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Early and long term antibody 
kinetics of asymptomatic and mild 
disease COVID‑19 patients
Shai Efrati1,2*, Merav Catalogna1, Ramzia Abu Hamed2,3, Amir Hadanny1, Adina Bar‑Chaim3, 
Patricia Benveniste‑Levkovitz3, Refael Strugo4 & Osnat Levtzion‑korach2,5

Most patients infected with SARS‑CoV‑2 are asymptomatic or mildly symptomatic. However, the 
early and late antibody kinetics, and the association between antibody levels, clinical symptoms, 
and disease phase in these patients have not yet been fully defined. Confirmed SARS‑CoV‑2 patients 
and their household contacts were evaluated over a period four months. The evaluation procedure 
included symptom monitoring, viral load and serology analysis every ten days. A total of 1334 serum 
samples were collected from 135 patients and analyzed using three assays for IgG‑N, IgG‑S and 
IgM antibodies. Of the study participants, 97% were seropositive during the study, and two distinct 
clusters were identified. These clusters were significantly different in their inflammatory related 
symptoms. Peak IgG‑S was 40.0 AU/ml for the non‑inflammatory cluster and 71.5 AU/ml for the 
inflammatory cluster (P = 0.006), whereas IgG‑N peaks were 4.3 and 5.87 (P = 0.023) respectively. 
Finally, a decision tree model was designed to predict the disease phase based on the serological titer 
levels, and had an overall accuracy of 80.7%. The specific profile of seroconversion and decay of serum 
antibodies can be used to predict the time‑course from the acute infection.

Following a SARS-CoV-2 infection, most patients develop detectable serum antibodies to the receptor-binding 
domain of the viral spike protein along with associated neutralizing  activities1–8. The magnitude of the antibody 
response may be associated with disease severity, and it has been reported that patients with mild infections may 
not develop detectable amounts of neutralizing  antibodies3,4,9. However, the exact nature of seroconversion with 
respect to patient risk factors and disease severity is still  controversial4,6,7,10,11.

Since data in the early stages of the disease were gathered mostly from hospitalized patients or relatively 
late, after the onset of the  infection2,12–14, there is a lack of knowledge about the early antibody kinetics in non-
hospitalized patients with asymptomatic and mildly symptomatic disease. Moreover, the data regarding IgG levels 
against the spike (S) and nucleocapsid (N) antigens are based on blood samples collected at non-consequent 
 timepoints2–8.

Recently, artificial intelligence (AI) was used in various aspects of the disease: public health and clinical 
decision making, fast detection, and rapid  diagnosis15–17. Specifically, AI models were designed to predict the 
prevalence of asymptomatic COVID-19  carriers18. However, only limited results are available regarding clas-
sification of asymptomatic carriers, and predicting the course of the disease based on antibody  kinetics19. The 
aim of the current study is therefore to evaluate early and late antibody kinetics in asymptomatic and mildly 
symptomatic cases, and to provide further insights into the association between antibody levels and disease phase 
in a longitudinal household study design.

Results
Cohort characteristics. Between May 2020, and January 2021, a total of 458 individuals 18 years old or 
older with a positive COVID-19 RT-PCR, were screened for eligibility. Of them, a total of 137 primary con-
firmed SARS-CoV-2 infection patients were enrolled in the study and signed an informed consent. An addi-
tional 77 household members consented to participate. Of the household cohort, 59/77 (76.6%) individuals were 
found negative for SARS-CoV-2 infection. Among the positive patients, 20 participants withdrew their consent 
to participate before study visit 6, and were excluded from the analysis. Seven patients were vaccinated after visit 
9, and their results after vaccination were excluded from the analysis. One hospitalized patient died after visit 8 
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due to COVID 19 related complications. Accordingly, 123/135 patients (91.1%) completed the study procedures 
(100 days). The study’s workflow is described in Supplementary Fig. 1.

