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5-Methylcytosine (m5C) is an important post-transcriptional
modification that has been extensively found in multiple types
of RNAs.Many studies have shown that m5C plays vital roles in
many biological functions, such as RNA structure stability and
metabolism. Computational approaches act as an efficient way
to identify m5C sites from high-throughput RNA sequence
data and help interpret the functional mechanism of this
important modification. This study proposed a novel species-
specific computational approach, Staem5, to accurately predict
RNA m5C sites in Mus musculus and Arabidopsis thaliana.
Staem5 was developed by employing feature fusion tactics to
leverage informatic sequence profiles, and a stacking ensemble
learning framework combined five popular machine learning
algorithms. Extensive benchmarking tests demonstrated that
Staem5 outperformed state-of-the-art approaches in both
cross-validation and independent tests. We provide the source
code of Staem5, which is publicly available at https://github.
com/Cxd-626/Staem5.git.

INTRODUCTION
There are more than 170 types of RNA chemical modifications
(RCMs) that have been found in transfer RNAs (tRNAs), ribosome
RNAs (rRNAs), mRNAs, and non-coding RNAs.1–5 The RCMs is
determined by three coordinating factors, including methyltransfer-
ase, RNA binding protein, and demethylase.3,6,7 Among all RCMs,
5-cytosine-methylation (m5C) is one of themost important modifica-
tions inmRNA. However, it is challenging to identify m5C accurately.
Because of the instability of mRNA molecules, high-throughput
sequencing technologies usually fail to accurately identify m5C sites
at single-nucleotide resolution.6,8–10 Therefore, computational
approaches that can accurately identify m5C sites would be highly
valuable and may provide insights into the functional roles of this
important RNA modification.

A number of computational approaches based on sequence-derived
information and machine learning algorithms have been developed
to predict m5C sites of four species, including Homo sapiens, Mus
musculus, Saccharomyces cerevisiae, andArabidopsis thaliana.These
approaches can be classified into two categories according to the
machine learning algorithm they applied: (1) support vector ma-
chine-based predictors, including m5C-PseDNC,11 M5C-HPCR,12

pM5CS-Comp-mRMR,13 RNAm5CPred,14 m5CPred-SVM,15 and
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iRNA-m5C_SVM16; (2) random forest (RF)-based approaches,
including PEA-m5C,17 RNAm5Cfinder,18 and iRNA-m5C.19 In
addition, some studies developed computational methods for pre-
dicting multiple types of RNA modifications, including m5C. For
example, Liu and Chen developed iMRM20 based on extreme
gradient boosting (XGBoost) to recognize five types of RNA modifi-
cations. Song et al.8 developed an attention-based multi-label neural
network, MultiRM, to predict 12 types of RNAmodifications simul-
taneously. Table 1 summarizes these two categories of predictors
specially designed for m5C in several aspects, including the feature
extraction, performance evaluation strategy, species, webserver or
software availability, and benchmark datasets. We found that most
of the methods were developed forH. sapiens, and only a few predic-
tors were designed and tested for m5C sites of M. musculus and
A. thaliana, such as iRNA-m5C, iRNA-m5C_SVM, RNAm5Cfinder,
and m5CPred-SVM.15,16,19 In addition, the predictive performance
of the m5C site in M. musculus and A. thaliana is unsatisfactory
compared with that in H. sapiens. For example, m5CPred-SVM,
iRNA-m5C_SVM, and iRNA-m5C were developed on the same
benchmark dataset of A. thaliana and achieved 71.8%, 73.06%, and
70.7% in terms of average accuracy of the cross-validation tests,
respectively. The reason is probably that these predictors were devel-
oped based on a single RF or SVM algorithm. With recent advances
in ensemble learning strategies used in bioinformatics to develop
robust prediction models, we were motivated to leverage the
ensemble learning techniques to improve m5C prediction in
M. musculus and A. thaliana.

In this study, we introduce Staem5, a stacked ensemble model for
predicting m5C sites in A. thaliana and M. musculus. Staem5 was
developed based on four types of sequence features, such as posi-
tion-specific propensity, k-mer, electron-ion interaction pseudo po-
tentials of trinucleotide, and parallel correlation pseudo dinucleotide
composition. The base models to build the optimal stacked model of
y: Nucleic Acids Vol. 26 December 2021 ª 2021 The Authors. 1027
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Table 1. A comprehensive list of the existing methods for m5C site prediction

Method classification Toolsa Webserver/software
availabilityb

Features Evaluation strategy Species Benchmark dataset
(positive: negative)

SVM-based

m5C-PseDNC11 no PseDNC(3) Jackknife test H. sapiens 120: 120

M5C-HPCR12 no PseDNC(23) Jackknife test H. sapiens
Met1320 (120: 1,200);
Met1900 (475: 1,425)

pM5CS-Comp-mRMR13 no DNC, TriNC, TetraNC Jackknife test H. sapiens 120:120

RNAm5CPred14 yes KNF, KSNPF, PseDNC(3) Jackknife test, 10-fold
CV and independent test

H. sapiens

Met935 (127: 808);
Met240 (120: 120)
Met1900 (475: 1,425)
Test1157 (157: 1,000)

m5CPred-SVM15 decommissioned
KNF, PseDNC(3), KSNPF,
PSNP, KSPSDP, CPD

10-fold CV and
independent test

H. sapiens
M. musculus
A. thaliana

269: 269
5,563: 5,563
6,289: 6,289

iRNA-m5C_SVM16 no
PSP, k-mer, PseEIIP,
PCPseDNC(22)

10-fold CV and
independent test

A. thaliana 6,289: 6,289

RF-based

iRNAm5C-PseDNC21 yes PseDNC(10) Jackknife test H. sapiens 475: 1,425

PEA-m5C17 decommissioned binary, k-mer, PseDNC(3) 10-fold CV and
independent test

