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Similar to specific natural language instructions, intention-related natural language

queries also play an essential role in our daily life communication. Inspired by the

psychology term “affordance” and its applications in Human-Robot interaction, we

propose an object affordance-based natural language visual grounding architecture

to ground intention-related natural language queries. Formally, we first present an

attention-based multi-visual features fusion network to detect object affordances from

RGB images. While fusing deep visual features extracted from a pre-trained CNN

model with deep texture features encoded by a deep texture encoding network, the

presented object affordance detection network takes into account the interaction of the

multi-visual features, and reserves the complementary nature of the different features

by integrating attention weights learned from sparse representations of the multi-visual

features. We train and validate the attention-based object affordance recognition network

on a self-built dataset in which a large number of images originate from MSCOCO and

ImageNet. Moreover, we introduce an intention semantic extraction module to extract

intention semantics from intention-related natural language queries. Finally, we ground

intention-related natural language queries by integrating the detected object affordances

with the extracted intention semantics. We conduct extensive experiments to validate the

performance of the object affordance detection network and the intention-related natural

language queries grounding architecture.

Keywords: intention-related natural language grounding, object affordance detection, intention semantic

extraction, multi-visual features, attention-based dynamic fusion

1. INTRODUCTION

Human beings live in a multi-modal environment, where natural language and vision are the
dominant channels for communication and perception. Naturally, we would like to develop
intelligent agents with the ability to communicate and perceive their working scenarios as humans
do. Natural language processing, computer vision, and the interplay between them are involved in
the tasks for grounding natural language queries in working scenarios.
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We often refer to objects in the environment when we have
a pragmatic interaction with others, and we have the ability
to comprehend specific and intention-related natural language
queries in a wide range of practical applications. For instance, we
can locate the target object “remote controller” according to the
given specific natural language instruction “give me the remote
controller next to the TV,” and we also can infer the intended
“drinkware” from the intention-related query “I am thirsty, I
want to drink some water.”

Cognitive psychologist Don Norman discussed affordance
from the design perspective so that the function of objects could
be easily perceived. He argued that affordance refers to the
fundamental properties of an object and determines how the
object could possibly be used (Norman, 1988). According to
Norman’s viewpoint, drinks afford drinking, foods afford eating,
and readings, such as text documents are for reading.

When new objects come into our sight in our daily life, we
can infer their function according to multiple visual properties,
such as shape, size, color, texture, and material. The capacity to
infer functional aspects of objects or object affordance is crucial
for us to describe and categorize objects more easily. Moreover,
affordance is widely used in different tasks to boost their model’s
performance, such as Celikkanat et al. (2015) demonstrate
affordance can improve the quality of natural human-robot
interaction (HRI), Yu et al. (2015) integrate affordance to
improve human intentions understanding in different time
period, Thermos et al. (2017) fuse visual features and affordance
to improve robustness for sensorimotor object recognition, Mi
et al. (2019) utilize affordance to prompt a robot to understand
human spoken instructions.

Following Norman’s standpoint, we generalize 10 affordances
[calling, drinking(I), drinking(II), eating(I), eating(II), playing,
reading, writing, cleaning, and cooking] for objects that are
commonly used in indoor environments. Although drinkware
and drinks can be used for drinking, drinkware affords different
function to drinks, i.e., the affordance of drinkware is different
from drinks. The same situation also exists between foods and
eating utensils. Therefore, we utilize drinking(I) for denoting
the affordance of drinkware, drinking(II) for drinks, eating(I) for
eating utensils, and eating(II) for foods, respectively.

Moreover, multiple features can improve model
performance to recognize objects. The texture features can
be Supplementary Information for the visual representation
of partially occluded objects. And according to Song et al.
(2015), the local texture features can enhance the object grasping
estimation performance. Motivated by the complementary
nature of the multiple features, we adopt multi-visual features,
the deep visual features extracted from a pretrained CNN and
the deep texture features encoded by a deep texture encoding
network, to learn object affordances. The primary issue of fusing
multi-visual features is that the fusion scheme should preserve
the complementary nature of the features. Fusing different
features through naive concatenation may fail to learn the
relevance of multi-features, bring about redundancies and may
lead to overfitting during the training period. Consequently,
in order to reserve the complementary nature of multi-visual
features in the process of affordance learning, we take advantage

of the interaction information between the multi-visual features,
and integrate an attention network with the interaction
information to fuse the multi-visual features.