Symptoms. Three groups were analyzed according to their symptom severity: 22 patients (16.3%) were 
asymptomatic (had no symptoms consistent with COVID-19), 96 patients (71.1%) were mildly symptomatic, 
and 17 patients (12.4%) were hospitalized during the study period with severe respiratory symptoms. Fifty-eight 
patients (43.9%) had no known medical risk factors for COVID-19. The median time between the onset of 
symptoms to the first blood sample was nine days (IQR, 7–12). Cohort baseline characteristics, demographics, 
high risk comorbidities, and COVID-19 symptoms data are provided in Table 1.

Clustering within the mild‑symptoms cohort. To explore possible associations between pre-condi-
tions, symptom combination and severity, and antibody kinetics among the outpatient mildly symptomatic 
COVID-19 patients, two sub-group clusters were identified using the unsupervised k-medoids clustering algo-
rithm. Figure 1 shows a t-SNE plot of the two clusters (n = 40 and 56 respectively). The resulting clusters and 
their medical parameters are listed in Supplementary Table 1. These clusters were significantly different in their 
inflammatory related symptoms: Cluster 2 (Inflammatory) was characterized by higher frequencies of fever, 
chills, fatigue, muscle and joint ache, and cough, while Cluster 1 was characterized by non-inflammatory related 
symptoms.

Kinetics of SARS‑CoV‑2 antibody responses. We analyzed the longitudinal antibody response to the 
SARS-CoV-2 infection in 1334 samples taken from the 1485 planned blood samples (adherence of 88.7% to 
study procedures). All samples were tested for IgG-S, IgG-N and IgM antibodies.

A dynamic trend of PCR positive and seropositivity in the study’s COVID-19 patients is shown in Fig. 2, 
and Supplementary Table 2 regarding the study groups. The full kinetics along the study’s follow-up periods is 
illustrated in fitted curves for IgM, IgG-S and IgG-N, plotted against the study visits in Fig. 3. Detailed result 
figures are presented in Supplementary Figs. 2–5.

Peak IgM levels were 3.1 [IQR, 1.1–6.5] and 4.5 [IQR, 1.9–12.4] (P = 0.498) in the non-inflammatory and 
inflammatory groups respectively. Peak IgG-S levels were 40.0 AU/ml [IQR, 26.0–66.5] and 71.5 AU/ml [IQR, 
31.5–111.0] (P = 0.006) and for IgG-N were 4.3 [IQR, 2.6–5.5] and 5.7 [IQR, 4.0–7.6] (P = 0.023) in the non-
inflammatory and inflammatory groups respectively. In the asymptomatic group, peak antibody concentrations 
were 2.6 [IQR, 1.0–7.9], 58.9 AU/ml [IQR, 39.6–98.5], and 4.8 [IQR, 2.8–6.5] for IgM, IgG-S and IgG-N respec-
tively. Interestingly, there was no significant difference between the asymptomatic and the mild symptomatic 
groups (Table 2).

As expected, in the mild-symptoms cohort, IgM was associated with earlier seroconversion, with 49.6% hav-
ing positive detectable levels at day 9 [IQR, 6–12]. Maximal peak concentrations were reached at day 18 [IQR, 
13–22], where 76% of the mild cohort had positive detectable IgM levels. Regarding IgG, more patients had 
positive detectable levels of IgG-N as compared to IgG-S at day 9 [IQR, 6.5–12], 38.5% vs. 23.4% respectively 
(P = 0.004). The peak antibody concentration of IgG-N was on day 30 [24–38] while the peak level of IgG-S was 
on day 47 [IQR, 34–76] (Table 2).