A. thaliana

DatasetCV (1,196: 11,960)
DatasetHT (100: 100)
DatasetT1 (79: 79)
DatasetT2 (73: 73)

RNAm5Cfinder18 yes binary
10-fold CV and
independent test

H. sapiens
M. musculus

Three m5C datasets from
GSE90963, GSE93749,
GSE83432 database

iRNA-m5C19 yes
k-mer, binary,
natural vector,
PseKNC

Jackknife test, 10-fold
CV and independent test

H. sapiens
M. musculus
S. cerevisiae
A. thaliana

120: 120
97: 97
211: 211
6,289: 6,289

CV, cross-validation; PseDNC(m), pseudo dinucleotide composition, m is the number of physical-chemical properties; DNC, dinucleotide; TriNC, trinucleotide; TetraNC, tetranucleo-
tide; KNF, K-nucleotide frequency; KSNPF, K-spaced nucleotide pair frequency; PseKNC, pseudo K-tuple nucleotide frequency component; KSNPF, K-spaced nucleotide pair fre-
quency; PSNP, position-specific nucleotide propensity; KSPSDP, K-spaced position-specific dinucleotide propensity; CPD, chemical property with density; PSP, PSNP, PSDP, and
PSTP, associated with frequencies of nucleotides, dinucleotides, and trinucleotides; PseEIIP, electron-ion interaction pseudo potential of trinucleotide; PCPseDNC, general parallel
correlation pseudo dinucleotide composition.
aThe URL addresses for the listed tools are as follows: iRNAm5C-PseDNC, http://www.jci-bioinfo.cn/iRNAm5C-PseDNC; PEA-m5C, https://github.com/cma2015/PEA-
m5C;RNAm5Cfinder, http://www.rnanut.net/rnam5cfinder; RNAm5CPred, http://zhulab.ahu.edu.cn/RNAm5CPred/; iRNA-m5C, http://lin-group.cn/server/iRNA-m5C/service.
html; m5CPred-SVM, https://zhulab.ahu.edu.cn/m5CPred-SVM.
bYes: the publication is accompanied with a webserver/softpackage and it is still functional; decommissioned: the webserver/softpackage is no longer available; no: the publication has
no webserver or softpackage.
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each species were selected from five popular machine learning algo-
rithms, and the feature selection strategies were employed to further
optimize the predictive performance. The cross-validation and inde-
pendent tests demonstrate that Staem5 achieved competitive predic-
tive performance compared with state-of-the-art approaches.

RESULTS
In this work, we propose a novel computational method, Staem5, to
identify m5C sites for both A. thaliana and M. musculus. The model
integrates four kinds of encoding schemes, i.e., position-specific pro-
pensity (PSP), k-mer (k = 1, 2, and 3), parallel correlation pseudo
dinucleotide composition (PCPseDNC), and electron-ion interaction
pseudo potentials of trinucleotide (PseEIIP). Bayesian optimization
was applied to tune parameters for each classifier. Then, we evaluated
the different combinations of base classifiers, including SVM,
XGBoost, light gradient boosting machine (LightGBM), extremely
randomized trees (ExtraTree), and gradient boosting decision tree
(GBDT), by stacked tactics to identify the optimal ensemble model
1028 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
for A. thaliana andM. musculus, respectively. Meanwhile, the F score
is used to reduce the dimension of features and computing time.
Compared with training and independent datasets, Staem5 exhibits
its superiority to other existing approaches. The source code of
Staem5 can be found at https://github.com/Cxd-626/Staem5.git.

DISCUSSION
Nucleotide preferences of the m5C site

This section analyzes the nucleotide preferences of the sequence frag-
ments containing m5C sites using the Two Sample Logo (http://www.
twosamplelogo.org/).22 The sequence logos of A. thaliana and
M. musculus generated by Two Sample Logo are presented in Figures
1A and 1B, respectively. As observed, cytidine (C) was enriched up-
stream of the m5C sites of A. thaliana, especially at positions �18
to �10 and �7 to �1. In contrast, adenine (A) and guanine (G) are
abundant upstream of the non-m5C sequence fragments, especially
at positions �19, �18, �15, �12, �11, �9, �7, �6, �3, and �1.
For M. musculus, C and G have relatively higher frequencies than
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Figure 1. Nucleotide preferences of the fragments with m5C sites and without m5C sites in the center

(A) For A. thaliana and (B) for M. musculus.
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the other two nucleic acids, especially at positions�20,�10,�9,�5,
�3, �2, �1, and 2. Also, the non-m5C sequences had a frequent A
and uridine (U) pattern at positions �9, �6, �5, �3 to �1, and 1
to 3 of the corresponding sequence segments. These results demon-
strate that m5C sites in A. thaliana and M. musculus do not have
notable sequence motifs compared with non-m5C sites, and that
the sequence segments have different nucleotide preferences in these
two species. Therefore, it could be difficult to develop a general model
for cross-species prediction, and it is necessary to set up species-spe-
cific models.

The effectiveness of parameter optimization

In this section, we evaluate the predictive performance of five popular
machine learning algorithms, i.e., SVM,23 GBDT,24 XGBoost,25

LightGBM,26 and ExtraTree,27 for m5C site prediction in A. thaliana
and M. musculus. For each classification algorithm, the hyperpara-
meters were pre-set according to previous experience28–30 and opti-
mized by the Bayesian optimization,31 which has effectiveness in
many prediction tasks in bioinformatics.29,30,32–37 We searched the
optimal combination of hyperparameters according to the value of ac-
curacy based on the 10-fold cross-validation tests. The performance
comparison results in termsof accuracy of thefivebase classifiers before
and after parameter optimization on the 10-fold cross-validation tests
are shown in Figure 2 (the detailed values of other performancemetrics
are provided in Table S1), and the selected parameters are listed in Ta-
ble S2. We can observe that the performance of the five base classifiers
enhancedafter parameter optimizationandperformance improvement
of SVMwas the largest among the five base classifiers. The accuracy of
the SVM model of A. thaliana increased from 62.40% to 73.62%. In
addition, the accuracy of the GBDT model also witnessed an increase
from 65.69% to 71.77%. In comparison, ExtraTree had the most negli-
gible performance improvement with a 0.05% increase in terms of
accuracy.

