-linear 
scaling of HydraGNN for the test datasets up to 1024 
GPUs. Additionally, we present the accuracy and con-
vergence behavior of the distributed training with 
increasing number of GPUs.

Through efficiently managing large-scale datasets 
and training in parallel, HydraGNN provides an effec-
tive surrogate model for accurate and rapid screening 
of large chemical spaces for molecular design. Future 
work will be dedicated to integrating the scalable DDP 
training of HydraGNN in a computational workflow to 
perform molecular design.
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