
Choi et al. Journal of Cheminformatics (2022) 14:70
https://doi.org/10.1186/s13321-022-00652-1

RESEARCH

Scalable training of graph convolutional
neural networks for fast and accurate
predictions of HOMO‑LUMO gap in molecules
Jong Youl Choi1*, Pei Zhang2, Kshitij Mehta1, Andrew Blanchard2 and Massimiliano Lupo Pasini2 

Abstract 

Graph Convolutional Neural Network (GCNN) is a popular class of deep learning (DL) models in material science to
predict material properties from the graph representation of molecular structures. Training an accurate and compre-
hensive GCNN surrogate for molecular design requires large-scale graph datasets and is usually a time-consuming
process. Recent advances in GPUs and distributed computing open a path to reduce the computational cost for
GCNN training effectively. However, efficient utilization of high performance computing (HPC) resources for training
requires simultaneously optimizing large-scale data management and scalable stochastic batched optimization tech-
niques. In this work, we focus on building GCNN models on HPC systems to predict material properties of millions of
molecules. We use HydraGNN, our in-house library for large-scale GCNN training, leveraging distributed data parallel-
ism in PyTorch. We use ADIOS, a high-performance data management framework for efficient storage and reading
of large molecular graph data. We perform parallel training on two open-source large-scale graph datasets to build
a GCNN predictor for an important quantum property known as the HOMO-LUMO gap. We measure the scalability,
accuracy, and convergence of our approach on two DOE supercomputers: the Summit supercomputer at the Oak
Ridge Leadership Computing Facility (OLCF) and the Perlmutter system at the National Energy Research Scientific
Computing Center (NERSC). We present our experimental results with HydraGNN showing (i) reduction of data load-
ing time up to 4.2 times compared with a conventional method and (ii) linear scaling performance for training up to
1024 GPUs on both Summit and Perlmutter.

Keywords:  Graph neural networks, Distributed data parallelism, Surrogate models, Atomic modeling, Molecular
dynamics, HOMO-LUMO gap

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Drug discovery and molecular design rely heavily on pre-
dicting material properties directly from their atomic
structure. A particular property of interest for molecu-
lar design is the energy gap between the highest occu-
pied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO), known as the HOMO-LUMO

gap. The HOMO-LUMO gap is a valid approximation for
the lowest excitation energy of a molecule and is used to
express its chemical reactivity. In particular, molecules
that are more chemically reactive are characterized by a
lower HOMO-LUMO gap. There are many physics-based
computational approaches to compute the HOMO-
LUMO gap of a molecule such as ab initio molecular
dynamics (MD) [1, 2] and density-functional tight-bind-
ing (DFTB) [3]. While these methods have been instru-
mental in predictive materials science, they are extremely
computationally expensive. The advent of deep learning
(DL) models has provided alternative methodologies to

Open Access

Journal of Cheminformatics

*Correspondence: choij@ornl.gov

1 Computer Science and Mathematics Division, Oak Ridge National
Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00652-1&domain=pdf

Page 2 of 10Choi et al. Journal of Cheminformatics (2022) 14:70

produce fast and accurate predictions of material prop-
erties and hence enable rapid screening in the large
search space to select material candidates with desirable
properties [4–7].

In particular, graph convolutional neural network
(GCNN) models are extensively used in material science
to predict material properties from atomic information
[8, 9]. When GCNN models are used as surrogates in
screening of the vast chemical space, the models have to
process large amounts of streaming data which is dynam-
ically produced by molecular design applications [10]
(Fig. 1).

To effectively process large volumes of data in train-
ing large complex GCNN models, both data loading and
model training must scale on multi-node hybrid CPU-
GPU high-performance computing (HPC) resources.
HPC techniques to scale the training use distributed data
parallelism (DDP) to distribute data in batches across
different processes. Each process computes gradient
updates for the coefficients of the DL model on the local
batch, and combines local gradient updates of all pro-
cesses by averaging them. Although DDP is a well estab-
lished technique, the specific use of DDP to scale the
training of GCNN models is still largely unexplored.

In this work we analyze the scalability of our library
of GCNN models on two open-source graph datasets
describing the HOMO-LUMO gap for a wide variety
of molecules: the PCQM4Mv2 dataset from the Open
Graph Benchmark (OGB) [11, 12] and the AISD HOMO-
LUMO dataset [13] generated at Oak Ridge National
Laboratory (ORNL). The scalability of the data loading
and GCNN training on the two datasets has been tested
on the Summit supercomputer at the Oak Ridge Lead-
ership Computing Facility (OLCF) and the Perlmutter
supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC). For our study, we use
HydraGNN, a library we have developed for scalable data
reading and GCNN training with portability on a broad

variety of computational resources [14]. HydraGNN is
capable of multitask prediction of hybrid node-level and
graph-level properties in large batches of graphs in differ-
ent sizes, i.e., with varying number of nodes. We use the
ADIOS [15] high-performance data management library
for efficient storage and reading of graph data. Numerical
results show that the training of HydraGNN scales lin-
early up to 1024 GPUs on both supercomputers.

The remainder of this work is structured as follows.
"Related work" section describes related work. "Back-
ground" section presents the background of GCNN
architectures, the HydraGNN library and the ADIOS
data management framework. "Distributed data paral-
lel training" section briefly describes our DDP approach
along with efficient data loading of training data.
"Numerical results" section presents the numerical
results with comparisons between Summit and Perlmut-
ter in terms of scalability, and "Conclusions and future
work" section summarizes the analysis of this work and
discusses future research directions.

Related work
In this section, we review the relevant literature on
GCNN models for predicting the HOMO-LUMO gap
and DDP for GCNN.