In addition, from Figure 2 and Table S1, we can see that SVM
achieved the best accuracy (73.62%), Matthew’s correlation coeffi-
cient (MCC) (0.476), specificity (Sp) (79.41%), Pre (76.71%), and
AUC (0.807); while LightGBM achieved the best sensitivity (Sn)
(71.19%); and XGBoost secured the best F1 score (0.723) among these
five classifiers for A. thaliana. Considering all five performance met-
rics, SVM achieved the best predictive performance on the 10-fold
cross-validation tests for A. thaliana. In comparison, XGBoost
achieved the best accuracy (76.68%), MCC (0.534), and F1 score
(0.769) for M. musculus.

Processing of building ensemble model

There are two levels in the stacking ensemble learning strategy, and
the classifiers in these two levels are referred to as base and meta-clas-
sifiers, respectively. In the first level, a set of base classifiers generate
the probability values, which are subsequently used as the input for
the meta-classifier. In this study, we used logistic regression as the
meta-model to ensemble the base classifiers into a stacked model.
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1029

http://www.moleculartherapy.org


Figure 2. Performance comparison results in terms

of accuracy of the five base classifiers before and

after parameter optimization on the 10-fold cross-

validation tests

(A) For A. thaliana and (B) for M. musculus.
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The stacking strategy was implemented in the “mlxtend” package38 in
Python. The selection of base classifiers was based on the accuracy of
the model. Take A. thaliana for an example, and the process of stack-
ing is as follows: we first ensembled the top two best-performed
classifiers, SVM and XGBoost, and evaluated whether the model per-
formance in accuracy increased or not. We identified that the stacked
model achieved increased accuracy compared with support vector
machine (SVM) only from 73.62% to 73.85% on the 10-fold cross-
validation. Therefore, we further integrated the third-ranked classifier
LightGBM to the stacked model, and the accuracy further improved
by 73.85%–73.89%. However, when combined with the fourth-ranked
classifier GBDT and ExtraTree, the accuracy decreased in varying de-
grees. Therefore, we accordingly selected SVM, XGBoost, and
LightGBM as the base classifiers for the stacked model, which
achieved 73.89% accuracy and 0.479 MCC. Figure 3 illustrates the
performance comparison results of different base classifiers’ combi-
nations in accuracy andMCC (the detailed results are provided in Ta-
ble S3).

Subsequently, we also compared the stacked strategy with the voting
strategy, which is another popular ensemble learning strategy. To
ensure the fairness of the comparison, the voting models were con-
structed according to the same principle as the stacked model (with
logistic regression). The performance comparison results of different
classifier combinations are provided in Table S4, and we summarize
the performance comparison results between the best stacking and
voting models in Table 2. The results demonstrated that the stacking
model achieved better predictive performance, which is more suitable
for m5C site prediction in A. thaliana and M. musculus.
1030 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
Feature selection analysis

To remove redundant information caused by
high-dimensional input features and further
optimize the meta-models, we evaluated three
popular feature selection algorithms, including
maximum-relevance-maximum-distance (MRMD),39 Pearson corre-
lation coefficient (PCC) feature selection,40 and F score, to find the
optimal feature subset. We first ranked all features by each feature
selection algorithm and then reduced the dimension of the feature
set by step of 50. The performance comparison results of three
feature selection algorithms are provided in Table S5. The results
suggested that these three feature selection approaches did not
further improve the predictive performance of m5C sites in
A. thaliana; however, the selected features enhanced the model per-
formance of the M. musculus model on 10-fold cross-validation
tests. For the model performance during feature selection by F score,
the average accuracy first increased and then decreased with the
decrease of features, and at the best average accuracy 77.26% at
the feature dimension of 180. In contrast, the best average accuracies
for MRMD and PCC are same, which were achieved to 77.21% at the
dimension of 230 for MRMD and 280 for PCC, respectively. These
results demonstrated F score achieved slightly better performance
compared with MRMD and PCC. Therefore, we used F score to
select the optimal features and reduce the feature dimension by
setting a smaller step of 5 and provided the feature selection results
at the feature dimension of 165–195 in Table S6. From Table S6, we
can see the best performance in terms of accuracy (77.42%) and
AUC (0.855) achieved with 185 features. Finally, we further selected
the optimal feature subsets by step of 1 on the feature dimension of
175–190 and report the results in Table S7. The results doubly
confirm that the feature subset with 185 features can secure the
best performance in accuracy and AUC. Therefore, these 185 fea-
tures were used as the input features for the stacked model to predict
m5C sites in M. musculus. In addition, the performance comparison
Figure 3. Performance comparison results of

different base classifiers’ combinations in accuracy

and MCC

(A) For A. thaliana and (B) for M. musculus. Note: SX,

SVM + XGBoost; SXL, SVM + XGBoost + LightGBM;

SXLE, SVM + XGBoost + LightGBM + ExtraTree; SXLEG,

SVM + XGBoost + LightGBM + ExtraTree + GBDT; XE,

XGBoost + ExtraTree; XEL, XGBoost + ExtraTree +

LightGBM; XELS, XGBoost + ExtraTree + LightGBM +

SVM; XELSG, XGBoost + ExtraTree + LightGBM +SVM +

GBDT.



Table 2. Performance comparison results between two ensemble

strategies in 10-fold cross-validation tests on the training dataset

Species Strategy Sn (%) Sp (%) Acc (%) MCC AUC

A. thaliana
voting strategy 70.85 76.52 73.68 0.474 0.809

stacking 70.98 76.80 73.89 0.479 0.810

M. musculus
voting strategy 78.11 75.56 76.83 0.537 0.852

stacking 77.97 76.26 77.12 0.543 0.854

Bold numbers indicate the highest values in each column.

