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Treatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid
development, especially use against hematologic malignancies. Clinical trials of NK cell-
based adoptive transfer to treat relapsed or refractory malignancies have used peripheral
blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each
approach undergoing continued clinical development. Improving the potency of these
therapies relies on genetic modifications to improve tumor targeting and to enhance
expansion and persistence of the NK cells. Induced pluripotent stem cell (iPSC)-derived
NK cells allow for routine targeted introduction of genetic modifications and expansion of
the resulting NK cells derived from a clonal starting cell population. In this review, we
discuss and summarize recent important advances in the development of new iPSC-
derived NK cell therapies, with a focus on improved targeting of cancer. We then discuss
improvements in methods to expand iPSC-derived NK cells and how persistence of iPSC-
NK cells can be enhanced. Finally, we describe how these advances may combine in
future NK cell-based therapy products for the treatment of both hematologic malignancies
and solid tumors.

Keywords: NK cell, chimeric antigen receptor (CAR), immunotherapy, iPSC (induced pluripotent stem cells),
cell engineering
INTRODUCTION

Over the past decade, cellular therapies have advanced from pre-clinical studies through clinical
trials and now to several U.S. Food and Drug Administration (FDA) approved therapies. Despite
these successes, the FDA approved chimeric antigen receptor (CAR) T cell therapies for B-cell acute
lymphoblastic leukemia (B-ALL), B-cell lymphomas and multiple myeloma are limited by their
manufacturing processes and treatment-related toxicity (1).

Some of the major challenges with autologous CAR-T cell therapy are antigen escape, limited
capability of CAR-T cells to migrate to and infiltrate the immunosuppressive tumor microenvironment
(TME), and treatment-associated toxicities. The most significant adverse effects of CAR-T cells are
cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS)
(2). CRS occurs in approximately 25% of patients treated with anti-CD19 CAR-T cells, severe ICANS in
12-42% and non-relapse related death in 1-2% of treated patients (3–6). An additional manufacturing
issue with autologous CAR-T cell therapies is that patients who have previously receivedmultiple rounds
org February 2022 | Volume 13 | Article 8411071
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of chemotherapy may not be able to mobilize sufficient T cells for
CAR-T cell production with up to 10-30% of patients that fail CAR-
T cell manufacturing (3, 5, 7). Additionally, in the time required for
CAR-T cell manufacturing, patients can experience disease
progression. For example, 38 out of 165 patients enrolled in one
study of anti-CD19 CAR-T cells dropped out before receiving
therapy (5). Therefore, 30% or more of patients who could
potentially benefit from CAR-T cell therapy do not receive the
treatment. Additionally, the cost of CAR-T cell manufacturing is
typically $300,000-$500,000 for each patient, even before the costs
of care.

Due to these limitations of autologous CAR-T cells, allogenic
T cell approaches and alternative cell sources for cellular therapy
have been investigated. Collecting allogenic, healthy and
functional T cells from volunteer donors instead of the cancer
patient undergoing chemotherapy has been one approach;
however, allogenic T cells must be modified to prevent the
development of graft versus host disease (GVHD) (8).
Allogeneic T cells have been engineered to delete their human
leukocyte antigen (HLA) class I and II molecules and disrupt T-
cell receptor (TCR) expression to evade immune rejection and
reduce GVHD in patients (7, 9–12).