GCNN modeling work has been reported on predic-
tions of HOMO-LUMO gap [9, 16–19]. Most of the
work focuses on the QM9 dataset [20] or the OE62 data-
set [21]. QM9 has about 134 thousand molecules con-
taining 5 element types (i.e., H,C,N,O and F), and OE62
covers 16 different elements types (i.e., H, Li, B, C, N, O,
F, Si, P, S, Cl, As, Se, Br, Te, and I) and about 62 thousand
molecules. The two datasets used in this work are signifi-
cantly larger and more diverse and hence more challeng-
ing to process and predict—PCQM4Mv2 with 3.3 million
molecules and 31 element types and AISD HOMO-
LUMO with 10.5 million molecules and 6 element types.
Some GCNN work [12, 22, 23] has been reported on
PCQM4Mv2, but the implementations are not for large-
scale distributed training.

With respect to distributed training of GCNN models,
recent work surveyed different types of potential paral-
lelization techniques, including DDP [24]. While most
of the research has focused on distributing the GCNN
training with graph partitioning techniques to process
large-scale graphs, no specific contribution in the litera-
ture has analyzed the scalability of GCNN training using
DDP. In this paper, we focus on exploring the challenges
and demonstrating the capability to process millions of
graphs with DDP at scale.

For efficient storage and loading of large datasets, we
use the ADIOS [15] data management library, which is

Fig. 1  Computational workflow that compares the standard
procedure to predict material properties with DFTB calculations and
a GCNN model that uses the molecular structure as input to estimate
the HOMO-LUMO gap. Once the GCNN model is trained, it is much
faster than DFTB

Page 3 of 10Choi et al. Journal of Cheminformatics (2022) 14:70 	

commonly used for science applications. ADIOS pro-
vides a self-describing data format built upon a pub-
lish-subscribe framework. Other scientific data formats
include the Hierarchical Data Format (HDF5) [25],
but we selected ADIOS for its proven performance at
extreme scale, in addition to the plethora of options for
tuning I/O and streaming data, along with inbuilt sup-
port for data compression.

Background
In this section, we discuss our use of GCNN for the pre-
diction of HOMO-LUMO gap in molecules. We describe
the architecture of HydraGNN, our library of GCNNs.
We discuss the design of the large-scale data loading in
HydraGNN leveraging ADIOS, a high-performance sci-
entific data management library for managing large-scale
I/O and data transfers.

Graph convolutional neural networks
GCNNs [26, 27] are DL models for processing graph
data. Representing molecules in the form of graphs is
natural since the atoms can be viewed as nodes and
chemical bonds as edges of the graph, as shown in Fig. 2.
Nodes in the graph retain atomic features in molecules
and edges retain the connectivity and bond properties
(e.g., the distance between nodes). Each graph can have
graph-level properties such as the HOMO-LUMO gap.

Graph convolutional (GC) layers are the core of
GCNNs. They employ a message-passing framework,
a procedure that combines the knowledge from neigh-
boring nodes. The type of information passed through a
graph structure can be either related to the topology of
the graph or the nodal features. An example of topologi-
cal information is the node degree, whereas an example
of nodal feature in the context of this work is the atomic
number. The message passing in a single GC layer in
our applications maps directly to the pairwise interac-
tions of an atom with its neighbors. Through consecutive
steps of message passing (i.e., stacking multiple GC lay-
ers together), the graph nodes gather information from

nodes that are further and further away, which implicitly
represents many-body interactions.

A graph pooling layer is connected at the end of a
stack of consecutive GC layers to gather feature infor-
mation from the entire graph in prediction tasks of
graph-level properties. It aims at aggregating the nodal
feature associated with each atom across a graph into a
single feature. In our work, we use global mean pool-
ing layer, which averages node features across all the
nodes in the graph. For atom(node)-level properties
such as the atomic charge transfer and atomic mag-
netic moment, aggregating the information from all
atoms into a global feature is not needed. Finally, fully
connected (FC) layers take the results of pooling, i.e.,
extracted features, and provide the output prediction
for global properties.

Differing in the policy adopted to aggregate, trans-
fer, and update information through the message
passing in GC layers, a variety of GCNNs have been
developed, e.g., Principal Neighborhood Aggregation
(PNA) [28], Crystal GCNN (CGCNN) [8] and Graph-
SAGE [29]. Many of them have been implemented in
HydraGNN [30].

HydraGNN
HydraGNN is our in-house library for performant
creation and testing of various GCNN models, and is
designed to perform multi-task predictions of graph
data. It is built on Pytorch [31, 32] and Pytorch Geo-
metric [33, 34], and can run on small-scale worksta-
tions to large-scale HPC systems. It is openly available
on Github [30].

HydraGNN loads molecular data encoded as graph
structures consisting of a list of nodes (atoms) and
edges (bonds) either from a file system or directly
from memory. Training is performed over multiple
iterations, where each iteration consists of a forward,
backward, and optimization step as shown in Fig. 3.
The forward phase computes the model output tensor
from an input graph with a forward function consist-
ing of GC layers, a global pooling layer, and FC layers.

Fig. 2  Illustration of a SMILES representation of a molecule (left), its
corresponding molecular structure (center), and its corresponding
molecular graph (right). The atoms that are not explicitly
denominated in the molecular structure are carbon atoms and the
hydrogen atoms that create a covalence bond with a carbon atom.
All the hydrogen atoms are suppressed in the figure for the sake of
brevity but they are treated as nodes of the molecular graph in GCNN
models

Iterative training

Dataload Forward Backward Opt Step

GPU
Memory

File system

CPU
Memory

Fig. 3  HydraGNN workflow to process molecular graph dataset. It
performs iterative training phases, consisting of data loading, forward,
backward, and optimization steps

Page 4 of 10Choi et al. Journal of Cheminformatics (2022) 14:70

It calculates the loss between the model output and the
true tensor values corresponding to the input graph
as the mean square error (MSE). The backward phase
calculates the gradients of the loss with respect to
each parameter in forward function. Finally, the opti-
mization step updates parameters based on gradients
calculated in the backward step and a user-defined
optimization policy.