Table 3. Performance comparison results between Staem5 and existing

methods in 10-fold cross-validation tests on the training dataset

Species Methods Sn (%) Sp (%) Acc (%) MCC AUC

A. thaliana

iRNA-m5C 65.70 75.70 70.70 0.420 0.770

m5CPred-SVM 68.10 75.50 71.80 0.437 0.782

iRNA-m5C_SVM 66.42 79.70 73.06 0.470 0.800

Staem5 70.98 76.80 73.89 0.479 0.810

M. musculus
m5CPred-SVM 75.70 72.80 74.30 0.486 0.822

Staem5 78.28 76.55 77.42 0.549 0.855

Bold numbers indicate the highest values in each column.
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results of the models before and after selection on the independent
test dataset are provided in Table S8.

Performance comparison with state-of-the-art methods

In this section, we compare the predictive performance of Staem5
with several state-of-the-art predictors on the same training and
independent test datasets of A. thaliana and M. musculus. For
A. thaliana, we compared Staem5 with iRNA-m5C,19 m5CPred-
SVM,15 and iRNA-m5C_SVM16; while for M. musculus, we
compared Staem5 with m5CPred-SVM. The performance compari-
son results on training and independent test datasets are provided in
Tables 3 and 4, respectively. From Table 3, we can see that Staem5
achieved the best performance on the training dataset of both
A. thaliana and M. musculus for almost all the evaluation metrics
with the only exception that iRNA-m5C_SVM achieved the best
Sp of A. thaliana. The independent test results in Table 4 show
that Staem5 was inferior to iRNA-m5C_SVM and m5CPred-SVM
on the independent test set of A. thaliana. However, Staem5
achieved better predictive performance than m5CPred-SVM on
the independent test set of M. musculus. Although the Staem5’s per-
formance on the independent test set of A. thaliana was slightly
lower than iRNA-m5C_SVM and m5CPred-SVM, the training
and testing performance differences were lower compared with these
two approaches. The independent test results of iRNA-m5C_SVM
and m5CPred-SVM were much higher than their performance on
the training dataset. Instead, Staem5 showed similar performance
on the independent dataset and training dataset, e.g., 73.70% versus
73.89% in terms of accuracy, which indicates that Staem5 is more
robust and stable compared with others. Therefore, we can conclude
that Staem5 can accurately predict M. musculus and A. thaliana
m5C sites.

MATERIALS AND METHODS
Benchmark datasets

The schematic flowchart of Staem5 is shown in Figure 4. There are
four major steps, including data collection, feature extraction,
feature selection, and model construction. In the first step, the
training and independent test datasets of A. thaliana were collected
from the datasets constructed by Chen et al.15 The m5C site data of
A. thaliana was derived from the NCBI Gene Expression Omnibus
(GEO) database http://www.ncbi.nlm.nih.gov/geo/ using accession
number GEO: GSE94065 http://www.ncbi.nlm.nih.gov/geo/, while
the M. musculus dataset was collected from Yang et al.6 A statistical
summary of the training and independent test datasets of A. thaliana
and M. musculus is provided in Table S9. The A. thaliana dataset
contains 5,298 positive and 5,298 negative training samples, 1,000
positive and 1,000 negative testing samples. In comparison, the
M. musculus dataset has 4,563 positive and 4,563 negative training
samples, 1,000 positive and 1,000 negative testing samples.

Sequence encoding schemes

In this study, we employed four types of sequence encoding schemes,
including parallel correlation pseudo dinucleotide composition
(PCPseDNC), position-specific propensity (PSP), k-mer, and elec-
tron-ion interaction pseudo potentials of trinucleotide (PseEIIP).
PCPseDNC was calculated by iLearn,41 and there are 38 physico-
chemical properties in PCPseDNC. PSP, k-mer and PseEIIP have
been extensively applied in the field of prediction RNA N6-methyla-
denosine (m6A) sites, protein S-sulfenylation sites, and identifying
N4-acetylcytidine (ac4C) sites in mRNA.42–45 We provide the
detailed definitions and formulas in the supplemental information.

Stacked ensemble learning framework

There are two levels in the stacking ensemble learning strategy, and
the classifiers in these two levels are referred to as base classifiers
and meta-classifier, respectively. In this work, we explored five popu-
lar machine learning algorithms, including SVM,23 GBDT,24

XGBoost,25 LightGBM,26 and ExtraTree,27 as the base classifiers,
and applied the logistic regression46 algorithm as the meta-classifier
to build the stacked ensemble model. The base classifiers were built
using the scikit-learn package,47,48 and the model stacking was imple-
mented using the “mlxtend” package.38

In this study, we employed the radial basis kernel function in SVM
and optimized the regularization parameter C and kernel parameter
g to find the most suitable hyperparameters.14,23,49 GBDT is a tree-
based boosting algorithm that learns directly from mistake residual
errors rather than updating the weight of the data. It uses the
gradient descent algorithm to minimize training error.24,50 XGBoost
improves GBDT by employing parallel learning techniques and reg-
ularization terms, which makes the model more efficient and robust.
XGBoost achieved great success in many bioinformatics tasks, such
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1031
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Table 4. Performance comparison results between Staem5 and existing