Besides, inspired by the role of affordance and its applications
in HRI and in order to enable robots to understand intention-
related natural language instructions, we attempt to ground
intention-related natural language queries via object affordance.
In this work, we decompose the intention-related natural
language grounding into three subtasks: (1) detect affordance of
objects in working scenarios; (2) extract intention semantics from
intention-related natural language queries; (3) ground target
objects by integrating the detected affordances with the extracted
intention semantics. In other words, we ground intention-related
natural language queries via object affordance detection and
intention semantic extraction.

In summary, we propose an intention-related natural
language grounding architecture which is composed of an object
affordance detection network, an intention semantic extraction
module, and a target object grounding module. Moreover, we
conduct extensive experiments to validate the performance
of the introduced object affordance detection network and
the intention-related natural language grounding architecture.
We also implement target object grounding and grasping
experiments on a robotic platform to evaluate the introduced
intention-related natural language grounding architecture.

2. RELATED WORK

2.1. Natural Language Grounding
Natural language grounding requires a comprehensive
understanding of natural language expressions and images,
and aims to locate the most related objects within images.
Multiple approaches are proposed to address natural language
grounding. Yu et al. (2016) introduce referring expression
grounding which grounds referring expressions within given
images via joint learning the region visual feature and the
semantics embedded in referring expressions. Chen et al. (2017)
present phrase grounding which aims to locate referred targets
by corresponding phrases in natural language queries. These
approaches need large datasets to train models to achieve natural
language grounding.

Natural language grounding also attracts great interest in
robotics. Thomason et al. (2017) apply opportunistic active
learning to ground natural language in the home and office
environment, and the presented model needs to ask human
users “inquisitive” questions to locate target objects. Shridhar and
Hsu (2018) employ expressions generated by a captioning model
(Johnson et al., 2016), gestures, and a dialog system to ground
targets. Ahn et al. (2018) utilize position maps generated by the
hourglass network (Newell et al., 2016) and a question generation
module to infer referred objects. Thomason et al. (2019) translate
spoken language instructions into robot action commands and
uses clarification conversations with human users to ground
targets. However, conversation and dialog systems make HRI
time-consuming and cumbersome.

Other work presents non-dialog methods to ground natural
language queries. Bastianelli et al. (2016) utilize features extracted
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from semantic maps and spatial relationships between objects
within the working environment to locate the targets for spoken
language-based HRI. Alomari et al. (2017) locate target objects by
learning to extract concepts of objects and building the mapping
between the concepts and natural language commands. Paul
et al. (2018) parse hierarchical abstract and concrete factors
from natural language commands and adopts an approximate
inference procedure to ground targets within working scenarios.
Roesler et al. (2019) employ cross-situational learning to
ground unknown synonymous objects and actions, and the
introduced method utilizes different word representations to
identify synonymous words and grounds targets according to the
geometric characteristics of targets. These methods are proposed
to ground natural language commands which embed specific
target objects.

Different from the above mentioned approaches, we attempt
to address intention-related natural language queries grounding
without dialogs between human users and other auxiliary
information. To this end, we draw support from object affordance
to ground intention-related natural language instructions.

2.2. Object Affordance
Existing work utilizes multiple approaches to infer object
affordances. Sun et al. (2014) predict object affordances
through human demonstration, Kim and Sukhatme (2014)
deduce affordance through extracted geometric features from
point cloud segments, Zhu et al. (2014) reason affordance
through querying the visual attributes, physical attributes, and
categorical characteristics of objects in a pre-built knowledge
base. Myers et al. (2015) perceive affordance from local shape and
geometry primitives of objects. These methods adopted visual
characteristics or geometric features to infer object affordances,
so the scalability and flexibility of these approaches are limited.