ADIOS data management framework
ADIOS is an open source, high-performance, I/O frame-
work developed as part of the Exascale Computing Pro-
ject (ECP).1 It provides a custom, self-describing data
format with optimized methods to read and write data
for massively parallel applications. ADIOS’s focus is to
provide extreme-scale I/O capabilities on the world’s
largest supercomputers; it is used in science applica-
tions that generate data on the order of several petabytes.
ADIOS is run in production in many HPC codes such
as XGC [35], GENE [36], GEM [37], PIConGPU [38],
WarpX [39], E3SM [40], LAMMPS [41], and others,
providing over 1 Terabyte/second of I/O to the Summit
GPFS file system [42] at ORNL.

At its core, ADIOS provides a concept of abstract
“Engine”. Engines execute the I/O heavy tasks and are
conceived as workflows tackling specific applications’
needs optimized for HPC filesystems, hierachical data
management, or data access over the wide area network.
We leverage ADIOS’s optimized I/O writing and reading
performance on HPC file systems in the presence of mul-
tiple concurrent processes, which is necessary for per-
forming large-scale distributed data-parallel training for
HydraGNN.

Besides the performance boost, ADIOS provides a scal-
able yet flexible data format that can manage millions of
graphs with varying sizes. ADIOS stores data in a custom
format termed BP (binary-packed). It is a highly efficient
self-describing format for storing data along with meta-
data from various sources in a distributed application.
An ADIOS file consists of variables and attributes, where
variables can be scalars or arrays. Array variables can be
local to a process or can be global arrays that are distrib-
uted amongst processes. Global arrays are used to con-
struct large data structures that can be written and read
efficiently in a parallel fashion. For example, edge attrib-
utes of all graphs in HydraGNN are stored as part of a
single global array for fast storage and retrieval.

An ADIOS file is a container of one or more subfiles,
with one subfile per writer. The number of writers for a
group of ADIOS variables is configurable so that a user
may tune the number of subfiles created in the ADIOS

container. Internally, ADIOS transparently converts this
N → M I/O pattern such that data from N processes is
aggregated and output by M processes, where 1 ≤M≤ N.
At extreme scale where applications spawn hundreds of
thousands of processes, this leads to significant perfor-
mance benefits as users can avoid overwhelming the file
system by creating a large number of subfiles. Several
other options are available in the ADIOS library to fur-
ther tune and optimize I/O performance.

Distributed data parallel training
Large supercomputers available at DOE national labora-
tories such as Summit and Perlmutter allow us to process
millions of molecules (graph objects) concurrently to
build and test various GCNN models. To explore the high
degree of parallelism available on these nodes, we apply
DDP to accelerate the training process in HydraGNN.

In deep learning, DDP refers to a method of performing
training in parallel by distributing the same model across
multiple nodes but assigning disjoint datasets to consume
for each model. In other words, each process computes
gradients of parameters in parallel for its assigned data-
set. At the end of the computation, we aggregate gradi-
ents and re-distribute them to all processes to make each
process maintain the same model parameters (Fig. 4).
In general, gradients aggregation is an expensive opera-
tion in parallel computing. For Summit and Perlmutter,
both equipped with NVIDIA GPUs, we use NCCL, an
NVIDIA library to communicate directly between GPUs,
without having to copy data to the host CPU first, which
results in an efficient and inexpensive inter-process com-
munication for gradient aggregation. The communication
overhead will vary depending on the models’ size and the
frequency of aggregation.

Another challenge in DDP training in an HPC system
is data management, including pre-processing and data
loading during training. Each process regularly reads a
group of data objects from the storage to form a batch
of graph objects for training. The random I/O access

GPU0

GPU1

GPU2

GPU0

GPU1

GPU2

Data
Batch0

Data
Batch1

Data
Batch2

GPU0

GPU1

GPU2

Data Load Forward Backward Optimization

Global
Data

Distributed

G
ra

di
en

ts

Al
lR

ed
uc

e

Fig. 4  Overview of DDP training. Each process independently loads
and processes a batch of data and synchronizes local gradients with
others through a gradient aggregation process which requires global
communications

1  https://​www.​exasc​alepr​oject.​org.

https://www.exascaleproject.org

Page 5 of 10Choi et al. Journal of Cheminformatics (2022) 14:70 	

pattern is common to maintain shuffled and disjointed
subsets with other processes to avoid duplication dur-
ing training and increase the fairness of training.
However, without careful data management, loading
training data can become a bottleneck for training. To
mitigate this issue, we leverage ADIOS [15] for our dis-
tributed GCNN training.

We emphasize here the importance of pre-pro-
cessing. Many open-source molecular databases use
the simplified molecular-input line-entry system
(SMILES) [43], the de facto standard format to repre-
sent 2D molecular structures in text strings (see Fig. 2
for an example). HydraGNN employs a pre-processing
step to convert SMILES strings to graph representa-
tions in files. Depending on the scale of the input data
(graph), an optimal pre-processing step for graph con-
version is crucial to the performance. Without pre-
processing, data loading has to perform conversion of
SMILES data into a graph which can cause a bottleneck
in training. To avoid this, our workflow includes a par-
allel pre-processing step in which graph data generated
from SMILES strings is stored into the ADIOS high-
performance data format, and is later read back for
training. This avoids converting the SMILES data into
graph objects for every iteration of the training.