Natural killer (NK) cells, key effector cells of the innate
immune system, possess features that can overcome many of
the challenges associated with autologous CAR-T cells. NK cells
are an ideal cell population for anti-cancer cell therapy as the
repertoire of receptors that regulate NK cell activity are distinct
from the TCR system and allow for use of NK cells as an
allogeneic therapy (13, 14). Therefore, NK cells do not require
HLA matching and multiple clinical studies demonstrate a lack
of GVHD despite these being allogeneic cells, making them a
relatively safer therapeutic approach compared to allogeneic
CAR-T cells that can still lead to GVHD if there are any cells
with residual TCR (15–19). NK cells are known to play a key role
in immunosurveillance that can limit or prevent tumorigenesis
(20). This ability for NK cells to provide natural immunity to
malignancies has been demonstrated in both mice and humans
(21, 22). Agents that enhance endogenous NK cell activity can
lead to improved anti-tumor responses (13). For example, the
anti-NKG2A monoclonal antibody Monalizumab that blocks
this inhibitory receptor expressed on NK cells and cytotoxic T
cells has demonstrated potent anti-tumor activity in clinical trials
(23, 24). NK cells are also recognized to play a key role in the
anti-tumor activity of allogeneic hematopoietic cell
transplantation (25). Because of these potential advantages, NK
cells obtained from various sources have been tested as a specific
cell population for adoptive transfer to treat cancer patients in
clinical trials. These sources include the NK-92 cell line,
peripheral blood cells, umbilical cord blood (CB), and induced
pluripotent stem cells (iPSCs) (16, 26–28). iPSC-derived NK cells
provide added benefits in terms of relative ease of genetically
engineering, clonal selection post-genetic modification and no
requirement for cells to be collected from a donor at any point in
time. However, the scale-up and manufacturing of NK cells
starting from iPSCs can be more challenging, though has been
routinely accomplished (29).
Frontiers in Immunology | www.frontiersin.org 2
NK CELLS AS CELLULAR THERAPY

Distinct NK cell sources each possess advantages and
disadvantages for use in cellular therapy targeting cancer (30).
Peripheral blood NK (PB-NK) cells must be collected from a
donor by apheresis and expanded prior to use (16, 31, 32). CB-
NK cells are required to be obtained from an umbilical cord
blood unit and expanded (28, 33, 34). CB-NK cell populations
can be expanded and exhibit similar cytotoxicity to PB-NK cells
against tumor cells post expansion (34, 35). For both PB- and
CB-NK cells there is variability in the NK cell yield from each
blood unit which is influenced by donor variability and
dependent on NK cell yield post-purification (15, 36). NK cell
lines such as NK-92 provide homogeneous cell populations that
expand indefinitely in culture and are more amenable to genetic
alteration (26). However, these cell lines lack important receptors
typically expressed on NK cells. For example, NK-92 cells do not
express Killer Ig-like receptors (KIRs) or CD16, an Fc receptor
that plays an important role in activating antibody-dependent
cellular cytotoxicity (ADCC) (26). Additionally, NK tumor cell
lines such as NK-92 cells are aneuploid and for safety reasons
must be irradiated prior to patient administration. This
irradiation limits their ability to expand and persist in vivo,
decreasing anti-tumor efficacy (26). Pre-clinical studies and
clinical trials of cellular therapies have demonstrated that
improved CAR-T cell persistence corresponds with better
treatment efficacy (37, 38). Similar studies for NK cells have
also shown that persistence in pre-clinical in vivo models
correlates with better tumor killing (39, 40). Therefore, this
limited expansion and persistence after being administered to
patients may account for the limited efficacy of NK-92 cells in
several clinical trials (41, 42).

Multiple clinical trials using these different NK cell products
demonstrate the efficacy of allogeneic NK cell adoptive transfer
therapy. The ability of unmodified allogeneic NK cells to kill
tumors that are resistant or refractory to standard therapies has
been most clearly demonstrated in the treatment of acute
myeloid leukemia (AML) (16, 17, 43–45). The first, seminal
study using PB-NK cells was done by Miller et al. who treated
patients with relapsed/refractory AML with allogeneic PB-NK
cells from haploidentical donors. Complete hematologic
remission was obtained in five of nineteen patients (16). In a
larger study of 42 patients with AML treated with haploidentical
NK cells and IL-15 by the same group, approximately 40% of
patients achieved complete remission (45). A separate study of
AML patients treated with haploidentical NK cells combined
with an immunotoxin to deplete IL2 receptor-expressing T-
regulatory cells led to 53% compete response rate (44).

Romee, Fehniger and colleagues demonstrated that
stimulation with the cytokines interleukin-12 (IL-12), IL-15,
and IL-18 produces so-called cytokine-induced memory-like
(CIML) NK cells that exhibited a 56% overall response rate
and 44% complete response rate in treatment of acute myeloid
leukemia (46–48). Another phase 1 clinical trial by Green Cross
LabCell Corporation used allogeneic NK cells (named MG4101)
derived from peripheral blood in combination with rituximab for
February 2022 | Volume 13 | Article 841107
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patients with B cell lymphomas (49, 50). No patients experienced
dose-limiting toxicities and five out of nine patients experienced
a response.