methods on the independent test dataset

Species Classifier Sn (%) Sp (%) Acc (%) MCC AUC

A. thaliana

iRNA-m5C 72.40 75.60 74.10 0.481 –

m5CPred-SVM 75.50 76.10 75.50 0.516 0.836

iRNA-m5C_SVM 79.40 80.90 80.15 0.600 0.880

Staem5 74.80 72.60 73.70 0.474 0.829

M. musculus
m5CPred-SVM 67.90 74.90 71.40 0.429 0.775

Staem5 66.10 77.80 71.95 0.442 0.787

Bold numbers indicate the highest values in each column.
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as protein/DNA/RNA functional sites prediction.25,51–54 LightGBM
is a further extension of XGBoost, which improves training speed
and reduce memory consumption by applying a histogram algo-
rithm.26 In addition, LightGBM proposes gradient-based one-side
sampling, exclusive feature bundling, and leaf-wise growth strategy
to obtain better accuracy and efficient computation. Meanwhile, it
also adopted limiting maximum depth parameters to mitigate
over-fitting55,56 and LightGBM has been widely used in bioinformat-
ics.57,58 ExtraTree is also a tree-based algorithm that was proposed
by Pierre Geurts et al.27 in 2006. Although ExtraTree is very similar
to RF, there are two major differences between them. First, RF is a
bagging method, while ExtraTree uses all the training samples to
train the decision tree. Second, the RF gets the best bifurcation
feature in a random subset; while ExtraTree performs a completely
random bifurcation.59
Figure 4. The schematic flowchart of Staem5
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Model evaluation

To evaluate and compare Staem5 with existing approaches, 10-fold
cross-validation and independent tests were conducted based on
training and testing datasets, respectively. We applied five commonly
used evaluation metrics for model evaluation, including Sn, Sp, accu-
racy (Acc), MCC, and area under the receiver operating characteristic
curve (AUC), defined as:

Sn =
TP

TP + FN
; (Equation 1)

Sp =
TN

TN + FP
; (Equation 2)

Acc =
TP +TN

TP +TN + FP + FN
; (Equation 3)

MCC =
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ � ðTP + FNÞ � ðTN + FPÞ � ðTN + FNÞp ;

(Equation 4)

where TP, TN, FP, and FN indicate the number of true-positive, true-
negative, false-positive, and false-negative sequences, respectively.
Experimental environment

The experiments were conducted on a PC with a 64-bit Windows 10
operating system. The PC is equipped with an Intel(R) Core (TM)
i7-7700 CPU and 16 GB physical memory; the CPU’s main fre-
quency is 3.60 GHz. Staem5 was developed based on Python 3.7,
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and it requires approximately 5.7 s to predict 1,000 enquiry sequence
segments with 41 bp.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2021.10.012.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation
of China no. 62071079.

AUTHOR CONTRIBUTIONS
C.J. and F.L. conceived the initial idea and designed the methodology.
J.Z. and D.C. implemented the algorithm, conducted the experiments,
and processed the results. All authors drafted, revised, and approved
the final manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. Xuan, J.J., Sun, W.J., Lin, P.H., Zhou, K.R., Liu, S., Zheng, L.L., Qu, L.H., and Yang,

J.H. (2018). RMBase v2.0: deciphering the map of RNA modifications from epitran-
scriptome sequencing data. Nucleic Acids Res. 46, D327–D334. https://doi.org/10.
1093/nar/gkx934.

2. Dubin, D.T., and Taylor, R.H. (1975). The methylation state of poly A-containing
messenger RNA from cultured hamster cells. Nucleic Acids Res. 2, 1653–1668.
https://doi.org/10.1093/nar/2.10.1653.

3. Frye, M., Harada, B.T., Behm, M., and He, C. (2018). RNA modifications modulate
gene expression during development. Science 361, 1346–1349. https://doi.org/10.
1126/science.aau1646.

4. Squires, J.E., Patel, H.R., Nousch, M., Sibbritt, T., Humphreys, D.T., Parker, B.J.,
Suter, C.M., and Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in hu-
man coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033. https://doi.org/
10.1093/nar/gks144.

5. Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K.,
de Crecy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a
database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–
D307.

6. Yang, X., Yang, Y., Sun, B.F., Chen, Y.S., Xu, J.W., Lai, W.Y., Li, A., Wang, X.,
Bhattarai, D.P., Xiao, W., et al. (2017). 5-methylcytosine promotes mRNA export-
NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 27,
606–625. https://doi.org/10.1038/cr.2017.55.

7. Zheng, G.Q., Dahl, J.A., Niu, Y.M., Fedorcsak, P., Huang, C.M., Li, C.J., Vagbo, C.B.,
Shi, Y., Wang, W.L., Song, S.H., et al. (2013). ALKBH5 is a mammalian RNA deme-
thylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29.
https://doi.org/10.1016/j.molcel.2012.10.015.

8. Song, Z., Huang, D., Song, B., Chen, K., Song, Y., Liu, G., Su, J., Magalhaes, J.P.d.,
Rigden, D.J., and Meng, J. (2021). Attention-based multi-label neural networks for
integrated prediction and interpretation of twelve widely occurring RNA modifica-
tions. Nat. Commun. 12, 4011. https://doi.org/10.1038/s41467-021-24313-3.

9. Khoddami, V., and Cairns, B.R. (2013). Identification of direct targets and modified
bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458. https://doi.org/
10.1038/nbt.2566.

10. Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J.V., Watt, S., Kudo,
N.R., Lyko, F., and Frye, M. (2013). The mouse cytosine-5 RNA methyltransferase
NSun2 is a component of the chromatoid body and required for testis differentiation.
Mol. Cell. Biol. 33, 1561–1570. https://doi.org/10.1128/mcb.01523-12.
11. Feng, P., Ding, H., Chen, W., and Lin, H. (2016). Identifying RNA 5-methylcytosine
sites via pseudo nucleotide compositions. Mol. Biosyst. 12, 3307–3311. https://doi.
org/10.1039/c6mb00471g.

12. Zhang, M., Xu, Y., Li, L., Liu, Z., Yang, X.B., and Yu, D.J. (2018). Accurate RNA 5-
methylcytosine site prediction based on heuristic physical-chemical properties reduc-
tion and classifier ensemble. Anal. Biochem. 550, 41–48. https://doi.org/10.1016/j.ab.
2018.03.027.

