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Abstract: Organ-on-a-chip (OoC) is an exponential technology with the potential to revolutionize
disease, toxicology research, and drug discovery. Recent advances in OoC could be utilized for
drug screening in disease models to evaluate the efficacy of new therapies and support new tools
for the understanding of disease mechanisms. Rigorous validation of this technology is required
to determine whether OoC models may represent human-relevant physiology and predict clinical
outcomes in target disease models. Achievements in the OoC field could reveal exciting new avenues
for drug development and discovery. This review attempts to highlight the benefits of OoC as per
our understanding of the cellular and molecular pathways in lung and kidney cancer models, and
discusses the challenges in evaluating drug efficacy.
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1. Introduction

Animal models have been widely used to study the effects of drugs on specific
diseases, but there are many differences between animals and humans. In the last decade,
in vitro models have been improved with physiological systems that better reflect the
mechanisms of specific human organs [1]. One of the main reasons for the high failure
rates in clinical trials is the lack of toxicity and efficacy data, occurring due to the inability
of existing preclinical models to recreate a biologically relevant human response. To build a
reliable and practical drug-testing platform, it is critical to develop a model system that can
reflect complex drug metabolism, real drug responses in a living system, and multiorgan
interactions. All of these factors are considered to play a crucial role in determining the
pharmacological effects of various drugs [2].

Recent advances in micro fabrication and tissue engineering have contributed to
the improvement of organs-on-chips (OoC) that recapitulate the role of human organs.
These “tissue chips” could be used for drug screening and safety testing to aid the drug
development process in the early stages. They can also be utilized to model disease states,
support new tools for the comprehension of disease mechanisms, and assess the efficacy of
new therapies and pathologies [3].

2. Conventional Preclinical Methods
2.1. Two-Dimensional Cell Cultures

During drug development, screening of the compound conduit is a key point in
diminishing the number of molecules to a smaller pool and subsequently generating
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lead compounds; screening typically involves high-throughput methods where toxicity is
evaluated in simple two-dimensional (2D) cellular models. For cancer research, in vitro
2D cultures have been regarded as the gold standard. However, recent research suggests
that 2D cell cultures do not represent the actual in vivo conditions, and there is a clear shift
to using three-dimensional (3D) cell cultures, with many extracellular matrices (ECMs)
being suggested for this purpose. Despite the fact that these matrices, mostly derived
from synthetic materials or extracted from animals, provide 3D structures, they still have
fundamental limitations in the tumor microenvironment, including the absence of major
factors present in humans [4].

2.2. Animal Studies

Cancer research using mouse models has gained popularity over the last few decades.
Commercialization of these murine systems and sophisticated genetic manipulation tech-
nologies have made it possible to produce mouse models to study human diseases. In
both the healthcare industry and academic research, there is a need for translatable cancer
studies in animal models. Such a bench-to-bedside transition will provide an economically
feasible and clinically effective long-term strategy for cancer treatment. However, the major
limitation in utilizing mouse models as a translational platform is the lack of human cancer
hallmarks, namely tumor genetic diversity and heterogeneity. Several patient-derived
xenograft (also known as mouse avatars) models of different cancers and their therapeutic
implications exist. Malaney et al. [5] reported two newly emerging concepts of coclinical
trials and personalized mouse models known as “Mouse Avatars.” The development of
mouse adjuvants involves the implantation of patient-derived tumor samples in mice for
successive use in drug efficacy studies. Genetically engineered mouse models in coclinical
trials are used in an ongoing human patient trial to guide therapy. Murine and patient
trials are performed simultaneously, and information attained from the murine system is
applied to the clinical management of the patient’s tumor. The trials allow for real-time
integration of murine and human tumor data concurrently. In conjunction with diverse
molecular profiling techniques, the coclinical trial and “Mouse Avatar” approaches have
the potential to revolutionize healthcare processes and drug development. While these ad-
vanced murine models have been useful in understanding oncogenesis, a limitation related
to the use of such inbred mouse models is the lack of heterogeneity found in human tumors.
Intelligent use of conditional systems, chimeric mice, and inducible systems has partially
offset this limitation; nevertheless, improvements regarding interpatient variability and
tumor heterogeneity in drug responses are yet to be addressed [6].