Antibody decay at visit 11 was calculated with respect to the peak seroconversion rate, as shown in Table 2. 
In the mild-symptoms cohort, IgM levels were reduced by 81.2% [IQR, 62.7–89.6%]. The decay of the IgG-N 
levels was more significant compared to the decay of the IgG-S levels 50.3% [IQR, 29.9–65.1%] vs 16.2% [IQR, 
4.5–32.4%] respectively (P < 0.0001). Regarding the mild-symptoms clusters, IgG-S was reduced by 16.2% [IQR, 
3.9–32.5%], and 16.2% [IQR, 7.3–32.3%] (P = 0.828), and IgG-N levels were reduced by 59.9% [IQR, 40.1–72.3%], 
and 44.8% [IQR, 27.9–61.9%] (P = 0.032) in in the non-inflammatory and inflammatory group clusters respec-
tively. Antibody decay levels at visit 11 in the asymptomatic group were 72.6% [53.6–83.2], 54.5% [29.2–68.8] 
and 23.0% [2.4–34.9] for IgM, IgG-N and IgG-S respectively. The decay was not significantly different from the 
mild-symptoms group.

We also followed 17 severely ill hospitalized patients as a reference. Among these patients, the peak anti-
body concentrations were significantly higher (P < 0.001) than the mildly ill patients. The peak IgM level was 
13.20 [IQR, 3.55–23.67], for IgG-S it was 179.0 (AU/ml) [IQR, 105.77–211.0], and for IgG-N it was 8.02 [IQR, 
6.96–8.93] (Table 2).

Four (3%) asymptomatic participants were PCR positive at screening, but seronegative during the entire 
surveillance period. Six (4.4%) symptomatic patients had IgG-S and IgG-N titers below the cutoff level. During 
the follow up period (median visit 10, [IQR, 5–10]), IgG-S titers decayed below the cutoff level in seven (5.2%) 
patients (of them, four patients from the non-inflammatory cluster).

Decision tree model’s performance. A total of 998 out of 1334 records were used for the DT dataset 
training. Records with a missing value, or outlier records, as detected according to the boxplot analysis, were 
eliminated. Figure 4A shows a scatterplot of the antibody results distribution, representing the relation between 
IgG-N, IgG-S and IgM antibodies detected in three disease phases: infection phase, inflammation phase and 
recovery phase. Supplementary Table  3 and Supplementary Fig.  6 (confusion matrix) present the statistical 
results of the model performance for validation of the DT model. The overall accuracy of the model was 80.7%, 
with 73.6% cases of the infection phase, 70.3% of the inflammatory phase, and 86.0% of the recovery phase being 
correctly classified. Figure 4B shows the model’s ROC curves. The ROC curve shows good to excellent perfor-
mance: AUC, 0.96, 0.88, 0.91 for the infection, inflammation and recovery phases respectively.
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Discussion
The clinical spectrum of patients infected with COVID 19 ranges from asymptomatic to critically ill, with the 
majority having mild symptoms that do not require  hospitalization20,21. This study highlights the importance of 
the dynamic course of SARS-CoV-2 in non-hospitalized patients. A rigorous testing process and a replicative 
laboratory method enabled us to examine the association between serological tests and clinical symptoms in 
asymptomatic and mildly symptomatic patients.

It was previously reported that some cases of asymptomatic and mildly symptomatic patients failed to 
mount neutralizing  antibodies1–4,9,10. However, this study and other  studies5,7,12,22 indicate that by using current 

Table 1.  Baseline characteristics. Data presented as n (%); continuous data, mean ± SD. † The body-mass index 
is the weight in kilograms divided by the square of the height in meters.

Asymptomatic Mild symptoms Severe symptoms

N 22 96 17

Age (Y) 41.86 ± 14.96 41.72 ± 13.89 54.00 ± 12.95

Males 16 (72.7) 43 (44.8) 8 (47.1)

Female 6 (27.3) 53 (55.2) 9 (52.9)

BMI (Kg/m2) 26.37 ± 4.31 26.71 ± 5.80 30.04 ± 5.03

Primary confirmed patients 19 (86.4) 86 (89.6) 17 (100.0)

Infected households 3 (13.6) 10 (10.4) 0 (0.0)

High risk conditions

BMI† > 30 2 (9.1) 13 (13.5) 6 (35.3)