Several recently published methods adopted deep learning-
based approaches to detect object affordance. Dehban et al.
(2016) propose a denoising auto-encoder to actively learn
the affordances of objects and tools through observing the
consequences of actions performed on objects and tools. Roy
and Todorovic (2016) use a multi-scale CNN to extract mid-
level visual features and combines them to segment affordances
from RGB images. Unlike (Roy and Todorovic, 2016), Sawatzky
et al. (2017) regard affordance perception as semantic image
segmentation and adopts a deep CNN based architecture to
segment affordances from weakly labeled images. Nguyen et al.
(2016) extract deep features from a CNN model and apply an
encoder-decoder architecture to detect affordances for object
parts. Mi et al. (2019) utilize deep features extracted from
different convolutional layers of pretrained CNN model to
recognize object affordances, Nguyen et al. (2017) apply an object
detector, CNN and dense conditional random fields to detect
object affordance from RGB images.

The aforementioned work utilized geometric features or
deep features extracted from a pretrained CNN to infer object
affordance, and did not take into consideration that the features
from another source can be applied to improve affordance
recognition accuracy. Rendle (2010) propose Factorization
Machines (FM), which can model interactions between different

features via factorized parameters and has the capability to
assess the interactions from sparse data. And (Bahdanau
et al., 2015) initially present attention mechanisms to acquire
different weights for different parts of input features, and can
automatically search the most relevant parts to acquire better
results from source features.

Inspired by Rendle (2010) and Bahdanau et al. (2015), we
propose an attention-based architecture to fuse deep visual
features with deep texture features through an attention network.
The introduced fusion architecture takes sparse representations
of the multi-visual features as input and achieves attention-based
dynamic fusion for learning object affordances.

3. ARCHITECTURE OVERVIEW

Similar to specific natural language instructions, intention-
related natural language queries are also a crucial component
in our daily communication. Given an intention-related natural
language command, such as “I am hungry, I want to eat
something,” and a working scenario which is composed of
multiple household objects, the objective of intention-related
natural language grounding is to locate the most related object
“food” within the working scenario.

In order to ground intention-related natural language queries,
we propose an architecture as shown in Figure 1. In this work,
we formulate the proposed intention-related natural language
grounding architecture into three sub-modules: (1) an object
affordance detection network detects object affordance from
RGB images; (2) an intention semantic extraction module
extracts semantic word from intention-related natural language
instructions; (3) a target object grounding module locates
intended target objects by integrating the detected object
affordances with the extracted intention semantic words.

We illustrate the details of the object affordance detection
in section 4, we introduce the intention semantic extraction in
section 5, and we describe the target object grounding module
in section 6. Moreover, we give the details of the experiments
conducted to validate the performance of the object affordance
detection network and the intention-related natural language
grounding architecture, and outline the acquired results in
section 7.

4. OBJECT AFFORDANCE DETECTION

Following Norman’s viewpoint, we generalize ten affordances for
ordinary household objects, and we present an attention-based
multi-visual features fusion architecture, which can be trained
end-to-end, to learn the affordances. Figure 2 illustrates the
details of the proposed multi-visual features fusion architecture.
The presented architecture is composed of a Region of Interest
(RoI) detection network (RetinaNet), a deep features extraction
module, an attention network, an attention-based dynamic
fusion module, and an MLP (Multi-Layer Perceptron). We adopt
two different deep networks to extract multi-visual features, the
attention network is employed to generate dynamic attention
weights through the sparse representations of the extracted
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FIGURE 1 | Architecture of the intention-related natural language grounding via object affordance detection and intention semantic extraction. The object affordance

detection network detects object affordance from RGB images. The intention semantic extraction module calculates the different weights of each word in given natural

language queries and extracts the intention semantic word. The grounding module locates target objects by combining the outputs of the object affordance detection

network and the intention semantic extraction module.

features, while the dynamic fusion module fuses the multi-
visual features by integrating them with the generated attention
weights, and the MLP is applied to learn the object affordances.
In this section, we introduce the details of each component of the
proposed architecture.