3. Organ-on-a-Chip (OoC): Its Basic Elements and Comparison with Other Models
3.1. Basic Elements of OoC
3.1.1. Cell Sourcing

The challenge of cell sourcing remains to be resolved in the OoC field. Currently, re-
searchers can populate platforms with primary tissues from donors, commercially available
immortalized cell lines, or induced pluripotent stem cells (iPSCs) (from either commercial
sources or donors). Primary tissues from donors are optimal for OoC seeding, particularly
for rare diseases. However, they may only be accessible in small amounts and are difficult
to acquire from small population sizes or from diseased populations. When using cell lines
with unknown donor demographics or primary cells from multiple individuals, increased
genetic heterogeneity is seen in the resulting tissues, enhancing the variability of the results
or producing confusing results [3].

The prospective source for most cells in OoC platforms are stem cells, specifically
iPSCs. Technological progress has enabled the generation of renewable cell sources for vari-
ous tissues. Tissue reprogramming using blood cells (to create iPSCs) or skin fibroblasts has
many advantages over the usage of primary cells and provides remarkable opportunities.
First, multiple tissue types, each with an isogenic background, can be generated from each
individual. Second, both genetic therapy and tissue conversion aid the study of monogenic
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or Mendelian diseases by gene editing techniques, which were previously not possible [7].
Advances in iPSC hold promise for the verification of other population-wide studies. For
instance, iPSC-derived fat and cardiac tissues were recently produced from entrants’ pe-
ripheral blood cells in the Framingham heart study cohort, and the genetic variant results
coincided with those from previous studies. This is the first study to functionally confirm
variants found in genome-wide association studies [8].

It is now widely known that the biomechanical environment used to culture stem
cells can crucially affect their phenotype [9] and that 3D cultures encourage higher yields
of differentiated stem cells and, in some cases, differentiation into more mature cell phe-
notypes [10–12]. One possible OoC application to advance the iPSC field was detailed
recently [13]; here, the precisely restrained microfluidic environment of tissue chips enabled
accurate exploration and control over the fluid environment surrounding differentiating
cells. Such technological advances can lead to considerable progress in the stem cell field
and could provide a solution for the OoC researchers’ need for renewable cell sources.

Differentiation protocols for iPS-derived cells largely differ between labs, and the
resulting cells are similar to fetal phenotypes. Standardizing particular cell types would
often be helpful; however, since this study field is comparatively young, it may take years
before robust protocols are available. Epigenetic memory, in which iPS cells maintain
certain characteristics of their primary phenotype, is also a factor that may influence
phenotypic responses to potential therapeutics [14,15]. The pharmaceutical industry has
started using neural iPSCs for lead optimization and validation, which, when used together
with animal models and cell cultures, can yield meaningful results [16]. Patient-derived
iPSCs in cancer research have been published, and tumor-derived iPSCs cross with other
cancer models in diverse ways. iPSC-derived differentiated cells can be utilized to derive
organoids, xenografts, immortalized cell lines, cocultures, and OoCs. Cocultures and OoCs
may also integrate other iPSC-derived cell types [17].

3.1.2. Blood Supply

Each tissue requires an appropriate supply of specific growth factors and nutrients;
therefore, a key challenge is establishing a universal cell culture medium for linked OoC
tissue systems or a “blood surrogate” [18]. For instance, circulating a 50:50 mixture of
kidney-specific and liver-specific media in a connected liver-kidney system allowed the
nephrotoxic metabolites of aristolochic acid to be evaluated [19]. Nevertheless, as the num-
ber of linked systems expands, the scaling solution success decreases, as every tissue ends
up without an optimal culture medium, affecting the system’s function and physiological
relevance. Approaches for linking systems may involve recirculating systems or creating a
single-pass culture medium that can be supplemented or modified over time [20,21]. In
addition, platforms engineered to enable tissue cultures in individual modules provide a
path toward a circulating “blood mimetic” medium by including endothelial or synthetic
barriers between the circulating medium and tissue modules [22–24]. Some scientists
have approached the universal medium problem by supplying tissues with appropriate
individual support mechanisms through surface chemistry alteration of the scaffold or
platform on which cells are cultured when circulating in a general serum-free medium to
institute fluidic flow to the system [25,26].