Additional trials using NK cells engineered to improve
targeting of tumors and NK cell expansion have been initiated
(15, 51–53). For example, a recent trial utilizing adoptive transfer
of ex vivo expanded, HLA-mismatched, CB-NK cells engineered
to express both an anti-CD19 CAR and secreted IL-15 were used
to treat 11 patients with CD19-positive relapsed or refractory B
cell malignancies and demonstrated objective response in 73% of
the patients (15). Importantly, none of the patients developed
serious toxicities associated with CAR-T cells including cytokine
release syndrome, neurotoxicity, and GVHD (15).

iPSC-NK CELLS – A STANDARDIZED,
OFF-THE-SHELF ALTERNATIVE FOR
CELLULAR THERAPY

NK cells generated from pluripotent stem cells have also emerged
as a promising strategy to produce standardized, off-the-shelf NK
cells with improved anti-tumor activity. This approach
circumvents many of the challenges seen with other NK cell
populations and T cells for adoptive cell therapy, such as the
requirement for collection from a donor or cord blood unit. In
contrast, pluripotent stem cells, either human embryonic stem
cells (hESCs) or iPSCs, can grow indefinitely in an
undifferentiated state via self-renewal (54–56). Therefore, the
ability to routinely derive NK cells from hESCs and iPSCs allows
for an unlimited number of uniform NK cells to be produced
from the starting pluripotent stem cell population to provide a
standardized, off-the-shelf approach.

The use of hESCs or iPSCs to derive engineered cell products
also enables individual clone isolation and detection of off-target
genomic alterations via whole-genome sequencing (39, 57). This
approach also allows for the efficient addition of multiple genetic
alterations to augment NK cell cytotoxicity. Genetic engineering
approaches such as transposons and lentiviral delivery ensure
efficient transgene insertion and stable expression in iPSCs
(58, 59). TALENS and CRISPR/Cas9 can also be used for more
precision in knocking in or deleting specific genes (60–64). Once
engineered, the engineered and undifferentiated iPSCs can be
frozen and stored to allow for consistent production of NK cells
with an identical phenotype.

The first studies of human pluripotent stem cells
demonstrated that hESCs can be differentiated into the three
primary germ layers (54). Further studies led to the
differentiation of CD34+ hematopoietic progenitor cells and
specific myeloid, erythroid, and lymphoid lineage populations
(65–70). With the advent of iPSC technology, laboratories
worldwide have developed protocols to differentiate target cells
of many lineages with hopes of use for cellular therapy for
complex diseases. Improvement in methods to derive NK cells
from hESCs/iPSCs now enables the production of homogeneous,
functional NK cells at a clinical scale (29). Initial methods
to derive cells of hematopoietic origin involved coculturing
of hESCs with irradiated stromal cell lines to generate
Frontiers in Immunology | www.frontiersin.org 3
CD34+CD45+ hematopoietic progenitors (29, 71). This was
followed by use of a second stromal cell line combined with
defined cytokines to produce mature NK cells (29, 71).
Subsequent studies refined NK cell production from hESCs/
iPSCs to eliminate the use of serum-containing media and
stromal cells. A “spin embryoid body (EB)” protocol produces
hematopoietic organoids that contain hematopoietic progenitor
cells, as well as endothelial and mesenchymal cells. These
hematopoietic progenitor cells then differentiate into NK cells
under defined conditions (72, 73). The hESC/iPSC-derived NK
cells can also be further expanded in the presence of IL-2 and
K562 cells engineered to present 4-1BB ligand and IL-21 to the
NK cells (29, 31). hESC/iPSC-derived NK cells recapitulate many
key features of primary NK cells. They express important NK cell
markers such as CD56, CD94, NKG2D, NKp44, NKp46, CD16,
and KIRs, and exhibit potent cytotoxicity toward diverse solid
tumors and hematological malignancies (69, 74, 75). Other
methods to derive NK cells from human iPSCs have also been
demonstrated, including developmental and functional
differences between NK cells derived under Wnt-dependent
versus Wnt-independent conditions (76).