4.1. Deep Features Extraction
4.1.1. Deep Visual Feature Extraction
RetinaNet (Lin et al., 2020) acquires better detection accuracy on
MSCOCO (Lin et al., 2014) than the all state-of-the-art two-stage
detectors. Considering the performance of RetinaNet, we adopt
RetinaNet to generate RoIs from raw images. The deep visual
feature fv is extracted by a pretrained CNN for each RoI IR:

fv = CNN(IR) (1)

where fv ∈ R
m×n×dv , m×n denotes the size of the extracted deep

features, dv is the output dimension of the CNN layer. In order
to improve learning dynamics and reducing training time, we use
L2 normalization to process the extracted deep visual features.

4.1.2. Deep Texture Feature Extraction
Multiple presented texture recognition networks can be used
to encode texture features, e.g., Cimpoi et al. (2015) generates
texture features through Fisher Vector pooling of a pretrained
CNN filter bank, Zhang et al. (2017) proposes a texture
encoding network for material and texture recognition, the
texture encoding network encodes the deep texture features
through a texture encoding layer which is integrated on top
of convolutional layers and is capable of transferring CNNs
from object recognition to texture and material recognition.
Furthermore, the texture encoding network achieves state-of-
the-art performance on the material dataset MINC2500 (Bell
et al., 2015). Due to the good performance of the texture encoding
network introduced in Zhang et al. (2017), we select it to encode

the texture feature for each detected RoI and convert the texture
feature to vector vt :

vt = TexNet(IR) (2)

where vt ∈ R
1×dt , dt is the output size of the texture

encoding network.
We also apply L2 normalization to process each texture vector

vt . For modeling convenience, we utilize a single perceptron
which is comprised of a linear layer and a tanh layer to transform
vT into a new vector:

v̂t = tanh(Wvt + b) (3)

where v̂t ∈ R
1×dl ,W is a weight matrix and b is a bias vector for

the linear layer, and dl is the dimension of the linear layer. From
Ben-Younes et al. (2017) and the experimental results, hyperbolic
tangent produces slightly better results.

For fusing convenience, we adopt the tile operation to expand
the texture vector v̂t to generate the deep texture representation
ft which has the same dimension with the deep visual feature fv,
i.e., the generated ft ∈ R

m×n×dv .

4.2. Attention-Based Multi-Visual Features
Dynamic Fusion
Factorization Machines (FM) were proposed for
recommendation system (Rendle, 2010), and aimed at solving
the problem of feature interactions under large-scale sparse
data. Given a feature vector list, FM predicts the target through
modeling all interactions between each pair of features:

ŷ(x) = w0 +

t∑

i=1

wixi +

t∑

i=1

t∑

j=i+1

ŵijxixj (4)
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FIGURE 2 | Architectural diagram of the object affordance detection via attention-based multi-visual features fusion. The RetinaNet is adopted to detect RoIs from

raw images, and then for each detected RoI, the deep visual features and deep texture features are extracted by a pretrained CNN and a texture encoding network,

respectively. In order to reserve the complementary nature of the different features and avoid causing redundancies during the multi-visual features fusion, an

attention-based fusion mechanism is applied to fuse the multi-visual features. Through the attention-based fusion, the fused features are fed into an MLP to learn

object affordances.

where w0 ∈ R is the global bias, xi and xj denote the i-th and j-th
feature in the given feature list, wi ∈ R

t represents the weight of
the i-th feature, ŵij models the interaction between the i-th and
j-th feature and is calculated by:

ŵij = vTi vj (5)

where vi, vj ∈ R
s are the sparse representations of xi and xj,

i.e., embedding vectors for the non-zero elements of xi and xj,
s denotes the dimension of the embedding vectors.

In light of the FM, the ŵij comprises the interaction
information of different features, and should be represented by
the sparse non-zero elements of the different features. Formally,
we extract the non-zero element set from fv and vt , and adopt an
embedding layer to acquire the sparse representations ev for fv
and et for vt , respectively. We calculate the interacting matrix kvt
which embeds the interaction information between fv and vt by:

kvt = eTv et (6)

where kvt∈ R
p×p, ev and et ∈ R

1×p, p denotes the output size of
the embedding layer.