3.1.3. Elements of the ECM

The ECM is a key element in a tumor’s cellular environment and a prevalent structural
feature surrounding all eukaryotic cells. It also plays an essential role in tissue organiza-
tion and cell signaling [27]. Besides understanding its composition, engineering a tissue
also requires understanding the purpose of the scaffold or ECM and the functional cell
interplay [28]. OoCs may utilize decellularized scaffolds or seed cells within synthetic or
natural hydrogels to generate an environment suitable for cell growth. However, the 3D
arrangement and ECM composition affect morphology, polarity, and cell survival [29–31];
therefore, they must be cautiously chosen and engineered to enable the formation of suit-
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able tissue characteristics. The choice of ECM material must also be considered. Hydrogels
are a widely used material owing to their biocompatibility, cell adhesion support, and
resemblance to in vivo ECM and many soft tissues; however, they might be difficult to
engineer and have insufficient standardized engineering protocols. Modeling complexities,
even for comparatively simple tissues with few cell types, could be exponentially increased
when innate or adaptive immune responses, vascularization, and frequent large variation
in tissue sources between donors/suppliers/batches are involved. Recent advances in
bioengineering have allowed new possibilities for biosensor integration into systems via
ECM. For instance, incorporating fluorescent microgels, including peptides cleaved by
specific enzymes [32], offers the opportunity to use ECM for real-time reading of OoC assay
values. The ECM is a supporting network of macromolecules that provides biochemical
and structural support to surrounding cells, while also generating biochemical cues for
tissue growth and maintenance, and promoting cell adhesion and cell-cell communication.
The ECM in animal tissues is composed of fibrous elements such as collagen and elastin,
and tissue-specific and -linking proteins such as laminin and fibronectin [18].

3.1.4. Scaling of Organs

A wide range of designs are intended for a wide range of platform sizes, from cell
compartments resting on microscope slide-sized platforms of several hundred micrometers,
to multiorgan systems of several centimeters. The most common systems are the reca-
pitulation of downsized functional units of human organ systems, thousands or millions
times smaller than the actual organ, and the adoption of microfluidic technology to provide
fluid flow in accordance with the system to deliver nutrients and eliminate cellular waste,
either by pump or gravity [3]. The main challenge regarding the platform integration
is organ scaling between systems; in other words, organ systems need to manufacture
in vivo outputs that are physiologically relevant to the other organs. For instance, if the
liver module was five-fold “larger” than the kidney module, the linking system would not
supply appropriate metabolite readouts. Allometric scaling can be utilized to quantify the
relationship between diversely sized organs of diverse sizes. However, this type of “simple”
scaling is impractical when considering the size differentials and complexities between
human tissues and OoC [33]. Functional scaling may be a more appropriate strategy for
determining meaningful ratios of organ masses, since tissue function is considered when
designing the system (e.g., molecular filtration for kidney, gas exchange for lung). This
more straightforward approach allows conservation of organ-specific functions at proper
relative magnitudes, although relating platform results to in vitro−in vivo translation
(or “in vivo physiology”) is still important to consider when physically linking platform
systems [34].

3.2. Comparison with Other Advanced Cell Culture Techniques
3.2.1. Conventional Preclinical Methods

Poor correlation between clinical and preclinical trial results due to ineffective preclini-
cal models has resulted in the failure of many drug candidates to reach the market. Despite
the fact that drugs are approved for clinical use, they have been later recalled because of
severe kidney, liver, or cardiac toxicity [35]. Furthermore, inadequate side effect evaluation
of some prescription drugs has caused the hospitalization of many patients [36]. Current
preclinical research depending on animal models and 2D cell cultures must be improved to
diminish drug development costs and advance patient outcomes [37].