To this end, we develop the ADIOS schema for graph
datasets. The schema describes the mapping of graph
objects to ADIOS components. We aggregate each
graph attribute into a global multi-dimensional array
and save it in ADIOS variable format. The main graph
attributes are node features, edge attributes, and edge
index, as summarized in Table 1.

We have developed an extensible data loader module
in HydraGNN that allows reading data from different
storage formats. In this work, we evaluate the following
three methods for loading data from training datasets.

•	 Inline data loading: load SMILES strings written in
CSV format into memory and then convert each
SMILES into a graph object at every batch data
loading. It has the smallest memory footprint.

•	 Object data loading: convert all SMILES strings
into graph objects and export them in a serialized
format (e.g., Pickle) during a preprocessing phase.

A process loads each data batch directly from the
file system and unpacks into a memory.

•	 ADIOS data loading: convert SMILES strings into
graph objects mapped to ADIOS variables, and write
them into an ADIOS file in a pre-processing step.
Each process then loads its batch data during training
in parallel along with other processes.

We will discuss performance comparisons in the next
section.

Numerical results
In this section, we assess our development of DDP train-
ing in HydraGNN on two state-of-the-art DOE super-
computers, Summit and Perlmutter. We discuss the
scalability of our approach, and compare the perfor-
mance of different I/O backends for storing and reading
graph data.

Setup
We perform our evaluation on two supercomputers of
DOE. Both systems provide state-of-the-art GPU-based
heterogeneous architectures.

Summit is a supercomputer at OLCF, one of DOE’s
Leadership Computing Facilities (LCFs). Summit consists
of about 4600 compute nodes. Each node has a hybrid
architecture containing two IBM POWER9 CPUs and
six NVIDIA Volta GPUs connected with NVIDIA’s high-
speed NVLink. Each node contains 512 GB of DDR4
memory for CPUs and 96 GB of High Bandwidth Mem-
ory (HBM2) for GPUs. Summit nodes are connected in a
non-blocking fat-tree topology using a dual-rail Mellanox
EDR InfiniBand interconnection.

Perlmutter is a supercomputer at NERSC. Perlmutter
consists of about 3000 CPU-only nodes and 1500 GPU-
accelerated nodes. We use only the GPU-accelerated
nodes in our work. Each GPU-accelerated node has an
AMD EPYC 7763 (Milan) processor and four NVIDIA
Ampere A100 GPUs connected to each other with
NVLink-3. Each GPU node has 256 GB of DDR4 memory
and 40 GB HBM2 per each GPU. All nodes in Perlmutter
are connected with the HPE Cray Slingshot interconnect.

We demonstrate the performance of HydraGNN
using two large-scale datasets, a previously

Table 1  ADIOS schema for graph dataset

Variable Description Array shape

x Features associated to nodes (#nodes, #node features)

edge index Edge connectivity between nodes (#2, #edges)

edge attr Features associated to edges (#edges, #edge features)

y Target features in graph-level or node-level (#target, #features)

Page 6 of 10Choi et al. Journal of Cheminformatics (2022) 14:70

published benchmark dataset for graph-based learn-
ing (PCQM4Mv2) [11, 44] and a custom dataset gener-
ated for this work (AISD HOMO-LUMO) [13]. For both
datasets, molecule information is provided as SMILES
strings. The PCQM4Mv2 consists of HOMO-LUMO gap
values for about 3.3 million molecules. In total, 31 dif-
ferent types of atoms (i.e., H, B, C, N, O, F, Si, P, S, Cl,
Ca,Ge,As, Se, Br, I, Mg, Ti, Ga, Zn, Ar, Be, He, Al, Kr, V,
Na, Li, Cu, Ne, Ni) are involved in the dataset. The cus-
tom AISD HOMO-LUMO dataset was generated using
molecular structures from previous work [45]. It is a col-
lection of approximately 10.5 million molecules and con-
tains 6 element types (i.e., H, C, N, O, S, and F).

For scalability tests, we use HydraGNN with 6 PNA [28]
convolutional layers and 55 neurons per PNA layer. The
model is trained by using the AdamW method [46] with
a learning rate of 0.001, local batch size of 128, and maxi-
mum epochs set to 3. The training set for each of the NN
represents 94% of the total dataset; the validation and
test sets each represent 1/3rd and 2/3rd parts respectively
of the remaining data. For the error convergence tests,
the HydraGNN model uses 200 neurons per layer.

Scalability of DDP
We perform DDP training with HydraGNN for
PCQM4Mv2 and AISD data on Summit at ORNL and
Perlmutter at NERSC using multiple CPUs and GPUs.
The number of graphs and size in the datasets are sum-
marized in Table 2.

We measure the total training time for PCQM4Mv2
and AISD HOMO-LUMO datasets over three epochs.
As discussed previously, each training consists of a data
loading phase, followed by forward calculation, back-
ward calculation, and optimizer update. We test the scal-
ability of DDP by varying the number of nodes on each
system, ranging from a single node up to 256 nodes on
Summit and 128 nodes on Perlmutter, corresponding to
using 1536 Volta GPUs and 512 A100 GPUs respectively.
Figure 5 shows the result. The scaling plot (top) shows
the averaged training time for PCQM4Mv2 and AISD
HOMO-LUMO on each system with a varying number
of nodes, and the detailed timings of each sub-function
during the training on Summit are shown at the bottom.