In order to avoid causing information redundancies during
features fusion, we integrate the attention mechanism with
kvt to complete feature fusion. By learning attention weights,
the attention mechanism endows the model with the ability
to emphasize the different weights of the multi-visual features
during learning affordance. The attention weights can be
parameterized by an attention network which is composed of an
MLP and a softmax layer. The input of the attention network
is the interacting matrix kvt , the generated weight encodes

the interaction information between the different features. The
attention weights τatt can be acquired by:

τatt =
exp(Avt)∑
exp(Avt)

(7)

and

Avt = α
T tanh(Wattkvt + batt) (8)

where τatt ∈ R
1×p, Watt , batt , and α are weight matrices,

bias vector and model parameters for the attention network,
respectively.

By means of the learned τatt , we fuse fv and ft to produce the
fused feature ffuse to learn object affordances. The fused feature
ffuse is generated by:

ffuse = (1− τatt)fv ⊕ (τatt)ft (9)

where ffuse ∈ R
m×n×d, ⊕ denotes concatenation. Figure 3 shows

the details of the attention-based multi-visual features fusion.

5. INTENTION SEMANTIC EXTRACTION

Each word plays a different role in representing the semantic
of natural language expressions, so we argue that each word
should have different weights in natural language queries to
ground target objects. In order to acquire the different weights,
we propose a self-attentive network to calculate the weight of each
word in natural language queries.We acquire the weights in three
steps. First, given a natural language sentence S, we tokenize S
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FIGURE 3 | Attention-based multi-visual features fusion network. The feature embedding layers process the sparse representations of the deep visual feature and the

deep texture feature, and the outputs of the feature embedding layers are applied to generate the interaction information of the multi-visual features. Subsequently, the

interaction information is fed into the attention network to acquire the attention weights, which are adopted to complete attention based dynamic fusion.

into words by NLTK (Perkins, 2010) toolkit, i.e., S = s1, s2, . . . , sn,
i ∈ (1, n), n denotes the word number of S. Moreover, the lexical
category of each tokenized word si is generated by a POS-tagger
(part of speech tagger) of NLTK.

Second, we adopt GloVe (Pennington et al., 2014) to transfer
si into a 300-D vector ri as word representation, ri ∈ R

1×300.
These word representation vectors are concatenated as the
representation of the sentence, i.e., R = (r1, r2, . . . , rn), R ∈

R
n×300. We then feed the generated sentence representation R

into the self-attentive network to calculate the weight of each
word. The self-attentive network adopts an attention mechanism
over the hidden vector of a BiLSTM to generate a weight score αi

for si. The self-attentive network is defined as:

ht = BiLSTM(R)

ui = tanh(Wht + b)

αi =
exp(ut)∑
t exp(ut)

(10)

where ht represents the hidden vector of the BiLSTM, ui is
the transformation vector generated by an MLP with learnable
weight matrix W and bias vector b. In practice, we adopt the
weight trained on the supervised data of the Stanford Natural
Language Inference dataset (Conneau et al., 2017) to be the initial
weight of the BiLSTM in the self-attentive network.

Finally, the sentence S is re-ordered according to the acquired
αi, the verb with the largest weight is selected to present
the semantic of intention-related instruction, and the selected
verb is fed into the grounding module to complete target
object grounding.

6. TARGET OBJECT GROUNDING

An essential step to achieve intention-related natural language
grounding is to build the mapping between the detected
affordances and the extracted intention semantic words. Inspired
by the Latent Semantic Analysis (LSA) which is used to measure

the similarity of words and text documents meaning, we propose
a semantic metric measuring based approach to build the
mapping between the detected affordances and the intention-
related natural language queries.