Age > 60 Y 4 (18.2) 28 (29.2) 9 (52.9)

Cancer 1 (4.5) 4 (4.2) 1 (5.9)

Diabetes mellitus 2 (9.1) 7 (7.3) 3 (17.6)

Hypertension 1 (4.5) 5 (5.2) 3 (17.6)

Heart disease 2 (9.1) 3 (3.1) 2 (11.8)

Immune deficiency 0 (0.0) 5 (5.2) 0 (0.0)

Asthma 2 (9.1) 5 (5.2) 1 (5.9)

Other chronic lung diseases 0 (0.0) 0 (0.0) 2 (11.8)

Chronic liver disease 0 (0.0) 0 (0.0) 0 (0.0)

Chronic kidney disease 0 (0.0) 2 (2.1) 1 (5.9)

Hematologic disease\disorder 0 (0.0) 0 (0.0) 0 (0.0)

Chronic neurological impairment\disease 1 (4.5) 3 (3.1) 0 (0.0)

Organ or bone marrow recipient 2 (9.1) 4 (4.2) 2 (11.8)

Smoking 4 (18.2) 11 (11.5) 0 (0.0)

Symptoms

Fever ≥ 38 °C 0 (0.0) 46 (47.9) 12 (70.6)

Dry cough 0 (0.0) 57 (59.4) 11 (64.7)

Sore throat 0 (0.0) 33 (34.4) 3 (17.6)

Runny nose 0 (0.0) 33 (34.4) 4 (23.5)

Shortness of breath 0 (0.0) 20 (20.8) 10 (58.8)

Abdominal pain 0 (0.0) 20 (20.8) 4 (23.5)

Headache 0 (0.0) 58 (60.4) 8 (47.1)

Problem in smell sensation 0 (0.0) 41 (42.7) 10 (58.8)

Problem in taste sensation 0 (0.0) 22 (22.9) 7 (41.2)

Chills 0 (0.0) 26 (27.1) 3 (17.6)

Vomiting 0 (0.0) 16 (16.7) 2 (11.8)

Nausea 0 (0.0) 27 (28.1) 4 (23.5)

Diarrhea 0 (0.0) 18 (18.8) 4 (23.5)

Rash 0 (0.0) 9 (9.4) 1 (5.9)

Conjunctivitis 0 (0.0) 16 (16.7) 3 (17.6)

Muscle aches 0 (0.0) 47 (48.9) 6 (35.3)

Joint ache 0 (0.0) 27 (28.1) 4 (23.5)

Loss of appetite 0 (0.0) 30 (31.2) 6 (35.3)

Nose bleed 0 (0.0) 25 (26.0) 3 (17.6)

Fatigue 0 (0.0) 56 (58.3) 9 (52.9)

Days from onset of symptoms 0 (0.0) 8.99 ± 1.55 11.00 ± 1.88
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laboratory methods, the vast majority (> 95%) do developed detectable levels of IgM, IgG-S and IgG-N. Com-
pared to the asymptomatic and the mild symptomatic cohorts, severe respiratory symptomatic patients generated 
two–fivefold higher antibody titers.

We also identified subclasses within the outpatient mild cohort. Using an unsupervised clustering technique, 
two distinct clusters were identified based on their symptoms. Interestingly, there was a significant difference 
in IgG-S and IgG-N antibody concentrations between the clusters throughout the study period. These results 
suggest that systemic symptoms (i.e., fever, fatigue, pain, dry cough) are associated with higher antibody titers 
in mild symptomatic patients. Interestingly, the decay rate in antibody concentrations during the study period 
was similar in both clusters.