Tissue chips are devices designed to arrange cells in a 3D structure that imitates the
organ’s functions and responds physiologically upon exposure to drugs, cell signaling
molecules, hormones, and biomechanical stressors. Platforms vary in design, grow in
a structurally defined manner, and have cellular arrangements of numerous cell types.
However, it is difficult to apply these design features in two dimensions. Moreover, chips
are designed from materials that enable cells to be microscopically visible, allowing for
longer real-time monitoring and imaging of cell function and health. This longitudinal
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study method allows the modeling of the recovery and time course of drug responses as
well as the effects of periodic hormonal exposures over time. Furthermore, the system’s
fluid flow allows the outflow to be collected for biochemical or enzymatic assays. The
diversity of these platform designs can be utilized in novel and innovative ways to address
a wide range of biological questions [3].

3.2.2. Comparison with Organoid Models

An organoid is a three-dimensional construct consisting of multiple cell types and
it is able to simulate the functionality and architecture of native organs. Organoids are
effective for both in vivo and in vitro studies and represent one of the most recent model
innovations to epitomize the physiological processes of whole organisms [38]. Organoids
have many advantages compared to traditional two-dimensional cultures. They can
display near physiological behaviors and cellular composition. Many organoids can pass
through extensive cell culture expansions and sustain genome stability [39–42], making
them adequate for biobanking and high-throughput screening [43]. Compared to animal
models, organoids decrease experimental complexity and allow the study of disease
aspects and human development that are not easily or precisely modeled in animals. As a
bridge between animal models and conventional 2D cultures, organoids have multilateral
advantages that capture biological complexity and experimental manipulability [44–47].

Organoids can be generated from somatic cells, pluripotent stem cells, or adult stem
cells, including progenitor cells [46]. As organoid technology expands the biomedical
research potential, there is an emerging need for progressive engineering approaches for
analyzing organoids and their microenvironment, production, and control. OoC technol-
ogy has the potential to fulfill this need, as it can be used to investigate how organoids
may be affected and address the main technical challenges in organoid research. Emerg-
ing opportunities and future limitations for the application and development of OoC
technology are discussed. To overcome the limitations of stem cell research, researchers
using conventional culture techniques and developmental biology are teaming up with
physicists and engineers to develop unique in vitro technologies for organoid research. At
the foremost of this undertaking is organoid consolidation using OoC technology [48].

3.2.3. Comparison with 3D Bioprinting

Bioprinting offers the ability to create highly complicated 3D structures using living
cells. This cutting-edge technique has gained considerable popularity and applicability in
various fields. Bioprinting methods have been improved to rapidly and effectively pattern
living cells, biomaterials, and biological macromolecules. These technologies hold great
potential for applications in cancer research. Bioprinted cancer models show a significant
advancement over previous 2D models by imitating 3D complexity and allowing the
modeling of physiologically relevant cell-matrix and cell-cell interactions. Bioprinting
methods are based on inkjet, laser technologies, and micro extrusion. Bioprinted models
that simulate the tumor microenvironment offer a platform for better understanding of
cancer treatment, cancer pathology, and anticancer drug screening [49].

Most 3D printing techniques are unable to print truly “freeform” items without spatial
limitations on the object’s shape; this is due to the inability to deposit material in a region
with no direct connection to a previous item section. Extrusion and inkjet bioprinting share
numerous design limitations pertaining to 3D printing. Key limitations of these novel
tumor-engineering applications include optimization of fluid mechanisms for material
extrusion and material phase alteration after extrusion. Three-dimensional hydrogel
support bath and template casting are excellent techniques for constructing clear in vitro
3D vessel structures, but with limitations. The bulk hydrogel cast surrounding the sacrificial
material will be equal to the ECM material and cellular composition and therefore will
not recapitulate spatially heterogeneous native tissue. Existing techniques can only utilize
a few biomaterials and current 3D printing technologies are able to manufacture vessel
diameters on the base of 100 µm and thus cannot acquire capillary level resolution within
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10 µm. There are still limitations to the use of 3D printing for investigating metastasis.
Therefore, the development and optimization of biomaterials to improve their properties is
needed [50].