We first transfer the extracted intention semantic word and
the detected affordances into 300-D vectors by GloVe, and then
calculate the word semantic similarity between them to achieve
target grounding. Formally, we transform the extracted intention
semantic word to vector vsem ∈ R

1×300, and also transfer the
detected affordances into vectors vaff ,i ∈ R

1×300, i ∈ (1,N),
where N denotes the number of detected object affordances. We
calculate the semantic similarity between them by:

Sim(vsem, vaff ,i) =
vsem · vaff ,i

‖vsem‖2 · ‖vaff ,i‖2
(11)

where ‖ · ‖2 denotes L2 normalization operation.
The object with the largest semantic similarity value of the

intention semantic-affordance pair is selected as target. Through
the semantic similarity calculation, the extracted intention
semantics are mapped into the corresponding human-centered
object affordance.

7. EXPERIMENTS AND RESULTS

7.1. Object Affordance Detection
7.1.1. Dataset
In MSCOCO (Lin et al., 2014) and ImageNet (Russakovsky
et al., 2015), there are only a few indoor scenes and few
objects associated with the introduced ten affordances. Therefore,
we create a dataset to train and evaluate the proposed object
affordance recognition architecture. The proposed dataset1 is
composed of images collected by a Kinect V2 sensor and indoor
scenes from MSCOCO and ImageNet.

The dataset contains in total of 12,349 RGB images and 14,695
bounding box annotations for object affordance detection (in

1https://tams.informatik.uni-hamburg.de/research/datasets/index.php
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FIGURE 4 | Example images from the proposed dataset. (Top) Images from MSCOCO. (Middle) Images from ImageNet. (Bottom) Images taken by Kinect V2.

which 3,378 annotations are from MSCOCO and ImageNet).
We randomly select 56.1% regions (8,250) from the dataset for
training, 22.1% regions (3,253) for validation, and the remaining
21.8% regions (3,192) for testing. Figure 4 shows some example
images from the proposed dataset.

As mentioned above, we generalize ten affordances that are
related to ordinary household objects. Figure 5 illustrates the
affordance distribution in the presented dataset. There are few
writing and cleaning objects included in the images in the
MSCOCO and ImageNet dataset, so we collect a large portion
of the two categories images by a Kinect sensor.

7.1.2. Experimental Setup and Results
We utilize the available source2 which is an implementation
of RetinaNet (Lin et al., 2020) and select ResNet 50 to be the
backbone to detect RoIs from RGB images. We extract the deep
visual features from the last pooling layer of VGG19 (Simonyan
and Zisserman, 2014) trained on Imagenet (Russakovsky et al.,
2015) for each detected RoI. To produce a length-uniformed
feature map for RoIs with different size, we rescaled the detected
RoIs to 224 × 224 pixels. Accordingly, the dimension of the
extracted deep visual feature for each RoI is 7 × 7 × 512, i.e.,
fv ∈ R

7× 7× 512.
We adopt the deep texture encoding network (Zhang et al.,

2017) trained on the material database MINC2500 to generate
deep texture representations. We extract the texture features

2https://github.com/fizyr/keras-retinanet

FIGURE 5 | The affordance distribution in the presented dataset. Y-axis

denotes the region number of each affordance.

from the texture encoding layer for RoIs. The output size of the
texture encoding layer is 32 × 128, so the dimension of vt is 1
× 4,096. We set the output size of the single perceptron dl =
512, therefore, the dimension of the transformed texture vector
v̂t is 1 × 512. Through the tile operation, the dimension of the
generated deep texture representation ft ∈ R

7× 7× 512.
For modeling convenience, we set the size of the embedding

layer to p = 512, the generated sparse representation for the deep
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visual feature and the deep texture feature, ev and et , are vectors
with the dimension of 1 × 512, and the dimension of produced
interacted matrix kvt ∈ R

512× 512. We tile the produced kvt and

FIGURE 6 | Generated confusion matrix of object affordance detection on the

test set.

feed it into the attention network, so the size of the generated
attention weights τatt ∈ R

1× 512. Through the attention weights
based dynamic fusion, the dimension of each produced fused
feature ffuse is 7× 7× 1,024, i.e., ffuse ∈ R

7× 7× 1,024.
The fused features are fed into the MLP to learn affordances.

The parameters of the MLP include: Cross Entropy loss function,
Rectified Linear Unit (ReLU) activation function, and Adam
optimizer. The structure of the MLP is 50176-4096-1024-10.
In practice, we adopt the standard error back-propagation
algorithm to train the model. We set the learning rate to 0.0001
and batch size to 32, and to prevent overfitting, we employ
dropout to randomly drop 50% neurons during training.