13. Sabooh,M.F., Iqbal, N., Khan,M., Khan,M., andMaqbool, H.F. (2018). Identifying 5-
methylcytosine sites in RNA sequence using composite encoding feature into Chou’s
PseKNC. J. Theor. Biol. 452, 1–9. https://doi.org/10.1016/j.jtbi.2018.04.037.

14. Fang, T., Zhang, Z.Z., Sun, R., Zhu, L., He, J.J., Huang, B., Xiong, Y., and Zhu, X.L.
(2019). RNAm5CPred: prediction of RNA 5-methylcytosine sites based on three
different kinds of nucleotide composition. Mol. Ther. Nucleic Acids 18, 739–747.
https://doi.org/10.1016/j.omtn.2019.10.008.

15. Chen, X., Xiong, Y., Liu, Y.B., Chen, Y.Q., Bi, S.D., and Zhu, X.L. (2020). m5CPred-
SVM: a novel method for predicting m5C sites of RNA. BMC Bioinformatics 21, 489.
https://doi.org/10.1186/s12859-020-03828-4.

16. Dou, L.J., Li, X.L., Ding, H., Xu, L., and Xiang, H.K. (2020). Prediction of m5C mod-
ifications in RNA sequences by combining multiple sequence features. Mol. Ther.
Nucleic Acids 21, 332–342. https://doi.org/10.1016/j.omtn.2020.06.004.

17. Song, J., Zhai, J., Bian, E., Song, Y., Yu, J., and Ma, C. (2018). Transcriptome-wide
annotation of m(5)C RNA modifications using machine learning. Front. Plant Sci.
9, 519. https://doi.org/10.3389/fpls.2018.00519.

18. Li, J.W., Huang, Y., Yang, X.Y., Zhou, Y.R., and Zhou, Y. (2018). RNAm5Cfinder: a
web-server for predicting RNA 5-methylcytosine (m5C) sites based on random for-
est. Sci. Rep. 8, 17299. https://doi.org/10.1038/s41598-018-35502-4.

19. Lv, H., Zhang, Z.M., Li, S.H., Tan, J.X., Chen, W., and Lin, H. (2020). Evaluation of
different computational methods on 5-methylcytosine sites identification. Brief
Bioinform. 21, 982–995. https://doi.org/10.1093/bib/bbz048.

20. Liu, K.W., and Chen, W. (2020). iMRM: a platform for simultaneously identifying
multiple kinds of RNA modifications. Bioinformatics 36, 3336–3342. https://doi.
org/10.1093/bioinformatics/btaa155.

21. Qiu,W.R., Jiang, S.Y., Xu, Z.C., Xiao, X., and Chou, K.C. (2017). iRNAm5C-PseDNC:
identifying RNA 5-methylcytosine sites by incorporating physical-chemical proper-
ties into pseudo dinucleotide composition. Oncotarget 8, 41178–41188. https://doi.
org/10.18632/oncotarget.17104.

22. Vacic, V., Iakoucheva, L.M., and Radivojac, P. (2006). Two Sample Logo: a graphical
representation of the differences between two sets of sequence alignments.
Bioinformatics 22, 1536–1537. https://doi.org/10.1093/bioinformatics/btl151.

23. Cortes, C., Cortes, C., Vapnik, V., Llorens, C., Vapnik, V.N., Cortes, C., and Côrtes,
M. (1995). Support-vector networks[J].

24. Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232. https://doi.org/10.1214/aos/1013203451.

25. Chen, T.Q., Guestrin, C., and Assoc Comp, M. (2016). XGBoost: A Scalable Tree
Boosting System (Assoc Computing Machinery). https://doi.org/10.1145/2939672.
2939785.

26. Ke, G.L., Meng, Q., Finley, T., Wang, T.F., Chen, W., Ma, W.D., et al. (2017).
LightGBM: a highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems 30, I. Guyon, U.V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, and S. Vishwanathan, et al., eds. (Neural Information
Processing Systems (Nips)), pp. 1–9.

27. Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Mach.
Learn. 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1.

28. Yi, H.C., You, Z.H., Wang, M.N., Guo, Z.H., Wang, Y.B., and Zhou, J.R. (2020). RPI-
SE: a stacking ensemble learning framework for ncRNA-protein interactions predic-
tion using sequence information. BMC Bioinformatics 21, 60. https://doi.org/10.
1186/s12859-020-3406-0.

29. Li, F., Chen, J., Ge, Z., Wen, Y., Yue, Y., Hayashida, M., Baggag, A., Bensmail, H., and
Song, J. (2021). Computational prediction and interpretation of both general and spe-
cific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning
framework. Brief Bioinform. 22, 2126–2140. https://doi.org/10.1093/bib/bbaa049.
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1033

https://doi.org/10.1016/j.omtn.2021.10.012
https://doi.org/10.1016/j.omtn.2021.10.012
https://doi.org/10.1093/nar/gkx934
https://doi.org/10.1093/nar/gkx934
https://doi.org/10.1093/nar/2.10.1653
https://doi.org/10.1126/science.aau1646
https://doi.org/10.1126/science.aau1646
https://doi.org/10.1093/nar/gks144
https://doi.org/10.1093/nar/gks144
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref5
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref5
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref5
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref5
https://doi.org/10.1038/cr.2017.55
https://doi.org/10.1016/j.molcel.2012.10.015
https://doi.org/10.1038/s41467-021-24313-3
https://doi.org/10.1038/nbt.2566
https://doi.org/10.1038/nbt.2566
https://doi.org/10.1128/mcb.01523-12
https://doi.org/10.1039/c6mb00471g
https://doi.org/10.1039/c6mb00471g
https://doi.org/10.1016/j.ab.2018.03.027
https://doi.org/10.1016/j.ab.2018.03.027
https://doi.org/10.1016/j.jtbi.2018.04.037
https://doi.org/10.1016/j.omtn.2019.10.008
https://doi.org/10.1186/s12859-020-03828-4
https://doi.org/10.1016/j.omtn.2020.06.004
https://doi.org/10.3389/fpls.2018.00519
https://doi.org/10.1038/s41598-018-35502-4
https://doi.org/10.1093/bib/bbz048
https://doi.org/10.1093/bioinformatics/btaa155
https://doi.org/10.1093/bioinformatics/btaa155
https://doi.org/10.18632/oncotarget.17104
https://doi.org/10.18632/oncotarget.17104
https://doi.org/10.1093/bioinformatics/btl151
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref26
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref26
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref26
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref26
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref26
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1186/s12859-020-3406-0
https://doi.org/10.1186/s12859-020-3406-0
https://doi.org/10.1093/bib/bbaa049
http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
30. Mei, S., Li, F., Xiang, D., Ayala, R., Faridi, P., Webb, G.I., Illing, P.T., Rossjohn, J.,
Akutsu, T., Croft, N.P., et al. (2021). Anthem: a user customised tool for fast and ac-
curate prediction of binding between peptides and HLA class I molecules. Brief
Bioinform. https://doi.org/10.1093/bib/bbaa415.