We obtain near-linear scaling up to 1024 GPUs for
both PCQM4Mv2 and AISD HOMO-LUMO data. As
we further scale the workflow on Summit, the number
of batches per GPU decreases, leading to sub-optimal
utilization of GPU resources. As a result, we see a drop
in speedup as we scale beyond 1024 GPUs on Summit.
We expect similar scaling behavior on Perlmutter, but we
were limited to using 128 nodes (i.e., 512 GPUs) for this
work.

Comparing different I/O backends
Data loading takes a significant amount of time in train-
ing, as shown in Fig. 5, and hence is a crucial step in the
overall workflow. We compare three different data load-
ing methods—inline, object loading, and ADIOS data
loading, as discussed in "Distributed data parallel train-
ing" section. Figure 6 presents time taken by the three
methods for the PCQM4Mv2 data set on Summit. As
expected, it outperforms the CSV data loading test case
in which SMILES data is converted into a graph object
for every molecule. ADIOS outperforms Pickle-based
data loading by 4.2x on a single Summit node and 1.5x
on 32 Summit nodes. To provide a complete picture of
HydaGNN’s data processing, Fig. 7 shows the pre-pro-
cessing performance in converting the PCQM4Mv2 data
into ADIOS2 on Summit. ADIOS supports parallel writ-
ing and shows scalable performance as we add CPUs in
parallel.

Accuracy
Next, we perform long-running HydraGNN training for
the HOMO-LUMO gap prediction with PCQM4Mv2 and
AISD HOMO-LUMO datasets until training converges.

Figures 8 and 9 show the prediction results for
PCQM4Mv2 and AISD HOMO-LUMO datasets respec-
tively. With PCQM4Mv2, we achieve a prediction error
of around 0.10 and 0.12 eV, measured in mean absolute
error (MAE), for the training and validation set, respec-
tively. We note that PCQM4Mv2 is a public dataset
released without test data for the purpose of maintaining
the OGB-LSC Leaderboards2. The reported validation
MAE from multiple models varies from 0.0857 to 0.1760

Table 2  Dataset description

1 Average number of nodes (atoms) per graph

Dataset Graph size Data file size (GB)

#Graphs #Nodes #Edges #Avg1 CSV Pickle ADIOS

PCQM4Mv2 3.6 M 105.8 M 214.6 M 29.4 0.16 34 22

AISD HOMO-LUMO 10.5 M 550.6 M 1.1 B 52.4 0.88 94 60

2  https://​ogb.​stanf​ord.​edu/​docs/​lsc/​leade​rboar​ds/

https://ogb.stanford.edu/docs/lsc/leaderboards/

Page 7 of 10Choi et al. Journal of Cheminformatics (2022) 14:70 	

Fig. 5  Strong scaling performance of HydraGNN training on OLCF’s Summit and NERSC’s Perlmutter(top), and detailed timing (bottom). We
perform data-parallel training for PCQM4Mv2 and AISD HOMO-LUMO data sets with HydraGNN using up to 1500 GPUs and observe linear scaling
up to 1024 GPUs

Fig. 6  Comparison of different I/O methods in HydraGNN. We
measure ADIOS data loading time compared with CSV and Pickle
with PCQM4Mv2 dataset on Summit

Fig. 7  The performance of PCQM4Mv2 pre-processing in HydraGNN.
We convert PCQM4Mv2 data into ADIOS data by using multiple CPUs
on Summit

Page 8 of 10Choi et al. Journal of Cheminformatics (2022) 14:70

eV on the Leaderboard. The validation error of 0.12 eV in
this work is within the accepted range. As for the AISD
HOMO-LUMO dataset, it contains almost thrice as
many molecules as the PCQM4Mv2 dataset. The MAE
errors for training, validation, and test sets are 0.14 eV,
which is similar to the PCQM4Mv2 dataset. Figure 10
shows the accuracy convergence on the AISD HOMO-
LUMO dataset using different numbers of Summit GPUs.
It shows that the HydraGNN training with 192 GPUs
quickly converged in 0.3 h (wall time) to the similar accu-
racy level achieved by the 6 GPUs (a single Summit node)
that took about 8.2 h.

We highlight that the convergence of the distributed
GCNN training with 192 GPUs is deteriorated compared
to the distributed training with only 6 GPUs. This is due
to a well known numerical artifact that destabilizes the
training of DL models at large scale and causes a perfor-
mance drop because large scale DDP training is math-
ematically equivalent to large-batch training. In fact,
processing data in large batches significantly reduces the
stochastic oscillations of the stochastic optimizer used
for DL training, thus making the DL training more likely
to be trapped in steep local minima, which adversely
affect generalization. Although the final accuracy of the

GCNN training with 192 GPUs is slightly worse than
the one obtained using 6 GPUs for training, we empha-
size the significant advantage that HPC resources pro-
vide in speeding-up the training. Better accuracy can
be obtained when training DL models at large scale by
adaptively tuning the learning rate [47, 48] or by applying
quasi-Newton accelerations [49], but this goes beyond
the focus of our current work.

Conclusions and future work
In this paper, we present a computational workflow
that performs DDP training to predict the HOMO-
LUMO gap of molecules. We have implemented DDP
in HydraGNN, a GCNN library developed at ORNL,
which can utilize heterogeneous computing resources
including CPUs and GPUs. For efficient storage and
loading of large molecular data, we use the ADIOS
high-performance data management framework.
ADIOS helps reduce the storage footprint of large-
scale graph structures as compared with commonly
used methods, and provides an easy way to efficiently
load data and distribute them amongst processes. We
have conducted studies using two molecular data-
sets on the OLCF’s Summit and NERSC’s Perlmutter

Fig. 8  HydraGNN predicted values against DFT values of
HOMO-LUMO Gap for molecules in PCQM4Mv2 training and
validation sets

Fig. 9  HydraGNN predicted values against DFT values of HOMO-LUMO Gap for molecules in AISD HOMO-LUMO training, validation and test sets

Fig. 10  Convergence of the training and validation runs for the AISD
HOMO-LUMO data on Summit with different GPU counts

Page 9 of 10Choi et al. Journal of Cheminformatics (2022) 14:70 	

supercomputers. Our results show the near-linear
scaling of HydraGNN for the test datasets up to 1024
GPUs. Additionally, we present the accuracy and con-
vergence behavior of the distributed training with
increasing number of GPUs.