Like CB- and PB-NK cells, hESC/iPSC-derived NK cells exhibit
cytotoxicity against diverse target cells via lytic granule release of
perforins and granzymes, production of proinflammatory
cytokines interferon gamma (IFN-g) and tumor necrosis factor
alpha (TNFa), and direct cell contact mediated apoptosis through
TRAIL and Fas-FasL interaction (57, 77). However, NK cells
derived from iPSCs are equally or more effective as primary NK
cells and NK cell lines. In vivo ovarian cancer xenograft models
demonstrated iPSC-NK cytotoxicity was comparable to PB-NK
cells (27). A different group found that iPSC-NK cells have greater
cytotoxicity against multiple ovarian, colon and breast cancer cell
lines compared to donor PB-NK cells (78).

IMPROVEMENT OF iPSC-NK CELL
EXPANSION AND FUNCTION THROUGH
GENETIC ENGINEERING

Multiple recent studies have genetically engineered iPSCs to
create iPSC-NK cells with enhanced expansion, in vivo
persistence and tumor killing capability are being explored (52,
79, 80). Many of these technologies were first developed and
tested in PB-NK cells and/or CB-NK cells and subsequently
translated into iPSC-derived NK cells. The iPSCs provide a stable
platform for routine genetic modifications that only need to be
done on a one-time basis. Once a stably engineered iPSC clone is
identified, this can be expanded and used to produce a
standardized population of appropriately engineered iPSC-
derived NK cells. Some examples of strategies to enhance NK
cell functions are described in this section (Figure 1).

Improving NK Cell Anti-Tumorigenic
Activity and Expansion via IL-15 Pathway
IL-15 plays an important role to stimulate NK cell expansion and
cytotoxic functions (13, 81–84). IL-15 activation has also been
shown to mitigate the immunosuppression mediated by
February 2022 | Volume 13 | Article 841107
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transforming growth factor (TGF)-b1, released from the TME
(85). These traits have made manipulation of IL-15 expression an
appealing strategy to enhance the anti-tumor activity of a variety
NK cells populations without the need to supplement the cell
production cultures with high doses of cytokines. Various
methods to activate the IL-15 signaling pathway have shown to
improve NK cell biology and function. The Rezvani group
demonstrated that expression of IL-15 combined with an anti-
CD19 CAR improved CB-derived NK cell cytotoxicity towards
CD19-expressing cell lines and primary leukemia cells in vitro,
and markedly extended survival in a Raji lymphoma xenograft
model (86). This approach was translated into a clinical trial of
anti-CD19 CAR-expressing CB-derived NK cells that were well
tolerated and demonstrated a 73% overall response rate for
patients with relapsed/refractory B cell malignancies (15).
Another study by Imamura et al. demonstrated expression of a
membrane bound form of IL-15 (mbIL-15) in human PB-NK
cells enhanced anti-tumor killing against hematologic
malignancies and solid tumors by augmenting NK cell survival
and expansion in vitro and in vivo without the need of additional
exogenous cytokines (87). Another approach employed by two
groups used an IL-15 receptor fusion construct comprising of an
IL-15 superagonist and IL-15 receptor a (IL-15SA/IL-15RA) to
increase anti-tumor activity of PB-NK and iPSC-NK cells,
respectively, in vitro and in vivo (40, 88).
Frontiers in Immunology | www.frontiersin.org 4
Regulators of IL-15 signaling also provide a target to improve
NK cell function. Cytokine-inducible Src homology 2–
containing (CIS) protein, encoded by the CISH gene, is a key
negative regulator of IL-15 signaling. Initial studies
demonstrated that deletion of CISH in mice leads to increased
sensitivity to IL-15, enhanced metabolism and improved anti-
tumor activity of NK cells (89, 90). The findings were adapted to
human iPSC-NK differentiation platform by using CRISPR/Cas9
edited CISH-knockout (CISH−/−) iPSCs and differentiating them
into CISH−/− iPSC-NK cells which demonstrate improved
metabolic profile, in vivo persistence and increased anti-tumor
activity through increased IL-15-mediated JAK-STAT signaling
activity (39, 91). Similar work also demonstrates that deletion of
CISH in PB-NK cells or UCB-NK cells can also improve their
anti-tumor activity (89, 91, 92).