The minimal level of antibodies required for infection immunity has yet to be determined and will require 
additional long-term studies including re-infected patients. It should be noted that in addition to protective 
antibodies, immunity for recurrent infections includes SARS-CoV-2-specific memory lymphocytes with potent 
antiviral functions. Memory T-cells proliferate and secrete antiviral cytokines upon antigen reencounter, whereas 
memory B-cells participate in the adaptive immune response, followed by differentiation into plasma cells and 
the production of virus neutralizing  antibodies8,23. In a study on 15 mildly symptomatic patients, it was dem-
onstrated that in addition to neutralizing antibodies, neutralizing plasma, memory B and memory T cells also 
persist and may even increase over a period of 3  months8. In another study, which included 21 randomly selected 

Figure 1.  Mild symptoms cohort (n = 96) classification results: t-stochastic neighbor embedding (t-SNE) plot 
based on HAMMIG distance metrics in data transformation binary results. T1 and T2 are t-SNE results after 
dimension reduction of the 38 input parameters into 2D visualization. Cluster 1 (green, N = 40) represents 
patients suffered from non-inflammatory related symptoms, and Cluster 2 (red, N = 56) represents patients 
suffered from inflammatory related symptoms.

Figure 2.  Dynamic trend of PCR positive, and seropositivity in study COVID19 patients (N = 135). Of note, the 
median time between the onset of symptoms to the first visit was 9 days (IQR, 7–12).
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Figure 3.  Longitudinal profile of SARS-CoV-2 antibodies in asymptomatic and mild COVID19 patients. (A) 
IgM vs. IgG-S, (B) IgG-S vs. IgG-N antibodies. Data are fitted by a quadratic polynomial regression model, and 
presented for asymptomatic patients (N = 22, blue), the mild cohort (N = 96, black) and for non-inflammatory 
cluster (N = 40), and the inflammatory cluster (N = 56). For full details, see also Supplementary Figs. 2–4. AS 
asymptomatic, I mild inflammatory related symptoms, N-I mild non-inflammatory related symptoms, MILD all 
mild symptoms.

Table 2.  Clinical characteristics, and titer levels of COVID-19 patients with different immune response 
phenotypes. *P-Value1- Asymptomatic vs. Mild symptomatic; P-Value2- Mild symptomatic vs. Severe 
symptoms; P-Value3- Non-inflammatory (CLUSTER 1) vs. Inflammatory (CLUSTER 2). Data are presented as 
median [IQR], and mean ± SD.

Asymptomatic
Mild 
symptoms P-Value1

Severe 
symptoms P-Value2

Non-
inflammatory Inflammatory P-Value3

N 22 96 17 40 56

IGG-S

Peak concen-
tration (AU/
ml)

58.9 [39.6–
98.5]

50.8 
[28.4–93.8] 0.746

185.0 [105.8–
220.8]  < 0.001

40.0 [26.0–
66.5]

71.5 [31.5–
111.0] 0.006

65.3 ± 44.1 68.1 ± 55.8 174.1 ± 98.3 49.8 ± 35.1 81.3 ± 63.9

Concentration 
at V11 (AU/
ml)

49.3 [36.1–
58.5]

39.3 
[23.1–82.0] 0.621

148.0 
[54.6–199.0]  < 0.001

28.5 [18.0–
52.1]

47.9 [30.0–
106.0] 0.004

50.1 ± 29.7 57.9 ± 54.3 136 ± 86.4 38.4 ± 27.7 72.6 ± 64.3

Time to peak 
(days)

48.0 [30–81] 47.0 
[34.5–76.5] 0.599

56.0 [32–71]
0.878

40.0 [30.0–
86.0]

49.0 [37.5–
74.0] 0.907

50.8 ± 36.8 55.8 ± 28.8 55.2 ± 25.2 55.4 ± 32.5 56.1 ± 26.2

IGG-N

Peak concen-
tration (AU)

4.8 [2.8–6.5] 5.0 [3.4–7.2]
0.292

8.0 [7.0–8.9]
 < 0.001

4.3 [2.6–5.5] 5.7 [4.0–7.6]
0.023

4.4 ± 2.8 5.1 ± 2.6 7.9 ± 1.5 4.4 ± 2.7 5.6 ± 2.5

Concentration 
at V11 (AU)