OoC engineering aims to generate artificial living organs that simulate the physiologi-
cal and complex responses of real organs to investigate drugs by precisely studying the
cells and their microenvironments. To accomplish this, artificial organs should be created
with various cell and ECM types and should recapitulate functions, cell differentiation, and
morphogenesis according to the native organ. An advantageous strategy is 3D printing,
which regulates the layer-by-layer cell assembly and spatial distribution, ECMs, and other
biomaterials. Owing to this unique feature, the incorporation of 3D printing into OoC
engineering will facilitate the modeling of tissue-specific functions, micro-organs with
heterogeneity. Furthermore, fully 3D-printed OoC more easily facilitate other mechani-
cal and electrical elements with chips and can be implemented via automated massive
production. The potential of 3D cell-printing technology and the recent advances in en-
gineering OoC suggest the prospects of these technologies to create highly useful and
reliable drug-screening platforms. Many leading companies work on the 3D printing of
chip devices or artificial tissues, but the 3D-printed OoC remains to be commercialized.
Progression in printing technologies will accelerate the practical use of these techniques in
drug development and the commercialization of tissue/organ models to overcome several
refractory diseases in humans [51].

4. Potential of OoC as a Drug Efficacy Evaluation in Lung and Kidney Cancer Models
4.1. OoC as Advanced Microfluidic Technologies of the Lung and Kidney Model

Researchers have assessed metabolism-dependent drug toxicity and efficacy on a
multilayer OoC. This in vitro model OoC represents different tissues simultaneously and
allows the characterization of the dynamic metabolism of anticancer drugs. It also provides
a simple method for evaluating drug bioactivity in various target tissues, suggesting
its usefulness in pharmacodynamic/pharmacokinetic studies, drug toxicity and efficacy
testing [52]. Caballero et al. [53] described how the tumor-vessel-on-a-chip technique can
be applied to study targeted drug delivery and the main factors required for the design of
these materials. Its role in driving forward the next generation and future applications of
this approach of targeted drug delivery systems will be discussed.

OoC technology can simulate the physiological and pathological microenvironments
of organs and tissues in vitro, thereby eliminating the use of animal models for predicting
drug efficacy and toxicity. Yang et al. [54] developed a lung-on-a-chip in 2018. The chip
is simple, effective, and easy to utilize, therefore it is expected to play a role in tissue
engineering and clinical treatments and have important applications for the personalized
treatment of lung tumors. The merging of multi-organ-on-a-chip (MOC) technology with
3D in vitro models has taken in vitro chemical evaluations to an exceptional level. By
connecting multiple organotypic models, MOC allows for the crosstalk between different
organs to be studied to estimate a compound’s efficacy and safety better than in single
cultures. The lung/liver-on-a-chip platforms provide new opportunities to identify efficacy
and safety or to investigate the inhaled aerosol toxicity of new drugs targeting the human
lung [55].

Kim et al. [56] reported a pharmacokinetic profile that reduces nephrotoxicity of gen-
tamicin in a perfused kidney-on-a-chip platform (Figure 1). Lee and Kim [57] reviewed
studies that involved the generation of experimental environments similar to the phys-
iological environments in human organs using kidney-on-a-chip models and obtained
experimental results that better manifest human physiology. Kidney-on-a-chip models can
be used to overcome the drawbacks of traditional animal models and to more effectively
identify drug efficacy, drug-induced nephrotoxicity, and interactions.
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were measured in untreated or AFB1-exposed NHBE ALI tissues either in monoculture (NHBE ALI, dynamic) or coculture
with HepaRG spheroids (NHBE ALI, coculture); right (c) nanofiber-membrane-assisted lung-on-a-chip system is used for
anticancer drug testing. Source: Lab Chip, 2018 [54].