Effects of Other Cytokines and
Chemokines on NK Cell Expansion,
Metabolic Fitness and In Vivo Persistence
NK cell activity is regulated by interactions with diverse immune
cells including, but not limited to, T cells, dendritic cells,
macrophages, and bone marrow stromal cells. These cells
secrete diverse cytokines and chemokines that bind to specific
receptors on NK cells. These cytokine receptors include IL-2R,
IL-12R, IL-15R, IL-18R, IL-21R (93, 94).
FIGURE 1 | Summary of genetic modifications to improve iPSC-NK cells. Numerous genetic alternations have been engineered to enhance the biology and function
of iPSC-derived NK cells for therapeutics. Ectopic expression of IL15 and/or other cytokines, CARs to boost anti-tumor cytotoxicity, recombinant CD16 and
knockout of specific genes such as CISH are some of the approaches.
February 2022 | Volume 13 | Article 841107
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Treatment of NK cells with cytokines allows NK cells to
acquire an increased spectrum of effector functions (95). IL-18 is
a key player of this priming process. Studies found that NK cells
isolated from IL-18-KO mice secreted significantly less IFN-g
than wild-type NK cells in response to stimulation with IL-12 or
IL-2 plus IL-12, demonstrating cooperation between the IL-2
and IL-18 signaling pathways (96). Another recent study
demonstrated increased ex vivo expansion and cytotoxic
activity of treated with a cytokine cocktail of IL-2, IL-15,
IL-18 (97).

In pre-clinical and clinical studies, the Fehniger group has
shown that treatment with a cytokine cocktail consisting of IL-
12, IL-15 and IL-18 results in development of CIML NK cells
with enhanced interferon-g (IFN-g) production and cytotoxicity
against leukemia cell lines or primary human AML blasts (46–
48). Their phase I clinical trial resulted in 4 out of 9 patients
achieving complete remissions (48). CIML NK cells further
demonstrated heightened cytotoxicity, enhanced IFN-g
production and persistence against ovarian cancer and other
malignancies (98, 99).

IL-21 is another common g-chain cytokine crucial for NK cell
maturation and proliferation (100). In an interesting study, Li
et al. demonstrated while increasing concentration of IL-21 (1-10
ng/ml) resulted in higher cytotoxicity through upregulation of
IFN-g and granzyme B, at high concentrations (50 ng/ml) IL-21
resulted in NK cell apoptosis (101). Notably, several groups now
routinely utilize irradiated NK cell-sensitive tumor cells that
express membrane-bound IL-21 (mbIL-21) and other
stimulatory ligands (e.g., 4-1BBL or Ox40L) to stimulate
prolonged and large-scale expansion of NK cells (29, 31,
102–104).

Efficient tumor infiltration and homing of NK cells is vital for
effective anti-tumor activity. However, cells within the TME
secrete chemokines such as C–X–C motif chemokine ligand 8
(CXCL8) or C–C motif chemokine ligand 2 (CCL2) that
suppress the activity of intratumoral NK cells (105). High
concentrations of adenosine in primary and metastatic TME,
specifically myeloid cell adenosine A2A receptors (A2ARs) have
a myelosuppressive effect that leads to suppression of NK cell
anti-tumor activity (106). Additionally, IL18 binding protein
(IL18BP) is a decoy receptor found in the TME that binds to
IL-18 with high affinity (107). IL18BP reduces the efficacy of
endogenous IL-18 or recombinant IL-18 (rIL-18) administered
to try to mediate improved anti-tumor activity (108). Patients
treated with rIL-18 have 10- to 100-fold higher concentrations of
IL-18BP in their serum (107, 109, 110). In a fascinating recent
study, IL-18 was engineered to override the IL18-BP inhibition
via a ‘decoy-resistant’ IL-18 (DR-18) that was able to stimulate
NK cells to effectively treat PD-1 resistant tumors despite the
presence of IL18BP (111).