1.9 [0.6–4.0] 2.4 [1.1–4.0]
0.548

4.9 [3.6–7.5]
0.003

1.6 [0.7–2.7] 3.0 [1.4–5.2]
0.028

2.6 ± 2.3 3.0 ± 2.5 5.3 ± 2.4 2.3 ± 2.3 3.5 ± 2.0

Time to peak 
(days)

28.5 [0–35] 30.0 
[24.5–38.5] 0.046

25.0 [20–36]
0.497

30.0 [21.0–
37.0]

30.0 [26.0–
39.0] 0.603

24 ± 16.9 34.8 ± 19.3 34.6 ± 26.7 33.6 ± 19.2 35.7 ± 19.5

IGG-M

Peak concen-
tration (AU/
ml)

2.6 [1.0–7.9] 3.6 [1.7–8.2]
0.430

13.2 [3.5–23.7]  < 0.001 3.1 [1.1–6.5] 4.5 [1.9–12.4]
0.498

4.6 ± 10.6 5.0 ± 13.8 22.6 ± 31 5.3 ± 16.7 7.5 ± 9.7

Concentration 
at V11 (AU/
ml)

1.0 [0.4–2.0] 0.6 [0.4–1.3]
0.104

1.1 [0.4–5.1] 0.009 0.6 [0.3–0.9] 0.7 [0.4–1.8]
0.179

3.4 ± 7.2 1.3 ± 1.7 3 ± 4 1.0 ± 1.2 1.5 ± 1.2

Time to peak 
(days)

16.0 [0–22] 18.5 
[13.0–22.0] 0.833

19.0 [12–26] 0.801 16.0 [11.0–
20.0]

19.5 [14.0–
23.5] 0.270

20.8 ± 25.8 22.1 ± 20.7 19.9 ± 10.6 19.4 ± 20.2 19.8 ± 10.4
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patients, memory B cells persisted for 6.2 months after the acute  infection23. Unfortunately, neither memory T 
nor memory B-cells can be evaluated at standard laboratories. Therefore, daily clinical practices will have to rely 
on IgG antibody measurements as evaluated in this study.

Previous studies conducted in moderate and severe hospitalized patients have examined the relationship 
between IgM, IgG-S and IgG-N responses at the early stage of the disease. Seroconversion for anti-N occurs 
significantly faster than for anti-S in COVID-19 patients, which was also demonstrated in our study. The combi-
nation of the two may improve the early serological detection  rate24,25. In this study, we examined the dynamics 
between these antibodies for a longer period. The additional information we provide regarding the different kinet-
ics over time may help predict the time of disease onset and identify post-infected subjects based on a serological 
blood test. The ability to predict the phase of the disease mainly in asymptomatic patients and patients that suffer 
from symptoms that are not clearly associated with COVID-19 could be highly important for epidemiological 
studies and decision making during the SARS-COV-19 pandemic.

The study has several limitations. Even though the study has a relatively medium size dataset, rigorous testing 
has enabled us to develop accurate predictors, and to demonstrate a full antibody kinetics evaluation. Approach-
ing mildly symptomatic outpatients raised a technical challenge related to contacting quarantined patients by 
protected medical staff at the patients’ houses. Nevertheless, the adherence rate in our study was high (88.7%). 
Another limitation of this study is the limited number of asymptomatic patients. Even though households of 
patients were sampled, it is very challenging to identify a significant cohort of fully asymptomatic infected indi-
viduals. Larger asymptomatic cohorts may delineate significant changes in antibody kinetics compared to mild 
symptomatic patients. In addition, longer term changes of over one year in antibody kinetics are needed and 
will be evaluated in a follow-up study of this cohort.