4.2. OoC as a Disease Model for Drug Efficacy Evaluation

Once toxicity screens are complete, drugs are tested in animals and humans, but due
to insufficient efficacy data, some drugs do not produce the expected clinical effects [58].
Human volunteers may suffer potentially catastrophic and unexpected side effects, as-
suming efficacy data is not properly demonstrated before the first in-human trials [59].
Between 2005 and 2010, Cook et al. examined why some drug development programs at
AstraZeneca failed and found that insufficient efficacy data led to failure rates of 57%–88%
in phase II clinical trials [60].

OoC platforms can help decrease the failure rate in numerous ways. For instance,
they can help screen out detrimental compounds earlier, so fewer but more promising
compounds can reach human trials. In addition, tissue platforms represent a variety of
human organ systems that can be used to screen for drug efficacy before reaching clinical
trials, and mechanisms of action can be identified and modeled appropriately. Ethics is
another advantage of using OoC in early drug development, as it could considerably reduce
animal use in preclinical stages. Animal models are still needed because they represent
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whole organisms, but as integrated and individual organ microsystems become more easily
available, cheaper, and suitable for medium- to high-throughput screening, animal testing
rates in drug development may significantly decrease. By incorporating an oxygen sensor,
a microfluidic platform was used together with physiology-based pharmacokinetic (PBPK)
modeling to forecast the absorption, distribution, metabolism, and excretion (ADME)
of chemicals. This early system was useful for predicting effective drug dosages and
concentrations in human and animal studies. There will also be continued progress of
“body-on-a-chip” systems for multiorgan diseases; therefore, there is great potential for this
exciting and rapidly expanding field to provide insight for the pharmaceutical industry
and biomedical researchers regarding treatments for the most intractable and prevalent
disorders of our time [3].

In addition to helping to understand toxicity in human tissues, OoC also allows
the modeling of disease states, thereby allowing mechanistic observation of not only
drug efficacy but also disease pathology and potential therapeutic off-target effects. The
potentially enhanced comprehension of human disease physiology from disease models
on OoCs could help resolve the high attrition rates of prospective compounds in lead
optimization and clinical stages due to lack of efficacy [60].

4.3. Elements of the Drug Efficacy Evaluation in Lung and Kidney Cancer
4.3.1. Assays for Drug Efficacy Evaluation in OoC

Conventionally, the drug efficacy assessment for 3D cells is fulfilled by staining
techniques such as cell counting kit-8 (CCK-8), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl
tetrazolium bromide (MTT), or water-soluble tetrazolium salts-1 (WST-1) assay. These trials
only indicate whether the cells survived, but they are unable to monitor the cells during
real-time long-term recordings. In addition, once the cells are stained, they are not able
to be used for further treatments. The cell electrical impedance reflects the characteristics,
such as cell number, cell morphology, and cell attachment on electrodes in a continuous
and dynamic way [61,62], which has a wide range of applications, such as drug efficacy and
toxicity assessment [63,64]. Wu et al. [65] reported on the bionic 3D spheroids biosensor
chips for high-throughput and dynamic drug screening and assessed cell viability with
fluorescence microscopy using the Calcein-AM/propidium iodide (PI) Double Stain Kit
(Yeasen), where live cells were stained green by Calcein, and dead cells were stained red
by PI. Ki-67 immunostaining [66], cell counting [67] and 5-ethynyl-2-deoxyuridine (EdU)
labeling [68] are used for the proliferation assay. Gene expression can be evaluated by
real-time quantitative PCR [67] in OoC. Esch et al. [69] reported about OoC at the frontiers
of drug screening and reviewed many other assay-related complex biological processes in
this technology.

4.3.2. Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor
(Vegf) Related Molecules as Key Biomarkers of Lung and Kidney Cancer

The human epidermal growth factor receptor (EGFR) is a main regulator of organ
homeostasis, mediating adult cell proliferation and differentiation [70]. EGFR-targeted
antibody therapies are being increasingly applied in cancer therapy since EGFR-tyrosine
kinase activation is the main pathway mediating lung cancer progression [71,72]. EGFR-
targeted therapies such as the inhibition of specific tyrosine kinases, monoclonal antibody
use, or a combination of both are promising approaches [73,74]. Anti-EGFR antibodies
are known to influence EGFR-mediated signaling pathways, such as soluble EGFR and
its ligands EGF and tumor growth factor (TGF)-alpha by inducing apoptosis and growth
arrest, decreasing cell migration, increasing cell differentiation and attachment [75].