We train the architecture in PyTorch. After 100 epochs
training, the proposed network acquires 61.38% average accuracy
on the test set. Figure 6 shows the confusion matrix of the
acquired results by the presented network.

From Figure 6, the affordances writing, cleaning, and cooking
have relative low accuracy compared to the other affordances.
The shapes and textures of the selected objects in the three
categories are significantly different from each other. Therefore,
we deduce the primary cause that lead to the low accuracy of the
three affordances is the great shape and texture differences, so
that the similarities between the deep features in one category
are difficult to generalize and learn. Figure 7 shows some
acquired example results of object affordance detection on the
test set.

FIGURE 7 | Example results of object affordance detection on the test dataset. Raw images are collected from MSCOCO and ImageNet, used with permission.
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7.1.3. Ablation Study and Comparison Experiments
Except validating the attention-basedmulti-visual features fusion
network on the presented dataset, we also adopt different features
fusion approach and utilize different networks to compare the
detection accuracy.

VGG19 Deep Features: In order to verify the effectiveness of
the multi-visual features fusion for object affordances learning,
we compare the results generated by the attention-base fusion
network with a model trained by the deep visual features
extracted from VGG 19. In this case, the deep features with
shape of 7 × 7 × 512 are fed into an MLP with structure of

25088-4096-1024-10 to learn the affordances. After 100 epochs
training, the generated model acquires 55.54% on the test set.

Naive Concatenation: For validating the performance of
attention-based fusion scheme, we adopt naive concatenation
to concatenate the deep visual features and the deep texture
features to generate the fused representations of the multi-visual
features. The concatenated features are with the shape of 7 × 7
× 1,024 and are fed into the MLP which has the same structure
in the multi-visual fusion architecture to recognize affordances.
After 100 epochs, the generated model acquires 58.21% on the
test set.

TABLE 1 | Object affordance detection results acquired by different networks, deep features and feature fusion method.

Attention multi-visual

features fusion

VGG deep features Naive concatenation RetinaNet YOLO V3

calling 0.9036 0.9096 0.8723 0.7747 0.5783

drinkingI 0.8991 0.7785 0.8195 0.7806 0.4771

eatingII 0.7943 0.7658 0.7569 0.6829 0.5696

playing 0.5676 0.4791 0.5305 0.8305 0.7871

reading 0.5148 0.4938 0.5297 0.6424 0.652

writing 0.2995 0.2028 0.286 0.2628 0.2028

cleaning 0.1875 0.1625 0.175 0.375 0.3327

drinkingII 0.7838 0.7627 0.7248 0.6128 0.5824

eatingI 0.8162 0.7103 0.7049 0.6738 0.4837

cooking 0.3719 0.2893 0.4214 0.2562 0.2968

Average 0.6138 0.5554 0.5821 0.5892 0.4963

The bold value of each row is the acquired best accuracy of each affordance.

FIGURE 8 | Example results of intention-related natural language query grounding. The first row lists example results of object affordance detection. The bar charts in

the second row show the different weights of each word in given natural language instructions acquired by the intention semantic extraction module. <s> and </s>

represent the beginning of sentence token and the end of sentence token, respectively. The third row includes the natural language queries, and the extracted

intention semantic words are covered with the corresponding color of the detected affordances.
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FIGURE 9 | Example results of spoken natural language query groundings, point cloud segmentation, and learned target object grasping poses. The rectangles in the

first row list the natural language queries, and the extracted intention semantic words are covered with corresponding color. The second row shows the results of the

target object groundings. The images in the third row are point cloud segmentation by combining the bounding box values of grounded targets and the depth data

acquired by a Kinect camera, and the red point clouds are the segmentations of the grounded target objects. The images in the fourth row show the grasping

scenarios in MoveIt, the red grippers represent the learned best grasping poses.