A detailed transcriptomic analysis demonstrated ex vivo
expanded NK cells had drastic differences in expression pattern
of chemotactic receptors and ligands, including a significant
downregulation of CXCR4 and consequent upregulation of
CCR5. The study further observed knocking out CCR5
resulted in reduced NK cell trafficking into liver and
Frontiers in Immunology | www.frontiersin.org 5
corresponding increase in NK cell presence in the blood
circulation in immunodeficient mice post-infusion (105). PB-
NK cells transfected with CCR7 had increased towards CCL19, a
lymph node-associated chemokine (112). CXCR2-expressing
primary NK cells also showed improved migration to renal cell
carcinoma (113). Dual expression of an anti-EGFRvIII CAR and
CXCR4 led to increased anti-tumor and better survival in
xenograft mouse models (114).

Effect of Hypoxia on NK Cell Function
The hypoxic TME is a characteristic feature of solid tumors.
Hypoxia-inducible factors (HIFs) are activated at low oxygen
(115–118). Notably, deletion of HIF-1a in mouse NK cells
inhibits tumor growth despite reducing cytolytic activity of NK
cells. This was mainly shown to be mediated via increased
bioavailability of the major angiogenic cytokine vascular
endothelial growth factor (VEGF) (119). However, in a recent
single cell transcriptomic analysis, conditional deletion of HIF-
1a in mouse tumor-infiltrating NK cells lead to increased NK cell
activation, upregulated NF-kB signaling and improved anti-
tumor activity (120).
STRATEGIES TO IMPROVE TUMOR
TARGETING OF NK CELLS

In addition to strategies to improve function of NK cells, diverse
methods have now been used to improve NK cell targeting
against more NK cell-resistant tumors. This section describes
some of these strategies that include addition of CARs to NK
cells, modification of Fc receptors on NK cells, use of immune
checkpoint inhibitor antibodies and NK cell engager molecules.

Development of CAR-Expressing
NK Cells
CARs are engineered cell surface receptor constructs that direct
immune cell function via recognition of the target antigen on the
tumor cell surface leading to activation of the immune effector
cell via an intracellular signaling domain (121–123). CAR
constructs typically contain three main components: an
ectodomain for recognition of the target antigen (the binder), a
transmembrane domain (TM) and an intracellular signaling
endodomain(s) (124–126). The ectodomain is typically an
immunoglobulin-like single-chain variable fragment (scFv) that
imparts antigen specificity against the target tumor. For example,
scFvs that target CD19 to treat B cell leukemia and lymphoma
are now used for the FDA-approved CAR-T cells (3, 5). Binders
that target mesothelin, epidermal growth factor receptor,
prostate specific membrane antigen or other tumor antigens
have been developed and are in clinical trials to treat diverse
malignancies (51, 127–129).

NK cell CAR-based therapy has been shown to benefit from
utilization of NK cell-specific CAR constructs compared to CARs
that were developed for T cells. For example, our group tested
four different transmembrane domains (CD16, NKp44, NKp46,
and NKG2D) and four different costimulatory domains (2B4,
February 2022 | Volume 13 | Article 841107
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DAP10, DAP12, and CD137) in combinations with CD3z to
optimize an NK cell-specific CAR construct. These studies
demons t r a t ed a CAR tha t con t a in s th e NKG2D
transmembrane domain and 2B4 co-stimulatory domain
mediated improved anti-tumor activity both in vitro and in
vivo (128). Other groups have engineered NK cells to express
CARs targeting CD19, CD33 or GPC3 using the 4-1-BB and
CD3z components to kill otherwise resistant tumor cells (53,
130, 131). Additional studies have used NK cells that express
CARs that incorporate either DNAX-activation protein 10 or 12
(DAP10 or DAP12) as the activating domain or as a
costimulatory domain alongside CD3z (114, 128). A CAR
consisting of NKG2D-DAP10-CD3z domains increased NK
cell-mediated cytotoxicity and cytokine secretion against
leukemia and solid tumor cell lines (132). A DAP12 signaling
domain expressed in NK cells outperformed CD3z expression
alone in first-generation prostate stem cell antigen targeting
CAR-NK cells (133).