Renal cell carcinoma (RCC) is responsible for up to 85% of kidney cancers, and over
the past 12 years, RCC treatment has transitioned from a nonspecific immune treatment
to a novel immunotherapy, namely vascular endothelial growth factor (VEGF) targeted
therapy [76,77]. The inactivation of the von Hippel-Lindau (VHL) tumor suppressor
gene leads to increased activity of the hypoxia-induced factor (HIF) in the tumor cell
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and eventually to the overexpression of platelet-derived growth factor and VEGF [78,79].
HIF activity may also be enhanced by targeting of the mammalian rapamycin (mTOR)
pathway [80].

4.4. Comparison with Conventional Efficacy Testing Methods and Institutional Devices
4.4.1. Comparison with Animal Testing

The major assumption justifying animal testing is that animal models help predict
human responses in toxicology research and drug discovery [81]. Some animal study
failures can be due to a lack of standardized experimental conditions; however, the majority
occur due to the invalidity of this assumption [82]. Animal models have the advantage of
studying system-wide drug effects and multiorgan interactions. However, the inbreeding
of numerous laboratory animals restricts the genetic variability, and these models are not
representative of human population diversity. Laboratory animals are genetically similar;
therefore, it is often difficult to draw population-level conclusions on drug efficacy and
safety or disease mechanisms from these studies. In contrast, iPSCs can be derived from
various patient populations, creating data that are more representatively related to the
human population [83].

4.4.2. Comparison with Clinical Trials

Technological advances with induced pluripotent stem cells and OoC have the poten-
tial to overcome the challenges of drug development. OoC may do so by offering methods
for performing “clinical trials-on-chips” (CToCs) to observe the design and execution of
rare disease clinical studies, which otherwise would be impossible with other culture
systems. If applied properly, CToCs can considerably impact clinical trial design with
regard to anticipated key outcomes, risk and assessment of clinical benefit, safety and
tolerability profiles, value and efficiency, population stratification, and scalability. The OoC
models may play a pivotal role in streamlining the clinical trial process. The integration of
stem cell engineering and OoC technology can improve the development of personalized
models and predict patient-specific toxicity and efficacy. This could lead to more effective
clinical trials with remarkably reduced preclinical testing requirements. Such personalized
models may also be useful in individualized dosing regimens based on patient-specific
pharmacokinetics and exploring patient-specific biomarkers [84].

4.4.3. Institutional Devices as Alternatives to Animal Testing

The European Centre for the Validation of Alternative Methods advocated a formal
validation study on in vitro methods to predict skin corrosivity in 1996 and 1997. The
concurrences between the skin corrosivity classifications originating from the in vitro
data were high, and the test was able to discriminate between corrosive and noncorrosive
chemicals for every chemical type studied [85]. The development and validation of systemic
alternatives to animal testing is critical not only from an ethical perspective, but also to
improve safety decision-making with mechanistic information with higher relevance to
humans. In 2009, the International Cooperation on Alternative Test Methods was founded
by validation centers from Europe, the USA, Canada, and Japan. Korea joined in 2011 and,
together with Brazil and China, currently acts as an observer [86].

A multilaboratory validation study of the vitrigel-Eye Irritancy Test (EIT) method was
conducted to assess EIT as an alternative to in vivo eye irritation testing. After a thorough
data review for the method to be used for regulatory purposes, it was demonstrated that a
more defined applicability domain improved the false negative rate. Within this prudently
defined applicability domain, these results suggested that the vitrigel-EIT method could be
a valuable alternative for differentiating optic nonirritant test chemicals from irritants [87].