31. Snoek, J., Larochelle, H., and Adams, R.P. (2012). Practical Bayesian optimization of
machine learning algorithms. Adv. Neural Inf. Process. Syst. 4, 1–9.

32. Zhu, Y., Li, F., Xiang, D., Akutsu, T., Song, J., and Jia, C. (2020). Computational iden-
tification of eukaryotic promoters based on cascaded deep capsule neural networks.
Brief Bioinform. https://doi.org/10.1093/bib/bbaa299.

33. Li, F., Chen, J., Leier, A., Marquez-Lago, T., Liu, Q., Wang, Y., Revote, J., Smith, A.I.,
Akutsu, T., Webb, G.I., et al. (2020). DeepCleave: a deep learning predictor for cas-
pase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 36,
1057–1065. https://doi.org/10.1093/bioinformatics/btz721.

34. Li, F., Leier, A., Liu, Q., Wang, Y., Xiang, D., Akutsu, T., Webb, G.I., Smith, A.I.,
Marquez-Lago, T., Li, J., and Song, J. (2020). Procleave: predicting protease-specific
substrate cleavage sites by combining sequence and structural information.
Genomics Proteomics Bioinformatics 18, 52–64. https://doi.org/10.1016/j.gpb.2019.
08.002.

35. Liu, Q., Chen, J., Wang, Y., Li, S., Jia, C., Song, J., and Li, F. (2021). DeepTorrent: a
deep learning-based approach for predicting DNA N4-methylcytosine sites. Brief
Bioinform. 22. https://doi.org/10.1093/bib/bbaa124.

36. Li, F., Guo, X., Jin, P., Chen, J., Xiang, D., Song, J., and Coin, L.J.M. (2021). Porpoise: a
new approach for accurate prediction of RNA pseudouridine sites. Brief Bioinform.
https://doi.org/10.1093/bib/bbab245.

37. Jia, C., Bi, Y., Chen, J., Leier, A., Li, F., and Song, J. (2020). PASSION: an ensemble
neural network approach for identifying the binding sites of RBPs on circRNAs.
Bioinformatics 36, 4276–4282. https://doi.org/10.1093/bioinformatics/btaa522.

38. Raschka, S. (2018). MLxtend: providing machine learning and data science utilities
and extensions to Python’s scientific computing stack. J. Open Source Softw. 3, 638.

39. Zou, Q., Zeng, J.C., Cao, L.J., and Ji, R.R. (2016). A novel features ranking metric with
application to scalable visual and bioinformatics data classification. Neurocomputing
173, 346–354. https://doi.org/10.1016/j.neucom.2014.12.123.

40. Guha, R., Ghosh, K.K., Bhowmik, S., and Sarkar, R. (2020). Mutually Informed
Correlation Coefficient (MICC) - a New Filter Based Feature Selection Method (In
6th IEEE Calcutta Conference (CALCON)).

41. Chen, Z., Zhao, P., Li, F.Y., Marquez-Lago, T.T., Leier, A., Revote, J., Zhu, Y., Powell,
D.R., Akutsu, T., Webb, G.I., et al. (2020). iLearn: an integrated platform and meta-
learner for feature engineering, machine-learning analysis and modeling of DNA,
RNA and protein sequence data. Brief Bioinform. 21, 1047–1057. https://doi.org/
10.1093/bib/bbz041.

42. Huang, Q.F., Zhang, J., Wei, L.Y., Guo, F., and Zou, Q. (2020). 6mA-RicePred: a
method for identifying DNA N (6)-methyladenine sites in the rice genome based
on feature fusion. Front. Plant Sci. 11, 4. https://doi.org/10.3389/fpls.2020.00004.

43. Alam, W., Tayara, H., and Chong, K.T. (2020). XG-ac4C: identification of N4-acetyl-
cytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion
interaction pseudopotentials. Sci. Rep. 10, 20942. https://doi.org/10.1038/s41598-
020-77824-2.

44. Zhang, L., Qin, X., Liu, M., Xu, Z., and Liu, G. (2021). DNN-m6A: a cross-species
method for identifying RNA N6-methyladenosine sites based on deep neural
network with multi-information fusion. Genes 12, 354. https://doi.org/10.3390/
genes12030354.
1034 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
45. Wang, M.H., Cui, X.W., Yu, B., Chen, C., Ma, Q., and Zhou, H.Y. (2020). SulSite-
GTB: identification of protein S-sulfenylation sites by fusing multiple feature infor-
mation and gradient tree boosting. Neural Comput. Appl. 32, 13843–13862.
https://doi.org/10.1007/s00521-020-04792-z.

46. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (Springer Science & Business
Media), p. 33.

47. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: ma-
chine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

48. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., et al.
(2013). API design for machine learning software: experiences from the scikit-learn
project. arXiv, 1–14, preprint arXiv:1309.0238.