Increased CD16 and CD64 Expression
Enhances ADCC Mediated by iPSC-NK
Cells
NK cells express the activating immunoglobulin gamma Fc
receptor CD16a which recognizes the Fc region of IgG
antibodies bound to target targets. CD16a engagement
provides a potent stimulus to activate NK cells (134). The
clinical anti-tumor activity of monoclonal antibody therapy is
in-part dependent on this NK cell ADCC activity (135). For
example, there are allelic variants of CD16a with different Fc
binding affinities, and the high affinity CD16 variant (F158V) has
been shown to lead to improved antitumor responses in patients
treated with monoclonal antibodies (136, 137). Additionally, as a
negative feedback mechanism, CD16a is cleaved from the surface
of activated NK cells by the metalloprotease ADAM17, resulting
in decreased CD16a expression and decreased ADCC. With
genetic modification, the ADAM17 cleavage site on CD16a can
be mutated to block CD16a shedding and increase ADCC
(82, 138). In iPSC-NK cells, a CD16 molecule with the high
affinity F158V mutation that is resistant to ADAM17 cleavage
(termed hnCD16) maintained CD16a surface expression and
demonstrated increased cytotoxicity and cytokine production in
combination with anticancer monoclonal antibodies (57). In vivo
efficacy was confirmed in a xenograft mouse model of B cell
lymphoma, where anti-CD20 rituximab monoclonal antibodies
in combination with hnCD16-iPSC-NK cells improved survival
over the combination of PB-NK cells with rituximab or WT
iPSC-NK cells.

A second Fc receptor, CD64, binds to the same IgG1 and IgG3
isotypes as CD16A with more than 30-fold higher affinity.
However, CD64 is typically only expressed on myeloid cells
and not on NK cells (139). Expression of a recombinant receptor
consisting of the extracellular region of CD64 and the
transmembrane and intracellular regions of CD16a was tested
in iPSC-NK cells to determine if this higher affinity Fc receptor
could cytotoxicity against tumor cells in combination with
monoclonal antibody treatment (140). iPSC-NK cells
Frontiers in Immunology | www.frontiersin.org 6
expressing the CD64/16A chimeric receptor killed EGFR+/
HER2+ SKOV3 ovarian cancer cells when combined with the
anti-HER2 therapeutic mAb trastuzumab, or the anti-EGFR1
monoclonal antibody cetuximab, while little anti-tumor activity
killing was seen without addition of these antibodies (140).
Additionally, the higher affinity of CD64 allowed for
monoclonal antibodies to be pre-adsorbed to the NK cells
expressing the recombinant CD64 and improved tumor
targeting without additional antibody use (140).

NK Cells Enhance Anti-Tumor Activity in
Combination With Immune Checkpoint
Inhibitors
Immune checkpoint inhibitor therapies such as anti-
programmed death 1 (PD-1) and anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) monoclonal antibodies, that block
inhibitory signals on immune effectors cells thereby activating
the immune system, have revolutionized oncology (141, 142).
The combination of cellular therapy with immune checkpoint
inhibition can mediate improved anti-tumor activity. For
example, the ability of adoptive transfer of NK cells to
augment checkpoint inhibition therapies has been investigated
in hematologic and solid tumors models (143–145). iPSC-NK
cells combined with PD-1 checkpoint blockade produced more
inflammatory cytokines and exerted increased cytotoxicity. In
these studies, iPSC-NK cells were shown to cooperate with T cells
to enhance inflammatory cytokine production and tumor killing
(143). Other NK cell immune checkpoints, such as the inhibitory
receptor NKG2A can be blocked to improve anti-tumor activity.
The humanized anti-NKG2A antibody Monalizumab was shown
to increase NK cell activation, increase tumor killing, decrease
tumor volume and increase survival in vivo (146). This effect was
augmented by simultaneous PD-1 inhibition and now is under
study in phase II clinical trials (146).