Through efficiently managing large-scale datasets
and training in parallel, HydraGNN provides an effec-
tive surrogate model for accurate and rapid screening
of large chemical spaces for molecular design. Future
work will be dedicated to integrating the scalable DDP
training of HydraGNN in a computational workflow to
perform molecular design.

Acknowledgements
Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable
feedback in the preparation of this manuscript.
This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by
accepting the article for publication, acknowledges that the U.S. Government
retains a non-exclusive, paid up, irrevocable, world-wide license to publish or
reproduce the published form of the manuscript, or allow others to do so, for
U.S. Government purposes. The DOE will provide public access to these results
in accordance with the DOE Public Access Plan (http://​energy.​gov/​downl​
oads/​doe-​public-​access-​plan).

Author contributions
All authors contributed to the paper’s conception and design. JYC and KM
developed the ADIOS schema, and designed the experiments for evaluating
different data loaders in HydraGNN. JYC implemented the ADIOS and Pickle
backends, performed experiments on Summit and Perlmutter, and analyzed
results. PZ contributed to the development of HydraGNN, results analysis and
paper writing. AB performed material preparation, data collection and analysis.
MLP contributed to the development of core capabilities in HydraGNN and
wrote the main narrative of the manuscript. All authors contributed by com-
menting on the previous versions of the manuscript and revisions. All authors
read and approved the final manuscript.

Funding
This work was supported in part by the Office of Science of the Department
of Energy and by the Laboratory Directed Research and Development (LDRD)
Program of Oak Ridge National Laboratory. This research is sponsored by the
Artificial Intelligence Initiative as part of the Laboratory Directed Research and
Development (LDRD) Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-
00OR22725. An award of computer time was provided by the OLCF Director’s
Discretion Project program using OLCF awards CSC457 and MAT250 and
the INCITE program. This work used resources of the Oak Ridge Leadership
Computing Facility and of the Edge Computing program at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725. This research
used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231 using NERSC award ASCR-ERCAP-m4133.

Availability of data and materials
The AISD HOMO-LUMO dataset has been generated and analysed for this
work. It is open-source and accessible at the following URL https://​doi.​ccs.​
ornl.​gov/​ui/​doi/​394. Our main code HydraGNN is openly available on Github:
https://​github.​com/​ORNL/​Hydra​GNN

Declarations

Competing interests
The authors have no competing interests to declare that are relevant to the
content of this article.

Author details
1 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
1 Bethel Valley Road, Oak Ridge, TN 37831, USA. 2 Computational Sciences
and Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road,
Oak Ridge, TN 37831, USA.

Received: 26 August 2022 Accepted: 8 October 2022

References
	1.	 Car R, Parrinello M (1985) Unified approach for molecular dynamics and

density-functional theory. Phys Rev Lett 55:2471–2474. https://​doi.​org/​10.​
1103/​PhysR​evLett.​55.​2471

	2.	 Marx D, Hutter J (2012) Ab Initio molecular dynamics. Basic theory and
advanced methods. Cambridge University Press, New York

	3.	 Sokolov M, Bold BM, Kranz JJ, Hofener S, Niehaus TA, Elstner M (2021)
Analytical time-dependent long-range corrected density functional tight
binding (TD-LC-DFTB) gradients in DFTB+: implementation and bench-
mark for excited-state geometries and transition energies. J Chem Theory
Comput. 17(4):2266–2282

	4.	 Gaultois MW, Oliynyk AO, Mar A, Sparks TD, Mulholland GJ, Meredig B
(2016) Perspective: web-based machine learning models for real-time
screening of thermoelectric materials properties. APL Mater. 4:053213.
https://​doi.​org/​10.​1063/1.​49526​07

	5.	 Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J (2018) Accelerated
discovery of stable lead-free hybrid organic-inorganic perovskites
via machine learning. Nat Commun. 9:3405. https://​doi.​org/​10.​1038/​
s41467-​018-​05761-w

	6.	 Gómez-Bombarelli R (2016) Design of efficient molecular organic light-
emitting diodes by a high-throughput virtual screening and experimen-
tal approach. Nat Mater 15:1120–1127. https://​doi.​org/​10.​1038/​nmat4​717

	7.	 Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016)
Accelerated search for materials with targeted properties by adaptive
design. Nat Commun 7:11241. https://​doi.​org/​10.​1038/​nmat4​717

	8.	 Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties. Phys Rev
Lett. 120(14):14530. https://​doi.​org/​10.​1103/​PhysR​evLett.​120.​145301

	9.	 Chen C, Ye W, Zuo Y, Zheng C, Ong SP (2019) Graph networks as a univer-
sal machine learning framework for molecules and crystals. Chem Mater
31(9):3564–3572. https://​doi.​org/​10.​1021/​acs.​chemm​ater.​9b012​94

	10.	 Reymond JL (2015) The chemical space project. Acc Chem Res 48(3):722–
730. https://​doi.​org/​10.​1021/​ar500​432k

	11.	 Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec
J (2020) Open graph benchmark: Datasets for machine learning
on graphs. Advances in Neural Information Processing Systems
2020-Decem(NeurIPS), 1–34 arXiv:​2005.​00687