The National Center for Advanced Translational Science (NCATS) has been devel-
oping tissue-on-a-chip for drug screening programs since 2011, in collaboration with the
National Institutes of Health, the Defense Development, and the US Food and Drug Ad-
ministration [88]. The NCATS announced a plan to develop organ chips for efficacy testing
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and disease modeling that could support further discovery of human disease tissue chip
models emulating the pathology of major human organs and tissues in October 2016 [89].
Recently, Lee and Lee [90] analyzed the scientific and technological trends based on cutting-
edge models and reported that the biomimetic tissue chips are developed for utility as
nonanimal models for testing efficacy and safety at the nonclinical stages of drug discovery.

4.5. Potential of Drug Efficacy Testing in Tumor-on-a-Chip and Metastasis-on-a-Chip

Shirure et al. [91] reported that a tumor-on-a-chip platform to investigate drug sen-
sitivity and progression could provide avenues to improve our understanding of tumor
metastasis and a microfluidic platform that imitates biological mass transport close to the
arterial end of a capillary was included. A central feature was a dormant, perfused 3D
microvascular network generated before loading the patient-derived tumor organoids or
tumor cells in an adjacent compartment. Physiological delivery of drugs and/or nutrients
to the tumor occurs through the vascular network. Finally, by evaluating the changes
to chemo- and antiangiogenic therapies, the study group reported the platform’s poten-
tial to be used for personalized medicine and drug discovery. Precision medicine-based
cancer treatments can only be discovered if individual tumors are rapidly evaluated for
therapeutic sensitivity in a clinically appropriate timeframe (≤14 days). The platform
indicated that this is possible and provided convincing information for the advancement
of cancer precision medicine. Recently, Chramiec et al. [92] reported the integrated human
organ-on-a-chip model for predictive studies of antitumor drug efficacy and cardiac safety.

Metastasis is one of the most critical factors leading to poor cancer prognosis, and
effective suppression of primary cancer cell proliferation in a metastatic site is the most
efficacious method for preventing cancer progression. However, there is a shortage of
biomimetic 3D in vitro models that can closely mimic the continual growth of metastatic
tumor cells in an organ-specific ECM for evaluating effective therapeutic strategies. Accord-
ing to recent research, Wang et al. [93] reported a novel 3D metastasis-on-a-chip model that
imitates the progression of kidney cancer cells transferred to the liver to predict treatment
efficacy. This article demonstrated that a tumor progression model based on metastasis-
on-a-chip with organ-specific ECM would be a valuable tool for rapidly developing new
chemotherapeutic agents to estimate treatment regimens. Furthermore, the tumor progres-
sion model can be utilized to optimize dosage regimens, assess anticancer efficacy, and
establish 3D metastatic cancer models. Xu et al. [94] reported the acquired drug resistance
in lung cancer derived brain metastasis based on a multiorgan microfluidic model and
Oliver at al. [95] reported quantifying the brain metastasis tumor micro-environment using
an organ-on-a-chip 3D model, machine learning, and confocal tomography.

Lee et al. [96] reported a 3D microfluidic platform to recapitulate angiogenic sprouting
when coculture with diverse cancer cell types and tumor vascular mapping for evaluating
antiangiogenic nanomedicine in 2021. This model enables efficient and rapid evaluation
of antiangiogenic nanomedicine and provide a powerful platform for the discovery of
effective and safe nanomedicine for cancer therapy.

5. Conclusions

OoC are not common solutions, and other methods will still be preferred for modeling
certain in vivo processes. Despite the fact that OoC offer advanced biological modeling,
there are major limitations that they may never circumvent; thus, alternative tools may be
preferred. Despite their limitations, OoC have the potential to transform drug development
and discovery. Rigorous validation of this technology with not only animal data but also
clinical trial results is required to determine whether OoC models have predictive capability
and represent human-relevant physiology across clinical outcomes and various drug classes.
Achievements in the OoC field could reveal exciting new avenues for drug development
and discovery. Much remains to be done; thus, there are still many opportunities to
discover the tremendous possibilities that OoC technology has to offer.
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