In conclusion, this study, for the first time, marks the early and long-term antibody kinetics of asymptomatic 
and mildly symptomatic cases, representing the majority of patients infected with SARS-CoV-19. This study sup-
ports the relationship between disease severity and antibody titer levels also when mild symptoms are presented. 
The specific profile of seroconversion and the decay of IgG-N, IgG-S and IgM antibodies enables us to predict 
the time course from the acute infection.

Methods
Patients and recruitment procedure. Patients 18 years or older with a positive COVID-19 infection 
result which was performed in the Shamir Medical Center laboratory, were offered study enrollment, irrespec-
tive of clinical signs and symptoms. Patients were excluded if pregnant, or unable to sign an informed consent. 
To evaluate patients for eligibility and consent, patients were contacted by telephone. Upon consent, a medical 
staff representative arrived at the patient’s house for a full explanation and obtained their informed consent in 
addition to anyone else in the household over 18 years old.

Study design. This study was a prospective clinical trial performed on laboratory confirmed SARS-CoV-2 
infected patients and their household contacts. The evaluation procedure included symptom monitoring, viral 

Figure 4.  Distribution of antibody results. (A) 3D scatterplots representing the relation between IgG-N, 
IgG-S and IgM antibodies detected in three phases of the disease: Infection phase, inflammation phase and 
recovery phase. Values are expressed in antibody level/cutoff. (B) ROC curves for the classification tree model: 
Applied on the infection phase, inflammation phase and recovery phase data. The x-axis represents the fraction 
of negative examples classified as positives. The y-axis shows the fraction of positive examples classified as 
positives. The probabilities for class prediction were estimated by leave-one-out cross validations.
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respiratory load and serological analysis. Sequential symptom information, and specimens were collected from 
primary cases and from their household contacts every 10 days (± 2 days) for a period of four months. The study 
was approved by Shamir Medical Center’s institutional review board (IRB) (No. 105-20) and all participants 
signed an informed consent prior to their inclusion. All research was performed according to the relevant guide-
lines and regulations. This study was registered with ClinicalTrials.gov, number NCT04348422.

Patient data and symptom monitoring. Epidemiologic, demographic, pre-existing conditions, contact 
and exposure history data were collected by interview. In addition, during the study, each participant was asked 
to complete a symptom questionnaire which covers the symptoms every 10 days, and any changes in quarantine 
and exposure status (questionnaires were provided in the study protocol).

SARS‑CoV‑2 serology. Whole blood samples were collected into EDTA and gel tubes using a standard 
technique at the patient’s house or in the hospital every 10 days by protected medical staff. Blood samples were 
kept at 2–8 °C degrees and transferred to Shamir Medical Center laboratory within two hours. COVID-19 sero-
logical tests were performed using the following commercially available, FDA approved, automated immunoas-
says:

Abbott architect instrument SARS-CoV-2 IgG (H07891R03, Abbott, Illinois, USA). A chemiluminescent micro-
particle immunoassay (CMIA), for quantitative detection of IgG in human serum or plasma, against the SARS-
CoV-2 nucleoprotein. The assay uses a double-antigen sandwich immunoassay design employing microparticle-
bound antigen and acridinium-labeled human anti-IgG. The recommended manufacturer’s index cutoff value 
is 1.40.

Liaison SARS-CoV-2 S1/S2 IgG (311450, DiaSorin, Saluggia, Italy). A chemiluminescent immunoassay (CLIA) 
for quantitative determination of anti-S1 and anti-S2 specific IgG antibodies using magnetic beads coated with 
S1 and S2 antigens. The analyzer automatically calculates SARS-CoV-2 S1/S2 IgG antibody concentrations 
expressed as arbitrary units (AU/ml), with a positive cutoff level of 15.0 AU/ml.

Liaison SARS-CoV-2 IgM (311470, Diasorin, Saluggia, Italy). A chemiluminescence immunoassay (CLIA) for 
the qualitative determination of specific IgM antibodies to SARS-CoV-2 in human serum samples with a posi-
tive cutoff level of 1.1 AU/ml.