RetinaNet: We directly train the RetinaNet (Lin et al.,
2020) (available source2) on the proposed dataset. For a fair
comparison, the backbone also utilizes ResNet 50. After 100
epochs training, the generated model obtains 58.92% average
accuracy on the test set.

YOLO V3: We also adopt the original pretrained weights to
train YOLO V3 (Redmon and Farhadi, 2018) (available code3)
on the dataset. After 100 epochs training, the YOLO V3 model
obtain 49.63% average accuracy on the test set. Table 1 lists
the results acquired by these different networks, different deep
features, and different feature fusion approach.

From the experimental results, it is clear that the attention-
based multi-visual features fusion network acquires the higher
accuracy than the VGG deep features and naive concatenation
approach. Although the RetinaNet obtains 58.92% average
accuracy, our attention-based fusion network acquires the best
detection accuracy on five affordance categories and the best
average accuracy on the test set. The results demonstrate the

3https://github.com/qqwweee/keras-yolo3

performance of the multi-visual features and attention-based
fusion network for learning object affordances.

7.2. Intention-Related Natural Language
Queries Grounding
In order to validate the performance of the intention-related
natural language grounding architecture, we select 100 images
from the introduced test dataset. To ensure the diversity of the
intention-related queries, we collect 150 instructions by showing
10 participant different scenarios and ask them to give one
or two queries for each image. We use the intention semantic
extraction module to extract semantic words from these natural
language sentences, the presented extraction module acquires
90.67% accuracy (136 correct samples in total 150 sentences).

We utilize the collected images and queries to test the
effectiveness of the grounding architecture. Figure 8 lists some
example results of intention-related natural language queries
grounding. Through analyzing the failure target groundings, we
found that the performance of the grounding architecture is
greatly influenced by the affordance detection.
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7.3. Robotic Applications
We also conduct several spoken intention-related instruction
grounding and target object grasping experiments on a
UR5 robotic arm and a Robotiq 3-finger adaptive robot
gripper platform. We first train an online speech recognizer
under Kaldi (Povey et al., 2011) and translate the spoken
instructions into text by the online speech recognizer, we then
ground spoken intention-related queries via the introduced
grounding architecture.

In order to complete target object grasping, we combine
bounding box values of the grounded target objects with depth
data acquired by a Kinect V2 camera to locate the targets in
3D environments. Furthermore, we adopt the model from our
previous work (Liang et al., 2019) to learn the best grasping poses.
Figure 9 shows some example results of spoken instructions
grounding, target objects point cloud segmentation, and learned
target object grasping poses. The robotic applications video
can be found in the link: https://www.youtube.com/watch?v=
rchZeoAagxM.

8. CONCLUSION AND FUTURE WORK

We proposed an architecture that integrates an object affordance
detection network with an intention-semantic extraction module
to ground intention-related natural language queries. Contrary
to the existing affordance detection frameworks, the proposed
affordance detection network fuses deep visual features and
deep texture features to recognize object affordances from RGB
images. We fused the multi-visual features via an attention-
based dynamic fusion architecture, which takes into account
the interaction of the multi-visual features, preserves the
complementary nature of the multi-visual features extracted
from different networks, and avoids producing information
redundancies during feature fusion. We trained the object
affordance detection network on a self-built dataset, and we
conducted extensive experiments to validate the performance
of the attention-base multi-visual features fusion for learning
object affordances.

Moreover, we presented an intention-related natural
language grounding architecture via fusing the object affordance
detection with intention-semantic extraction. We evaluated the
performance of the intention-related natural language grounding
architecture, and the experimental results demonstrate the
performance of the natural language grounding architecture. We
also integrated the intention-related natural language grounding
architecture with an online speech recognizer to ground spoken

intention-related natural language instructions and implemented
target object grasping experiments on a robotic platform.

Currently, the introduced affordance detection network learns
ten affordances through fusing the deep visual features and
the deep texture features. In the future, we will apply meta-
learning to learn more affordances from a smaller amount
of annotated images, and develop a network-based framework
to learn the different contributions of the different features
for object affordances learning. Additionally, we will integrate
the image captioning methodology with affordance to generate
affordance-aware expression for each detected region within
working scenarios.
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