	12.	 Hu W, Fey M, Ren H, Nakata M, Dong Y, Leskovec J (2021) OGB-LSC: A
large-scale challenge for machine learning on graphs. arXiv preprint
arXiv:​2103.​09430

	13.	 Blanchard AE, Gounley J, Bhowmik D, Pilsun Y, Irle S AISD HOMO-LUMO.
https://​doi.​org/​10.​13139/​ORNLN​CCS/​18694​09

	14.	 Lupo Pasini M, Zhang P, Reeve ST, Choi JY (2022) Multi-task graph neural
networks for simultaneous prediction of global and atomic properties in
ferromagnetic systems. Mach Learn Sci Technol. 3(2):025007. https://​doi.​
org/​10.​1088/​2632-​2153/​ac6a51

	15.	 Godoy WF, Podhorszki N, Wang R, Atkins C, Eisenhauer G, Gu J, Davis P,
Choi J, Germaschewski K, Huck K et al (2020) ADIOS 2: the adaptable
input output system. A framework for high-performance data manage-
ment. SoftwareX 12:100561

	16.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural mes-
sage passing for quantum chemistry. In: International Conference on
Machine Learning, pp. 1263–1272. PMLR

	17.	 Choudhary K, DeCost B (2021) Atomistic line graph neural network for
improved materials property predictions. NPJ Comput Mater 7(1):1–8

	18.	 Nakamura T, Sakaue S, Fujii K, Harabuchi Y, Maeda S (2020) Iwata S Select-
ing molecules with diverse structures and properties by maximizing
submodular functions of descriptors learned with graph neural networks.
Sci Rep. 12:1124. https://​doi.​org/​10.​1021/​acs.​jcim.​0c006​87

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.ccs.ornl.gov/ui/doi/394
https://doi.ccs.ornl.gov/ui/doi/394
https://github.com/ORNL/HydraGNN
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1063/1.4952607
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1038/nmat4717
https://doi.org/10.1038/nmat4717
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/ar500432k
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2103.09430
https://doi.org/10.13139/ORNLNCCS/1869409
https://doi.org/10.1088/2632-2153/ac6a51
https://doi.org/10.1088/2632-2153/ac6a51
https://doi.org/10.1021/acs.jcim.0c00687

Page 10 of 10Choi et al. Journal of Cheminformatics (2022) 14:70

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	19.	 Rahaman O, Gagliardi A (2020) Deep learning total energies and orbital
energies of large organic molecules using hybridization of molecular fin-
gerprints. J Chem Inf Model. 60(12):5971–5983. https://​doi.​org/​10.​1021/​
acs.​jcim.​0c006​87

	20.	 Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum
chemistry structures and properties of 134 kilo molecules. Sci Data
1(1):1–7

	21.	 Stuke A, Kunkel C, Golze D, Todorović M, Margraf JT, Reuter K, Rinke P,
Oberhofer H (2020) Atomic structures and orbital energies of 61,489
crystal-forming organic molecules. Sci Data 7(1):1–11

	22.	 Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T-Y (2021) Do trans-
formers really perform badly for graph representation? In: Advances in
Neural Information Processing Systems, vol. 34, pp. 28877–28888. https://​
proce​edings.​neuri​ps.​cc/​paper/​2021/​file/​f1c15​92588​41100​2af34​0cbae​
dd6fc​33-​Paper.​pdf

	23.	 Park W, Chang W-G, Lee D, Kim J, Hwang S-w (2022) GRPE: Relative posi-
tional encoding for graph transformer. In: ICLR2022 Machine Learning for
Drug Discovery. https://​openr​eview.​net/​forum?​id=​GNfAFN_​p1d

	24.	 Besta M, Hoefler T (2022) Parallel and distributed graph neural networks:
an in-depth concurrency analysis. https://​doi.​org/​10.​48550/​ARXIV.​2205.​
09702

	25.	 Folk M, Heber G, Koziol Q, Pourmal E, Robinson D (2011) An overview of
the HDF5 technology suite and its applications. In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, pp. 36–47

	26.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The
graph neural network model. IEEE Trans Neural Netw 20(1):61–80. https://​
doi.​org/​10.​1109/​TNN.​2008.​20056​05

	27.	 Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural
networks on graphs with fast localized spectral filtering. In: Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 29. Curran Associates, Inc., Centre
Convencions Internacional Barcelona, Barcelona Sain. https://​proce​
edings.​neuri​ps.​cc/​paper/​2016/​file/​04df4​d434d​481c5​bb723​be1b6​df1ee​
65-​Paper.​pdf

	28.	 Corso G, Cavalleri L, Beaini D, Liò P, Veličković P (2020) Principal neigh-
bourhood aggregation for graph nets. Adv Neural Inf Process Syst
33:13260–13271

	29.	 Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning
on large graphs. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 30, pp. 1025–1035. Curran Associates, Inc., Long
Beach Convention Center, Long Beach. https://​proce​edings.​neuri​ps.​cc/​
paper/​2017/​file/​5dd9d​b5e03​3da9c​6fb5b​a83c7​a7ebe​a9-​Paper.​pdf

	30.	 Lupo Pasini M, Reeve ST, Zhang P, Choi JY (2021) HydraGNN. Computer
Software. https://​doi.​org/​10.​11578/​dc.​20211​019.2. https://​github.​com/​
ORNL/​Hydra​GNN

	31.	 PyTorch. https://​pytor​ch.​org/​docs/​stable/​index.​html
	32.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin

Z, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-
performance deep learning library. Adv Neural Inf Process Syst. 32

	33.	 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch
Geometric. In: ICLR Workshop on Representation Learning on Graphs and
Manifolds

	34.	 PyTorch Geometric. https://​pytor​ch-​geome​tric.​readt​hedocs.​io/​en/​latest/
	35.	 Dominski J, Cheng J, Merlo G, Carey V, Hager R, Ricketson L, Choi J, Ethier

S, Germaschewski K, Ku S et al (2021) Spatial coupling of gyrokinetic
simulations, a generalized scheme based on first-principles. Phys Plasmas
28(2):022301

	36.	 Merlo G, Janhunen S, Jenko F, Bhattacharjee A, Chang C, Cheng J, Davis
P, Dominski J, Germaschewski K, Hager R et al (2021) First coupled GENE-
XGC microturbulence simulations. Phys Plasmas 28(1):012303

	37.	 Cheng J, Dominski J, Chen Y, Chen H, Merlo G, Ku S-H, Hager R, Chang
C-S, Suchyta E, D’Azevedo E et al (2020) Spatial core-edge coupling
of the particle-in-cell gyrokinetic codes GEM and XGC. Phys Plasmas
27(12):122510

	38.	 Poeschel F, Godoy WF, Podhorszki N, Klasky S, Eisenhauer G, Davis PE, Wan
L, Gainaru A, Gu J, Koller F et al (2021) Transitioning from file-based HPC
workflows to streaming data pipelines with openPMD and ADIOS2. arXiv
preprint arXiv:​2107.​06108

	39.	 Wan L, Huebl A, Gu J, Poeschel F, Gainaru A, Wang R, Chen J, Liang X,
Ganyushin D, Munson T et al (2021) Improving I/O performance for

exascale applications through online data layout reorganization. IEEE
Trans Parallel Distrib Syst 33(4):878–890

	40.	 Wang D, Luo X, Yuan F, Podhorszki N (2017) A data analysis framework for
earth system simulation within an in-situ infrastructure. J Comput Com-
mun. 5(14)

	41.	 Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier
PS, in ’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ,
Tranchida J, Trott C, Plimpton SJ, (2022) LAMMPS—a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and con-
tinuum scales. Comp Phys Comm. 271:108171. https://​doi.​org/​10.​1016/j.​
cpc.​2021.​108171

	42.	 OLCF Supercomputer Summit. https://​www.​olcf.​ornl.​gov/​olcf-​resou​rces/​
compu​te-​syste​ms/​summit/

	43.	 Weininger D (1998) SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci. 28:31–36. https://​doi.​org/​10.​1021/​ci000​57a005

	44.	 Nakata M, Shimazaki T (2017) PubChemQC project: a large-scale first-
principles electronic structure database for data-driven chemistry. J
Chem Inf Model 57(6):1300–1308. https://​doi.​org/​10.​1021/​acs.​jcim.​7b000​
83

	45.	 Blanchard AE, Gounley J, Bhowmik D, Shekar MC, Lyngaas I, Gao S, Yin J,
Tsaris A, Wang F, Glaser J (2021) Language models for the prediction of
SARS-CoV-2 inhibitors. Preprint at https://​www.​biorx​iv.​org/​conte​nt/​10.​
1101/​2021.​12.​10.​47192​8v1

	46.	 Loshchilov I, Hutter F (2019) Decoupled weight decay regularization. In:
7th International Conference on Learning Representations, ICLR 2019.
OpenReview.net, New Orleans, LA, USA. https://​openr​eview.​net/​forum?​
id=​Bkg6R​iCqY7

	47.	 You Y, Gitman I, Ginsburg B (2017) Large batch training of convolutional
networks. arXiv:​1708.​03888 [cs.CV]. arXiv:​1708.​03888

	48.	 You Y, Hseu J, Ying C, Demmel J, Keutzer K, Hsieh C-J (2019) Large-
batch training for lstm and beyond. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’19. Association for Computing Machinery, New York, NY,
USA. https://​doi.​org/​10.​1145/​32955​00.​33561​37

	49.	 Pasini ML, Yin J, Reshniak V, Stoyanov MK (2022) Anderson acceleration for
distributed training of deep learning models. In: SoutheastCon 2022, pp.
289–295. https://​doi.​org/​10.​1109/​South​eastC​on486​59.​2022.​97639​53

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acs.jcim.0c00687
https://doi.org/10.1021/acs.jcim.0c00687
https://proceedings.neurips.cc/paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf
https://openreview.net/forum?id=GNfAFN_p1d
https://doi.org/10.48550/ARXIV.2205.09702
https://doi.org/10.48550/ARXIV.2205.09702
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.11578/dc.20211019.2
https://github.com/ORNL/HydraGNN
https://github.com/ORNL/HydraGNN
https://pytorch.org/docs/stable/index.html
https://pytorch-geometric.readthedocs.io/en/latest/
http://arxiv.org/abs/2107.06108
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/acs.jcim.7b00083
https://doi.org/10.1021/acs.jcim.7b00083
https://www.biorxiv.org/content/10.1101/2021.12.10.471928v1
https://www.biorxiv.org/content/10.1101/2021.12.10.471928v1
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1708.03888
https://doi.org/10.1145/3295500.3356137
https://doi.org/10.1109/SoutheastCon48659.2022.9763953

	Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
	Abstract
	Introduction
	Related work
	Background
	Graph convolutional neural networks
	HydraGNN
	ADIOS data management framework

	Distributed data parallel training
	Numerical results
	Setup
	Scalability of DDP
	Comparing different IO backends
	Accuracy

	Conclusions and future work
	Acknowledgements
	References