Compared with ELISA, the Abbott IgG assay was reported to have a sensitivity and specificity of 92.7% and 
99.9% respectively. The Liaison IgG assay sensitivity was reported as 96.2% and the specificity as 98.9%26,27.

PCR test for viral detection. Real-time quantitative reverse transcriptase polymerase chain reactions 
(qRT-PCRs) were performed using the TaqPath Covid-19 RT-PCR Kit (A48067; ThermoFisher Scientific, 
Massachusetts, USA), a fast, highly sensitive, multiplex and robust RT-qPCR assay for the detection of SARS-
CoV-228. Nucleic acids were isolated according to manufacturer’s instructions. Briefly, 200  μl viral transport 
medium (VTM) was taken from the patient swab sample inside a class 2 safety cabinet and mixed with 150 μl 
lysis buffer, 1 μl carrier RNA, and extraction controls (MS2, was provided as part of the kit). After incubation 
at room temperature for at least 15 min, samples were processed using the liquid handler Biomek i7 automated 
workstation (Beckman, Coulter) for RNA isolation. Primers and probes to target the SARS-CoV-2 E, N (N1 and 
N2 targets), and S genes, were included in the kit. A positive result for SARS-CoV-2 detection was determined by 
amplification of at least two of the three genes targeted, using a cutoff threshold cycle (CT) value of 37.

Statistical methods. Descriptive statistics: Continuous data are expressed as means ± standard-deviations 
(SD), and as median and interquartile range (IQR). Independent t-tests with two-tail distribution were per-
formed to compare variables between groups, when a normality assumption held according to a Kolmogo-
rov–Smirnov test. Categorical data are expressed in numbers and percentages. A value of p < 0.05 is considered 
significant.

Longitudinal serological data were fitted by a quadratic polynomial regression model and analyzed at a 95% 
confidence level (p < 0.05). The model parameter estimates were iteratively determined using the Levenberg–Mar-
quadt optimization method. Boxplot analysis was used to present data distribution, and to detect outliers.

Clustering model: To explore possible associations between preconditions, symptom combination and sever-
ity, and the response of the mild cohort’s immune system, an unsupervised k-medoids clustering algorithm 
was used. The input data binary matrix S(i,j) represents the patient’s j vector of parameters i = 1: 38 (training 
parameters are listed in Supplementary Table 1). Distances between the two vectors were computed using the 
Hamming distance function, and the data was partitioned into two clusters (medoids), due to the relatively small 
sample  size29. The clusters were then visualized using the t-stochastic neighbor embedding (t-SNE) plot based 
on Hamming distance metrics in data transformation binary  results30.

Prediction model: A decision tree (DT) model was used to predict the phase of the disease based on the 
relationship between antibody titers. A decision tree is a nonparametric supervised learning method used for 
classification and prediction. In this study, a classification tree type was used, which employs the CART algo-
rithm for binary classification and the Gini diversity index split criterion for  optimization31. The input training 
vectors V(i,j) are the [antibody(i) concentration/ cut-off level(i)] of the sample i, where i = 1: 3 assays, and j = 1: 
number of samples. Each vector was labeled with one of the three phases of the disease: infection phase (visit 1), 
inflammation phase (visits 2–4) and recovery phase (visits 5–11)32, as shown in Fig. 4A. To train and estimate 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13780  | https://doi.org/10.1038/s41598-021-93175-y

www.nature.com/scientificreports/

the predictive performance of the model, a leave-one-out cross-validation (LOOCV) approach was used. In 
this strategy, the training and testing procedure is done N times, where N is the number of observations. Each 
observation is considered as the validation set, and the other (N-1) observations are used for training the model. 
This method was chosen due to its robustness and low bias in small sample size  models33. A confusion matrix 
and area under the ROC curve were used to assess the model’s performance.

Data were statistically analyzed using the Matlab Statistics, Machine Learning, and Curve Fitting Toolbox, 
R2020b (Mathworks, Natick, MA).
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