Engager Molecules Direct iPSC-NK Cells
to Target AML
Following the clinical success of bispecific engagers such as
blinatumomab, a CD3-CD19 bispecific antibody that engages
CD3+ T cells and traffic them to CD19+ B cell acute
lymphoblastic leukemia, several groups have developed multi-
valent targeting molecules that specifically engage NK cells in
close proximity to the target tumor to improve tumor killing
(147). These bispecific killer engagers (BiKEs) or trispecific killer
engagers (TriKEs) have been designed to stimulate NK cell
activating cell surface cell receptors. For example, engagers
targe t ing NK ce l l s to CD30+ lymphomas , CD33+
myelodysplastic syndrome, CD133+ colon cancer, CLEC12A+

and CD33+ AML are all in clinical development. A bispecific
CD30xCD16 engager was able to direct PB-NK and CB-NK cells
to increase cytotoxicity against CD30+ lymphomas in a pre-
clinical study both in vitro and in vivo (148). A CD16xCD33
bispecific engager and TriKE targeting CD16, CD33 and
stimulating IL15 improved NK cell killing of CD33+

myelodysplastic syndrome cells (149, 150). NK cells were
directed to more effectively kill CD133+ or EPCAM+ colon
February 2022 | Volume 13 | Article 841107
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cancer cells by CD16xCD133 or CD16xEpcam TriKEs that
included an IL-15 crosslinker (151, 152). In AML preclinical
models BiKEs and TriKEs targeting CD33 and CLEC2A on AML
increased NK cell mediated killing of CD33+ or CLEC2A+ AML
cells, respectively (153, 154).

NKG2C is another NK cell surface receptor that delivers a
strong activating signal to NK cells. To determine if NKG2C
signaling could enhance NK cell-mediated antitumor responses
an anti-NKG2C/IL-15 engager was developed. The engager has
multiple functions, it is designed to bind CD16 to target the NK
cells to CD33 that is expressed highly on AML cells, as well as to
activate IL-15 signaling and NKG2C. The engager was
demonstrated to direct NKG2C+ iPSC NK cells to target
CD33+ AML cells and induce degranulation, IFN-g production
and cytotoxicity against the CD33+ cells and primary AML
blasts (155).

These strategies to enhance NK cell function can also be
combined. Again, iPSCs become very useful for these combined
approaches, as it is possible to do all the engineering steps in the
undifferentiated iPSCs. Once stable iPSCs are obtained, they can
be characterized for any off-target effects of the genetic
modification to help ensure safety and uniformity of the
differentiated product. The stably engineered iPSCs can then
be differentiated into NK cells and expanded for clinical use. This
approach was recently described for a product with expression
the non-cleavable, high-affinity version of CD16 to allow
improved ADCC combined with an IL15-receptor fusion
protein to enhance expansion of the cells (40). Additionally, as
these NK cells are intended to be combined with an anti-CD38
antibody (Daratumumab) to target multiple myeloma, CD38 was
deleted from the iPSCs to produce CD38-knockout (KO) iPSC-
NK cells that also contain the engineered CD16 and IL15
molecules. Since CD38 also mediated NAD metabolism, these
CD38-KO iPSC-NK cells have features similar to so-called
adaptive NK cells that arise after cytomegalovirus infection
(40). Interestingly, while these triple-engineered iPSC-NK cells
demonstrate potent anti-tumor activity in vitro, they were no
better than iPSC-NK cells with just the engineered CD16 and
IL15 receptor (and not the CD38-KO) in killing tumor cells
Frontiers in Immunology | www.frontiersin.org 7
in vivo using myeloma and AML xenograft models (40). Clinical
trials utilizing these engineered iPSC-NK cells are underway.
CONCLUSION

CAR-T cells have produced impressive clinical results in patients
with relapsed or refractory B-cell malignancies and multiple
myeloma, with ongoing studies in progress against many other
tumor types (1–3, 5). However, the current CAR-T therapeutic
strategy has several safety and logistical limitations that reinforce
the need to identify alternative immune cell populations for use
for cellular therapy. NK cells, and particularly iPSC-NK cells, are
a promising alternative to T cells for cellular therapy based their
proven safety record, ability to be used as an allogeneic
treatment, and ability to be produced in large numbers and be
stored to make an off-the-shelf therapy. Questions about NK cell
persistence, the durability of the response, homing to the target
tumor and the ability to overcome immune checkpoints remain
to be answered. Advances in iPSC-derived NK cell expansion
and targeting via genetic engineering and gene-editing
techniques promise to solve many of these issues and move
iPSC-derived NK closer to being an approved clinical option for
the treatment of hematologic and solid malignancies.
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