49. Zhu, X.L., He, J.J., Zhao, S.H., Tao, W., Xiong, Y., and Bi, S.D. (2019). A comprehen-
sive comparison and analysis of computational predictors for RNAN6-methyladeno-
sine sites of Saccharomyces cerevisiae. Brief. Funct. Genomics 18, 367–376. https://
doi.org/10.1093/bfgp/elz018.

50. Gao, J.B., Zhang, L.F., Yu, G.Q., Qu, G.Q., Li, Y.F., and Yang, X.B. (2020). Model with
the GBDT for colorectal adenoma risk diagnosis. Curr. Bioinformatics 15, 971–979.
https://doi.org/10.2174/1574893614666191120142005.

51. Zheng, R., Li, M., Chen, X., Wu, F.-X., Pan, Y., and Wang, J. (2019). BiXGBoost: a
scalable, flexible boosting-basedmethod for reconstructing gene regulatory networks.
Bioinformatics 35, 1893–1900. https://doi.org/10.1093/bioinformatics/bty908.

52. Yu, J.L., Shi, S.P., Zhang, F., Chen, G.D., and Cao, M. (2019). PredGly: predicting
lysine glycation sites for Homo sapiens based on XGboost feature optimization.
Bioinformatics 35, 2749–2756. https://doi.org/10.1093/bioinformatics/bty1043.

53. Yu, X., Zhou, J., Zhao, M., Yi, C., Duan, Q., Zhou,W., and Li, J. (2020). Exploiting XG
boost for predicting enhancer-promoter interactions. Curr. Bioinformatics 15, 1036–
1045. https://doi.org/10.2174/1574893615666200120103948.

54. Bi, Y., Xiang, D., Ge, Z., Li, F., Jia, C., and Song, J. (2020). An interpretable prediction
model for identifying N(7)-methylguanosine sites based on XGBoost and SHAP.
Mol. Ther. Nucleic Acids 22, 362–372. https://doi.org/10.1016/j.omtn.2020.08.022.

55. Chen, C., Zhang, Q.M., Ma, Q., and Yu, B. (2019). LightGBM-PPI: predicting pro-
tein-protein interactions through LightGBM with multi-information fusion.
Chemometr. Intell. Lab. Syst. 191, 54–64. https://doi.org/10.1016/j.chemolab.2019.
06.003.

56. Maiti, S., Hassan, A., and Mitra, P. (2020). Boosting phosphorylation site prediction
with sequence feature-based machine learning. Proteins 88, 284–291. https://doi.org/
10.1002/prot.25801.

57. Zhang, G.S., Deng, Y.Y., Liu, Q.Y., Ye, B.X., Dai, Z.M., Chen, Y.W., and Dai, X.H.
(2020). Identifying circular RNA and predicting its regulatory interactions by ma-
chine learning. Front. Genet. 11, 655. https://doi.org/10.3389/fgene.2020.00655.

58. Liu, P., Song, J., Lin, C.-Y., and Akutsu, T. (2021). ReCGBM: a gradient boosting-
based method for predicting human dicer cleavage sites. BMC Bioinformatics 22,
63. https://doi.org/10.1186/s12859-021-03993-0.

59. Heddam, S., Ptak, M., and Zhu, S.L. (2020). Modelling of daily lake surface water tem-
perature from air temperature: extremely randomized trees (ERT) versus Air2Water,
MARS, M5Tree, RF and MLPNN. J. Hydrol. 588, 125130. https://doi.org/10.1016/j.
jhydrol.2020.125130.

https://doi.org/10.1093/bib/bbaa415
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref31
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref31
https://doi.org/10.1093/bib/bbaa299
https://doi.org/10.1093/bioinformatics/btz721
https://doi.org/10.1016/j.gpb.2019.08.002
https://doi.org/10.1016/j.gpb.2019.08.002
https://doi.org/10.1093/bib/bbaa124
https://doi.org/10.1093/bib/bbab245
https://doi.org/10.1093/bioinformatics/btaa522
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref38
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref38
https://doi.org/10.1016/j.neucom.2014.12.123
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref40
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref40
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref40
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.3389/fpls.2020.00004
https://doi.org/10.1038/s41598-020-77824-2
https://doi.org/10.1038/s41598-020-77824-2
https://doi.org/10.3390/genes12030354
https://doi.org/10.3390/genes12030354
https://doi.org/10.1007/s00521-020-04792-z
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref46
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref46
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref46
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref47
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref47
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref47
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref48
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref48
http://refhub.elsevier.com/S2162-2531(21)00255-9/sref48
https://doi.org/10.1093/bfgp/elz018
https://doi.org/10.1093/bfgp/elz018
https://doi.org/10.2174/1574893614666191120142005
https://doi.org/10.1093/bioinformatics/bty908
https://doi.org/10.1093/bioinformatics/bty1043
https://doi.org/10.2174/1574893615666200120103948
https://doi.org/10.1016/j.omtn.2020.08.022
https://doi.org/10.1016/j.chemolab.2019.06.003
https://doi.org/10.1016/j.chemolab.2019.06.003
https://doi.org/10.1002/prot.25801
https://doi.org/10.1002/prot.25801
https://doi.org/10.3389/fgene.2020.00655
https://doi.org/10.1186/s12859-021-03993-0
https://doi.org/10.1016/j.jhydrol.2020.125130
https://doi.org/10.1016/j.jhydrol.2020.125130

	Staem5: A novel computational approachfor accurate prediction of m5C site
	Introduction
	Results
	Discussion
	Nucleotide preferences of the m5C site
	The effectiveness of parameter optimization
	Processing of building ensemble model
	Feature selection analysis
	Performance comparison with state-of-the-art methods

	Materials and methods
	Benchmark datasets
	Sequence encoding schemes
	Stacked ensemble learning framework
	Model evaluation
	Experimental environment

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


